An Improved Parameterized Algorithm for Treewidth

Tuukka Korhonen and Daniel Lokshtanov¹

¹University of California Santa Barbara

STOC 2023

20 June 2023

• Measures how close a graph is to a tree

- Measures how close a graph is to a tree
 - ► Trees have treewidth 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - ► The example graph has treewidth 2

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - ► The example graph has treewidth 2
 - ► The *n* × *n*-grid has treewidth *n*

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - ► The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - \triangleright K_n has treewidth n-1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - ► The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - \triangleright K_n has treewidth n-1
- Treewidth = minimum width of a tree decomposition

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - ► The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - every vertex is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - \triangleright K_n has treewidth n-1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - bags containing a vertex form a connected subtree

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - bags containing a vertex form a connected subtree
- Width = max bag size −1

Width 2

- Measures how close a graph is to a tree
 - ► Trees have treewidth 1
 - ► The example graph has treewidth 2
 - ▶ The $n \times n$ -grid has treewidth n
 - \triangleright K_n has treewidth n-1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - every vertex is in some bag
 - 2. every edge is in some bag
 - bags containing a vertex form a connected subtree
- Width = max bag size −1

[Robertson & Seymour '84, Arnborg & Proskurowski '89, Bertele & Brioschi '72, Halin '76]

• NP-complete [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^{O(k³)} n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^{O(k³)} n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99], [Telle'06],[Bodlaender, Drange, Dregi, Fomin, Lokshtanov&Pilipczuk'16], [Bodlaender, Jaffke & Telle '20]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^{O(k³)} n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99], [Telle'06], [Bodlaender, Drange, Dregi, Fomin, Lokshtanov&Pilipczuk'16], [Bodlaender, Jaffke & Telle '20]

Theorem (This paper)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^{O(k³)} n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99], [Telle'06],[Bodlaender, Drange, Dregi, Fomin, Lokshtanov&Pilipczuk'16], [Bodlaender, Jaffke & Telle '20]

Theorem (This paper)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

• No dynamic programming, runs in space poly(n, k)

Polynomial-time approximation:

- Polynomial-time approximation:
 - ► $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - ▶ Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- FPT constant-approximation:

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- FPT constant-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour '86]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- FPT constant-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour '86]
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - ▶ Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- FPT constant-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour '86]
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ $2^{O(k)}n$ time 2-approximation [K. '21]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - ► Assuming SSE-conjecture, NP-hard to *c*-approximate for every constant *c* [Wu, Austrin, Pitassi & Liu '14]
- FPT constant-approximation:
 - ▶ $2^{\mathcal{O}(k)} n^2$ time 4-approximation [Robertson & Seymour '86]
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ $2^{O(k)}n$ time 2-approximation [K. '21]

Theorem (This paper)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation algorithm for treewidth.

Our algorithms

Our algorithms

Strategy: Iteratively improve a tree decomposition

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

Generalization of the improvement method from [K. '21]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)} n^2$ and $k^{\mathcal{O}(k/\varepsilon)} n^2$ time algorithms for Subset treewidth

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)} n^2$ and $k^{\mathcal{O}(k/\varepsilon)} n^2$ time algorithms for Subset treewidth

Techniques:

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)} n^2$ and $k^{\mathcal{O}(k/\varepsilon)} n^2$ time algorithms for Subset treewidth

Techniques:

Branching on important separators [Marx '06]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)} n^2$ and $k^{\mathcal{O}(k/\varepsilon)} n^2$ time algorithms for Subset treewidth

Techniques:

- Branching on important separators [Marx '06]
- Together with the pulling argument

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Torso?

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Torso?

Make neighborhoods of components of G − X into cliques

Given graph G and
$$W \subseteq V(G)$$
 with $|W| = k + 2$

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Torso?

- Make neighborhoods of components of G X into cliques
- Delete V(G) \ X

Given graph G and $W \subseteq V(G)$ with |W| = k + 2 SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Given graph G and
$$W \subseteq V(G)$$
 with $|W| = k + 2$

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Given graph G and
$$W \subseteq V(G)$$
 with $|W| = k + 2$

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Proof outline:

Given graph G and
$$W \subseteq V(G)$$
 with $|W| = k + 2$

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Proof outline:

 Solve subset treewidth where W is a largest bag of non-optimal tree decomposition T

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Proof outline:

- Solve subset treewidth where W is a largest bag of non-optimal tree decomposition T
- Use the output decomposition to re-arrange T

Given graph G and $W \subseteq V(G)$ with |W| = k + 2

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Proof outline:

- Solve subset treewidth where W is a largest bag of non-optimal tree decomposition T
- Use the output decomposition to re-arrange T
- Decreases the number of largest bags of T

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

Open questions:

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

Open questions:

• Prove a $2^{\Omega(k)}$ lower bound assuming ETH

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

Open questions:

- Prove a $2^{\Omega(k)}$ lower bound assuming ETH
 - Known reductions give $2^{\Omega(\sqrt{k})}$ lower bound

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

Open questions:

- Prove a $2^{\Omega(k)}$ lower bound assuming ETH
 - Known reductions give $2^{\Omega(\sqrt{k})}$ lower bound
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?

• $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation for treewidth

Open questions:

- Prove a $2^{\Omega(k)}$ lower bound assuming ETH
 - Known reductions give $2^{\Omega(\sqrt{k})}$ lower bound
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?

Thank you!