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In this work

Framework for designing FPT 2-approximation algorithms for branchwidth
of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.
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Rankwidth
Measures graph decomposition by low-rank cuts

Generalization of treewidth, but can be bounded also for
dense graphs

I cliques, cographs, distance-hereditary, k -leaf-power...

Introduced by [Oum & Seymour, ’06] to approximate
cliquewidth:

I rw(G) ≤ cw(G) ≤ 2rw(G)+1

I f (k)n9 log n time 3-approximation algorithm for rankwidth

“Courcelle’s theorem” for rankwidth/cliquewidth
[Courcelle, Makowsky, & Rotics, ’00], [Oum & Seymour, ’06]
Given a graph with a rank decomposition of width k , any MSO1-definable problem can
be solved in f (k)n2 time

f (k)n3 3-approximation for rankwidth [Oum ’08]
f (k)n3 exact algorithm for rankwidth [Hlineny & Oum, ’08]

In this work: f (k)n2 time 2-approximation ⇒

Given a graph of rankwidth k , any MSO1-definable problem can be solved in f (k)n2 time
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Branchwidth of Connectivity function

Let V be a set and f : 2V → Z a connectivity function:
I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A
I Submodular: For any A,B ⊆ V , it holds that f (A∪B)+ f (A∩B) ≤ f (A)+ f (B)

Branch decomposition of f is a cubic tree whose leaves are the elements of V
I Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T )

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f
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Examples

Branchwidth of a graph:
I V = E(G)
I f (A) is the number of vertices incident to edges in both A and A

Rankwidth of a graph:
I V = V (G)
I f (A) is the GF(2) rank of the |A| × |A| matrix representing G[A,A]

Also carving-width, matroid branchwidth, rankwidth in different
fields...
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Outline

Framework for f (k)n time 2-approximation compression algorithms:

Given a branch decomposition T of f of width k , either output branch
decomposition of width < k , or conclude that k ≤ 2bw(f )

Specifically:

For rankwidth: 22O(k)
n time compression algorithm where input/output

decompositions are augmented
I Apply n times to get 22O(k)

n2 time algorithm

For graph branchwidth: 2O(k)n time compression algorithm
I Apply with treewidth approximation to get 2O(k)n time algorithm
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Framework

Input: Branch decomposition T of function f of width k

Combinatorial result:

I An edge uv of the decomposition is heavy if f (uv) = k

I If k > 2bw(f ), then a refinement operation can be applied, which
decreases the number of heavy edges and does not increase the
width

Algorithmic result:

I Assume dynamic programming in time t(k) per node

⇒ A sequence of refinement operations, either improving width or
concluding k ≤ 2bw(f ), can be performed in time t(k)2O(k)n

I For rankwidth t(k) = 22O(k)
, for graph branchwidth t(k) = 2O(k)
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Refinement operation
Specified by 4-tuple (uv ,C1,C2,C3), where uv ∈ E(T ) and (C1,C2,C3) tripartition of V

Example with (uv ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h}):

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g
w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h
w3

t

w1

w2 w3

ga

b

c
e
f

d

h
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Combinatorial result

Example with (uv ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h}):
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Theorem (Informal)
If f (uv) > 2bw(f ), there exists a refinement (uv ,C1,C2,C3) that “locally improves” T .

Theorem (Informal)
If there exists a refinement (uv ,C1,C2,C3) that “locally improves” T , then if the partition
(C1,C2,C3) is selected to optimize certain criteria, the refinement globally improves T .
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First Algorithm

General compression algorithm:

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv , denote (W ,W ) the cut of uv

3. Use dynamic programming to find (uv ,C1,C2,C3) or conclude k ≤ 2bw(f )

4. If (uv ,C1,C2,C3) found, refine T using it

5. Repeat 1-4 until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming per node

Too slow! Goal is linear in n
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Linear-time Algorithm
Example with (uv ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x
a

b

c

d

g

h

y
e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at uv , for a node x denote by Tuv [x ] the leafs below x

I Example: Tuv [x ] = {a, b} and Tuv [y ] = {e, f}

Observation: If Tuv [x ] ⊆ Ci , then the subtree of x appears identically in refinement

Call the nodes for which this does not happen the edit set R of the refinement

I Implement refinement by changing only R, in time O(t(n) · |R|)

I Over any sequence of refinements,
∑
|R| = O(3k · k · n)

Walk over the decomposition and refine whenever seeing edge uv with f (uv) = k
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The end

Thanks for watching!

Paper: https://arxiv.org/abs/2111.03492

Slides: https://tuukkakorhonen.com
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