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A tree decomposition of G
Width = 2

1. Every vertex should be in a bag

2. Every edge should be in a bag

3. Bags containing a vertex should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth of G = minimum width of tree decomposition of G

[Bertele & Brioschi’72, Halin’76, Robertson & Seymour’84]
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Treewidth of graphs

Some graphs of small treewidth:

Trees (tw ≤ 1)
Series-parallel (tw ≤ 2)

k -outerplanar (tw ≤ 3k − 1)

Some graphs of large treewidth:

Clique (tw = n − 1) Expanders (tw = Θ(n)) n × n-grid (tw = n)
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Why treewidth: Graph theory

Dichotomy: Either small treewidth, or large grid inside

or

Grid minor theorem (Robertson & Seymour’86)

Exists function f (k) s.t. any graph with tw≥ f (k) has a k × k -grid minor.
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Why treewidth: Algorithms

Algorithms on trees generalize to algorithms on
graphs of small treewidth

Given a graph with a tree decomposition of
width k :

Maximum independent set in time O(2k · n)

Minimum dominating set in time O(3k · n)

Hamiltonian cycle in time 2O(k) · n
Any problem in MSO-logic in time f (k) · n

Need to compute the tree
decomposition first!
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Computing treewidth (and the tree decomposition)

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-constructive [Robertson & Seymour’86]

2O(k3)n log2 n time [Bodlaender & Kloks, Lagergren & Arnborg, ’91]

I Using kO(k)n log2 n time 8-approximation of [Lagergren ’90]

2O(k3)n time [Bodlaender ’93]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows’99],
[Telle’06], [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk’16]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.
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I kO(k)n log2 n [Matoušek and Thomas’91], kO(k)n log2 n
[Lagergren’91], and kO(k)n log n time [Reed’92] approximations

I 2O(k)n time 5-approximation [Bodlaender, Drange, Dregi, Fomin,
Lokshtanov & Pilipczuk’16]

I 2O(k)n time 2-approximation [K. ’21]

Theorem (This work)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Improved Parameterized Algorithm for Treewidth



Approximating treewidth
Polynomial-time approximation:

I O(
√

log(k))-approximation [Feige, Hajiaghayi & Lee’08]

I Constant-factor approximation NP-hard, assuming SSE-conjecture
[Wu, Austrin, Pitassi & Liu’14]

FPT-approximation:

I 2O(k)n2 time 4-approximation [Robertson & Seymour’86]
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1. How to improve a tree decomposition

Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem

Algorithms for subset treewidth that then imply algorithms for treewidth
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1. How to improve a tree decomposition

How to improve a tree decomposition
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Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or
2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition
(assume to start with width O(tw(G)) decomposition)

W

T
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Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ |W | − 2

Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size ≤ |W | − 1 and
cover W , but leaf bags can be arbitrarily large

G
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X ) of width ≤ |W | − 2

Improving T :

W

T
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Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci ])
N(Ci ) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually need a bit stronger condition than linkedness for improvement)
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(actually need a bit stronger condition than linkedness for improvement)
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Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X ) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth
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Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X ) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |
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2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch kO(kt)nO(1) time algorithm for partitioned subset treewidth

(this is also a kO(k2)nO(1) time algorithm for subset treewidth)
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Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X ) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj )-separator
Make S into a terminal clique and solve both sides independently

G

W1

W2

W3
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Solving subset treewidth
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Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t
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Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

.
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Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other
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Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex
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Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

W2
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Analysis of branching

W1

W2

W3

W2

W1

W2

W3

⇒

Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an
important separator

Sum of sizes/flows of terminal cliques at most (k + 1)t , so branching depth at
most kt

To get kO(kt)nO(1) time, need also an important separator hitting set lemma
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Conclusion

Open questions:

Is there 2O(k1.999)nO(1) time algorithm for subset treewidth?

When t = O(1), is there 2O(k)nO(1) time algorithm for partitioned subset
treewidth?

How much can the n4 factor be optimized?
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Thank you!

Thank you!

Tuukka Korhonen Improved Parameterized Algorithm for Treewidth


