Linear-Time Algorithms for *k*-Edge-Connected Components, *k*-Lean Tree Decompositions, and More

Tuukka Korhonen

STOC 2025

23 June 2025

Almost-linear-time algorithms for many problems:

- Edge connectivity (global edge min-cut), $\mathcal{O}(m \log^3 n)$ [Karger '96]
- Vertex connectivity (global vertex min-cut), $\mathcal{O}(m^{1+o(1)})$ [Li, Nanongkai, Panigrahi, Saranurak & Yingchareonthawornchai '21]
- Gomory-Hu tree, $\mathcal{O}(m^{1+o(1)})$ [Abboud, Li, Panigrahi & Saranurak '23]

Almost-linear-time algorithms for many problems:

- Edge connectivity (global edge min-cut), $O(m \log^3 n)$ [Karger '96]
- Vertex connectivity (global vertex min-cut), \$\mathcal{O}(m^{1+o(1)})\$ [Li, Nanongkai, Panigrahi, Saranurak & Yingchareonthawornchai '21]
- Gomory-Hu tree, $\mathcal{O}(m^{1+o(1)})$ [Abboud, Li, Panigrahi & Saranurak '23]

No idea about truly linear-time!

Almost-linear-time algorithms for many problems:

- Edge connectivity (global edge min-cut), $\mathcal{O}(m \log^3 n)$ [Karger '96]
- Vertex connectivity (global vertex min-cut), \$\mathcal{O}(m^{1+o(1)})\$ [Li, Nanongkai, Panigrahi, Saranurak & Yingchareonthawornchai '21]
- Gomory-Hu tree, $\mathcal{O}(m^{1+o(1)})$ [Abboud, Li, Panigrahi & Saranurak '23]

No idea about truly linear-time!

This work

 $f(k) \cdot m$ time algorithms for connectivity problems restricted to cuts/separators of size < k

Almost-linear-time algorithms for many problems:

- Edge connectivity (global edge min-cut), $\mathcal{O}(m \log^3 n)$ [Karger '96]
- Vertex connectivity (global vertex min-cut), \$\mathcal{O}(m^{1+o(1)})\$ [Li, Nanongkai, Panigrahi, Saranurak & Yingchareonthawornchai '21]
- Gomory-Hu tree, $\mathcal{O}(m^{1+o(1)})$ [Abboud, Li, Panigrahi & Saranurak '23]

No idea about truly linear-time!

This work

 $f(k) \cdot m$ time algorithms for connectivity problems restricted to cuts/separators of size < k

Deterministic!

Almost-linear-time algorithms for many problems:

- Edge connectivity (global edge min-cut), $\mathcal{O}(m \log^3 n)$ [Karger '96]
- Vertex connectivity (global vertex min-cut), \$\mathcal{O}(m^{1+o(1)})\$ [Li, Nanongkai, Panigrahi, Saranurak & Yingchareonthawornchai '21]
- Gomory-Hu tree, $\mathcal{O}(m^{1+o(1)})$ [Abboud, Li, Panigrahi & Saranurak '23]

No idea about truly linear-time!

This work

 $f(k) \cdot m$ time algorithms for connectivity problems restricted to cuts/separators of size < k

- Deterministic!
- One graph decomposition to rule them all!

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices \Rightarrow unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices \Rightarrow unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices \Rightarrow unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k=2 [Tarjan '72]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\mathcal{O}(m)$ for k=4 [Nadara,Radecki,Smulewicz&Sokołowski'21, Georgiadis,Italiano&Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices \Rightarrow unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k=2 [Tarjan '72]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\mathcal{O}(m)$ for k=4 [Nadara,Radecki,Smulewicz&Sokołowski'21, Georgiadis,Italiano&Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]
- $poly(k) \cdot m polylog m$ for all k [Hariharan, Kavitha & Panigrahi '07]

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k=2 [Tarjan '72]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\mathcal{O}(m)$ for k=4 [Nadara,Radecki,Smulewicz&Sokołowski'21, Georgiadis,Italiano&Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]
- $poly(k) \cdot m polylog m$ for all k [Hariharan, Kavitha & Panigrahi '07]
- $m^{1+o(1)}$ for all k [Abboud, Li, Panigrahi & Saranurak '23]

Def: Vertices u and v in the same k-edge-connected component if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices \Rightarrow unique partition into components

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Previous results:

- $\mathcal{O}(m)$ for k=2 [Tarjan '72]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\mathcal{O}(m)$ for k=4 [Nadara,Radecki,Smulewicz&Sokołowski'21, Georgiadis,Italiano&Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]
- $poly(k) \cdot m polylog m$ for all k [Hariharan, Kavitha & Panigrahi '07]
- $m^{1+o(1)}$ for all k [Abboud, Li, Panigrahi & Saranurak '23]

For minimum cut:

• $\mathcal{O}(k^2 m \log m)$ [Gabow '91], $\mathcal{O}(m \operatorname{polylog} m)$ [Karger '96]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

Implies the first "parameterized linear-time" ($f(k) \cdot m$ time) algorithms for many problems:

• k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{O(k^2)}m$ time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{\mathcal{O}(k^2)}m$ time
 - ▶ Previously $\mathcal{O}(k^3 m \operatorname{polylog} m)$ [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously poly(k) · m polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $\mathcal{O}(k^3m \operatorname{polylog} m)$ [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{\mathcal{O}(k^2)}m$ time
 - ▶ Previously $O(k^3 m \operatorname{polylog} m)$ [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ▶ Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

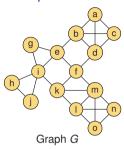
- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $\mathcal{O}(k^3m \operatorname{polylog} m)$ [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]
- k-Unbreakable tree decomposition in $k^{\mathcal{O}(k^2)}m$ time (with optimal unbreakability parameters)

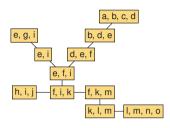
Main technical result:

Theorem (This work)

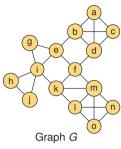
There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a "k-lean tree decomposition" of a given graph.

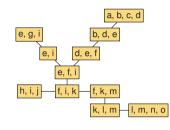
- k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ▶ Previously $poly(k) \cdot m polylog m$ [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in $k^{\mathcal{O}(k^2)}m$ time
 - ▶ Previously $O(k^3 m \operatorname{polylog} m)$ [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}m$ time
 - ► Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]
- k-Unbreakable tree decomposition in $k^{\mathcal{O}(k^2)}m$ time (with optimal unbreakability parameters)
 - ▶ Previously $k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström '21]
 - ▶ and $k^{\mathcal{O}(k)}m^{1+o(1)}$ [Anand, Lee, Li, Long, Saranurak '24] (suboptimal unbreakability parameters)





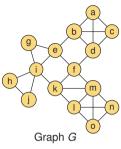
A 3-lean tree decomposition of G

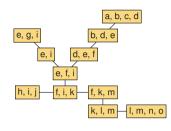




A 3-lean tree decomposition of G

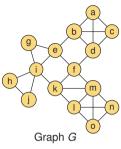
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree

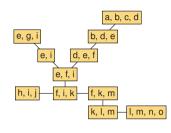




A 3-lean tree decomposition of G

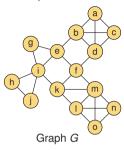
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- *k*-lean:

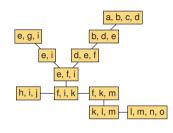




A 3-lean tree decomposition of G

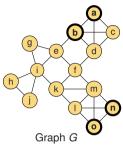
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k

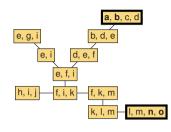




A 3-lean tree decomposition of G

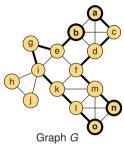
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

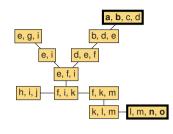




A 3-lean tree decomposition of G

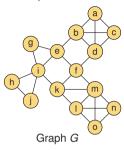
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

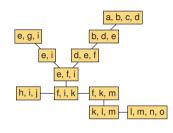




A 3-lean tree decomposition of G

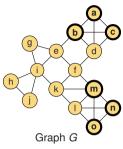
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

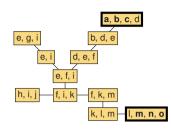




A 3-lean tree decomposition of G

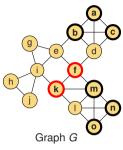
- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

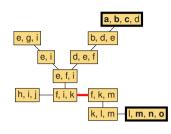




A 3-lean tree decomposition of G

- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

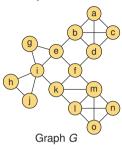


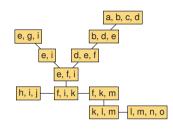


A 3-lean tree decomposition of G

- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

k-Lean Tree Decompositions

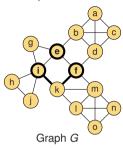


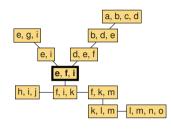


A 3-lean tree decomposition of G

- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$

k-Lean Tree Decompositions

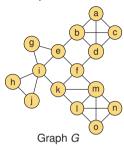


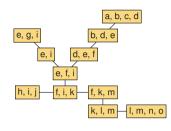


A 3-lean tree decomposition of G

- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$
 - Holds also when $B_1 = B_2$, e.g. $B_1 = B_2 = \{e, f, i\}$ and $X_1 = \{e, i\}$, $X_2 = \{e, f\}$.

k-Lean Tree Decompositions

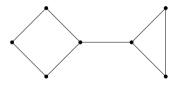




A 3-lean tree decomposition of G

- Tree decomposition:
 - 1. All vertices and edges are covered by bags
 - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
 - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
 - 2. For each pair of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths iff there is no (B_1, B_2) -adhesion of size $< |X_1| = |X_2|$
 - Holds also when $B_1 = B_2$, e.g. $B_1 = B_2 = \{e, f, i\}$ and $X_1 = \{e, i\}$, $X_2 = \{e, f\}$.
- Defined by [Thomas '90] (for $k = \infty$), and [Carmesin, Diestel, Hamann, and Hundertmark '14]

Reducing *k*-edge-connected components to *k*-lean tree decomposition



Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints

Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints
- Resulting k-lean tree decomposition gives a k-Gomory-Hu tree

The algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm (Inspired by [Graph Minors X., Robertson & Seymour '91])

Improver algorithm:

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $poly(k) \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $poly(k) \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof idea:

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $poly(k) \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof idea:

• Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $poly(k) \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof idea:

• Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]

Case 1: Matching M of size $\Omega(n) \Rightarrow$ contract M, recurse, uncontract, and apply improver algorithm

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $poly(k) \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof idea:

- Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]
- Case 1: Matching M of size $\Omega(n) \Rightarrow$ contract M, recurse, uncontract, and apply improver algorithm
- Case 2: No matching of size $\Omega(n) \Rightarrow$ manage to recurse in some other way...

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: k-lean tree decomposition

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}m$.

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: k-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}m$.

Proof idea:

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: k-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}m$.

Proof idea:

• Slowly improve the properties of the input tree decomposition (in 6 consecutive steps)

Improver algorithm:

Input: A "weakly-k-lean" tree decomposition:

- Adhesion size < 2k
- Any two subsets $X_1, X_2 \subseteq B$ of a bag B of size $|X_1|, |X_2| \ge 2k$ can be linked by k vertex-disjoint paths

Output: k-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}m$.

Proof idea:

- Slowly improve the properties of the input tree decomposition (in 6 consecutive steps)
- Key tool: Decomposition by doubly well-linked separations

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - ▶ k-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - k-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender '93])
- Decomposition by doubly well-linked separations (inspired by [Graph Minors X., Robertson & Seymour '91])

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - ▶ *k*-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender '93])
- Decomposition by doubly well-linked separations (inspired by [Graph Minors X., Robertson & Seymour '91])

Open problems:

Improve running time to 2^{o(k²)}m

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - ▶ *k*-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender '93])
- Decomposition by doubly well-linked separations (inspired by [Graph Minors X., Robertson & Seymour '91])

Open problems:

• Improve running time to $2^{o(k^2)}m$ (even e.g. just for k-edge-connected components)

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - ▶ *k*-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender '93])
- Decomposition by doubly well-linked separations (inspired by [Graph Minors X., Robertson & Seymour '91])

Open problems:

- Improve running time to $2^{o(k^2)}m$ (even e.g. just for k-edge-connected components)
- Simplify

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition, implying algorithms for:
 - ► *k*-edge-connected components (long-standing open problem)
 - k-vertex connectivity
 - ▶ k-unbreakable tree decomposition
 - ► *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender '93])
- Decomposition by doubly well-linked separations (inspired by [Graph Minors X., Robertson & Seymour '91])

Open problems:

- Improve running time to $2^{o(k^2)}m$ (even e.g. just for k-edge-connected components)
- Simplify

Thank you!

Feel free to reach out to me for any questions/comments: https://tuukkakorhonen.com/