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Treewidth

Measures how close a graph is to a tree

I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]
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Computing treewidth: Exact FPT algorithms

NP-complete [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99],
[Telle’06],[Bodlaender, Drange, Dregi, Fomin, Lokshtanov&Pilipczuk’16],
[Bodlaender, Jaffke & Telle ’20]

Theorem (This paper)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)
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Computing treewidth: FPT-Approximation

Polynomial-time approximation:

I O(
√
log k)-approximation [Feige, Hajiaghayi & Lee ’08]

I Assuming SSE-conjecture, NP-hard to c-approximate for every
constant c [Wu, Austrin, Pitassi & Liu ’14]

FPT constant-approximation:
I 2O(k)n2 time 4-approximation [Robertson & Seymour ’86]

I 2O(k)n time 5-approximation [Bodlaender, Drange, Dregi, Fomin,
Lokshtanov & Pilipczuk ’16]

I 2O(k)n time 2-approximation [K. ’21]

Theorem (This paper)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.
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Our algorithms

Our algorithms

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth 5 / 9



Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:
Generalization of the improvement method from [K. ’21]

I Pulling argument to re-arrange tree decompositions, originating from
lean tree decompositions [Thomas ’90, Bellenbaum and Diestel ’02]

2. Solving the subset treewidth problem

Theorem: 2O(k2)n2 and kO(k/ε)n2 time algorithms for Subset treewidth

Techniques:

Branching on important separators [Marx ’06]

Together with the pulling argument
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Subset treewidth

Given graph G and W ⊆ V (G) with |W | = k +2 SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ k

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X
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Subset treewidth for exact FPT algorithms

Given graph G and W ⊆ V (G) with |W | = k +2 SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

Proof outline:

Solve subset treewidth where W
is a largest bag of non-optimal
tree decomposition T

Use the output decomposition
to re-arrange T

Decreases the number of
largest bags of T
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Conclusion

2O(k2)n4 time algorithm and kO(k/ε)n4 time (1 + ε)-approximation for
treewidth

Open questions:

Prove a 2Ω(k) lower bound assuming ETH

I Known reductions give 2Ω(
√

k) lower bound

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Thank you!
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