Fast FPT-Approximation of Branchwidth

Fedor V. Fomin, <u>Tuukka Korhonen</u>

University of Bergen, Norway

STOC 2022

• Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth.

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

- Framework for designing FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem

There is a $2^{2^{\mathcal{O}(k)}}n^2$ time 2-approximation algorithm for rankwidth.

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

Measures graph decomposition by low-rank cuts

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ightharpoonup cliques, cographs, distance-hereditary, k-leaf-power...

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $rw(G) \le cw(G) \le 2^{rw(G)+1}$

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $\operatorname{rw}(G) \leq \operatorname{cw}(G) \leq 2^{\operatorname{rw}(G)+1}$
 - $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $\operatorname{rw}(G) \leq \operatorname{cw}(G) \leq 2^{\operatorname{rw}(G)+1}$
 - $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

"Courcelle's theorem" for rankwidth/cliquewidth

[Courcelle, Makowsky, & Rotics, '00], [Oum & Seymour, '06]

Given a graph with a rank decomposition of width k, any MSO_1 -definable problem can be solved in $f(k)n^2$ time

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - cliques, cographs, distance-hereditary, k-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $rw(G) \le cw(G) \le 2^{rw(G)+1}$
 - $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

"Courcelle's theorem" for rankwidth/cliquewidth

[Courcelle, Makowsky, & Rotics, '00], [Oum & Seymour, '06]

Given a graph with a rank decomposition of width k, any MSO₁-definable problem can be solved in $f(k)n^2$ time

• $f(k)n^3$ 3-approximation for rankwidth [Oum '08]

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $\operatorname{rw}(G) \leq \operatorname{cw}(G) \leq 2^{\operatorname{rw}(G)+1}$
 - $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

"Courcelle's theorem" for rankwidth/cliquewidth

[Courcelle, Makowsky, & Rotics, '00], [Oum & Seymour, '06]

Given a graph with a rank decomposition of width k, any MSO_1 -definable problem can be solved in $f(k)n^2$ time

- $f(k)n^3$ 3-approximation for rankwidth [Oum '08]
- $f(k)n^3$ exact algorithm for rankwidth [Hlineny & Oum, '08]

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ▶ cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $rw(G) \le cw(G) \le 2^{rw(G)+1}$
 - ► $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

"Courcelle's theorem" for rankwidth/cliquewidth

[Courcelle, Makowsky, & Rotics, '00], [Oum & Seymour, '06]

Given a graph with a rank decomposition of width k, any MSO_1 -definable problem can be solved in $f(k)n^2$ time

- $f(k)n^3$ 3-approximation for rankwidth [Oum '08]
- $f(k)n^3$ exact algorithm for rankwidth [Hlineny & Oum, '08]
- In this work: $f(k)n^2$ time 2-approximation

- Measures graph decomposition by low-rank cuts
- Generalization of treewidth, but can be bounded also for dense graphs
 - ► cliques, cographs, distance-hereditary, *k*-leaf-power...

- Introduced by [Oum & Seymour, '06] to approximate cliquewidth:
 - $rw(G) \le cw(G) \le 2^{rw(G)+1}$
 - ► $f(k)n^9 \log n$ time 3-approximation algorithm for rankwidth

"Courcelle's theorem" for rankwidth/cliquewidth

[Courcelle, Makowsky, & Rotics, '00], [Oum & Seymour, '06]

Given a graph with a rank decomposition of width k, any MSO_1 -definable problem can be solved in $f(k)n^2$ time

- $f(k)n^3$ 3-approximation for rankwidth [Oum '08]
- $f(k)n^3$ exact algorithm for rankwidth [Hlineny & Oum, '08]
- In this work: $f(k)n^2$ time 2-approximation \Rightarrow

Given a graph of rankwidth k, any **MSO**₁-definable problem can be solved in $f(k)n^2$ time

- Let V be a set and $f: 2^V \to \mathbb{Z}$ a connectivity function:
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
 - ▶ Submodular: For any $A, B \subseteq V$, it holds that $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$

- Let *V* be a set and $f: 2^V \to \mathbb{Z}$ a connectivity function:
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
 - ▶ Submodular: For any $A, B \subseteq V$, it holds that $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
 - ► Example with $V = \{a, b, c, d, e, f, g, h\}$:

- Let *V* be a set and $f: 2^V \to \mathbb{Z}$ a connectivity function:
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
 - ▶ Submodular: For any $A, B \subseteq V$, it holds that $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
 - ► Example with $V = \{a, b, c, d, e, f, g, h\}$:

- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- ullet The width of the decomposition is $\max_{uv \in E(T)} f(uv)$

- Let *V* be a set and $f: 2^V \to \mathbb{Z}$ a connectivity function:
 - ▶ Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
 - ▶ Submodular: For any $A, B \subseteq V$, it holds that $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$
- Branch decomposition of f is a cubic tree whose leaves are the elements of V
 - ► Example with $V = \{a, b, c, d, e, f, g, h\}$:

- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- ullet The width of the decomposition is $\max_{uv \in E(T)} f(uv)$
- The branchwidth of f is minimum width of a branch decomposition of f

Examples

- Branchwidth of a graph:
 - V = E(G)
 - f(A) is the number of vertices incident to edges in both A and \overline{A}

Examples

- Branchwidth of a graph:
 - V = E(G)
 - f(A) is the number of vertices incident to edges in both A and \overline{A}
- Rankwidth of a graph:
 - V = V(G)
 - f(A) is the GF(2) rank of the $|A| \times |\overline{A}|$ matrix representing $G[A, \overline{A}]$

Examples

- Branchwidth of a graph:
 - V = E(G)
 - f(A) is the number of vertices incident to edges in both A and \overline{A}
- Rankwidth of a graph:
 - V = V(G)
 - f(A) is the GF(2) rank of the $|A| \times |\overline{A}|$ matrix representing $G[A, \overline{A}]$
- Also carving-width, matroid branchwidth, rankwidth in different fields...

Our Framework

Our Framework

Framework for f(k)n time 2-approximation *compression* algorithms:

Framework for f(k)n time 2-approximation *compression* algorithms:

• Given a branch decomposition T of f of width k, either output branch decomposition of width < k, or conclude that $k \le 2 \log(f)$

Framework for f(k)n time 2-approximation *compression* algorithms:

 Given a branch decomposition T of f of width k, either output branch decomposition of width < k, or conclude that k ≤ 2bw(f)

Specifically:

 For rankwidth: 2<sup>2^{O(k)} n time compression algorithm where input/output decompositions are augmented
</sup>

Framework for f(k)n time 2-approximation *compression* algorithms:

• Given a branch decomposition T of f of width k, either output branch decomposition of width < k, or conclude that $k \le 2bw(f)$

Specifically:

- For rankwidth: 2<sup>2^{O(k)} n time compression algorithm where input/output decompositions are augmented
 </sup>
 - ► Apply *n* times to get $2^{2^{O(k)}}n^2$ time algorithm

Framework for f(k)n time 2-approximation *compression* algorithms:

• Given a branch decomposition T of f of width k, either output branch decomposition of width < k, or conclude that $k \le 2bw(f)$

Specifically:

- For rankwidth: 2<sup>2^{O(k)} n time compression algorithm where input/output decompositions are augmented
 </sup>
 - ► Apply *n* times to get $2^{2^{O(k)}} n^2$ time algorithm
- For graph branchwidth: $2^{\mathcal{O}(k)}n$ time compression algorithm

Framework for f(k)n time 2-approximation *compression* algorithms:

 Given a branch decomposition T of f of width k, either output branch decomposition of width < k, or conclude that k ≤ 2bw(f)

Specifically:

- For rankwidth: 2<sup>2^{O(k)} n time compression algorithm where input/output decompositions are augmented
 </sup>
 - ► Apply *n* times to get $2^{2^{O(k)}}n^2$ time algorithm
- For graph branchwidth: $2^{\mathcal{O}(k)}n$ time compression algorithm
 - ▶ Apply with treewidth approximation to get $2^{O(k)}n$ time algorithm

• Input: Branch decomposition *T* of function *f* of width *k*

- Input: Branch decomposition T of function f of width k
- Combinatorial result:
 - ▶ An edge uv of the decomposition is heavy if f(uv) = k
 - If k > 2bw(f), then a refinement operation can be applied, which decreases the number of heavy edges and does not increase the width

- Input: Branch decomposition T of function f of width k
- Combinatorial result:
 - ▶ An edge uv of the decomposition is heavy if f(uv) = k
 - If k > 2bw(f), then a refinement operation can be applied, which decreases the number of heavy edges and does not increase the width
- Algorithmic result:
 - ▶ Assume dynamic programming in time t(k) per node
 - ⇒ A sequence of refinement operations, either improving width or concluding $k \le 2b_W(f)$, can be performed in time $t(k)2^{O(k)}n$

- Input: Branch decomposition T of function f of width k
- Combinatorial result:
 - ▶ An edge uv of the decomposition is heavy if f(uv) = k
 - If k > 2bw(f), then a refinement operation can be applied, which decreases the number of heavy edges and does not increase the width
- Algorithmic result:
 - ▶ Assume dynamic programming in time t(k) per node
 - ⇒ A sequence of refinement operations, either improving width or concluding $k \le 2b_W(f)$, can be performed in time $t(k)2^{O(k)}n$
 - For rankwidth $t(k) = 2^{2^{\mathcal{O}(k)}}$, for graph branchwidth $t(k) = 2^{\mathcal{O}(k)}$

Refinement operation

Specified by 4-tuple (uv, C_1, C_2, C_3) , where $uv \in E(T)$ and (C_1, C_2, C_3) tripartition of V

Refinement operation

Specified by 4-tuple (uv, C_1, C_2, C_3) , where $uv \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Refinement operation

Specified by 4-tuple (uv, C_1, C_2, C_3) , where $uv \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Refinement operation

Specified by 4-tuple (uv, C_1, C_2, C_3) , where $uv \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Refinement operation

Specified by 4-tuple (uv, C_1, C_2, C_3) , where $uv \in E(T)$ and (C_1, C_2, C_3) tripartition of V Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Combinatorial result

Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Theorem (Informal)

If f(uv) > 2bw(f), there exists a refinement (uv, C_1, C_2, C_3) that "locally improves" T.

Combinatorial result

Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$:

Theorem (Informal)

If f(uv) > 2bw(f), there exists a refinement (uv, C_1, C_2, C_3) that "locally improves" T.

Theorem (Informal)

If there exists a refinement (uv, C_1, C_2, C_3) that "locally improves" T, then if the partition (C_1, C_2, C_3) is selected to optimize certain criteria, the refinement globally improves T.

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to find (uv, C_1 , C_2 , C_3) or conclude $k \leq 2bw(f)$

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to find (uv, C_1 , C_2 , C_3) or conclude $k \leq 2bw(f)$
- 4. If (uv, C_1, C_2, C_3) found, refine T using it

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to find (uv, C_1, C_2, C_3) or conclude $k \leq 2bw(f)$
- 4. If (uv, C_1, C_2, C_3) found, refine T using it
- 5. Repeat 1-4 until the width of *T* decreases (at most *n* iterations)

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to find (uv, C_1, C_2, C_3) or conclude $k \leq 2bw(f)$
- 4. If (uv, C_1, C_2, C_3) found, refine T using it
- 5. Repeat 1-4 until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming per node

- General compression algorithm:
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv, denote (W, \overline{W}) the cut of uv
- 3. Use dynamic programming to find (uv, C_1, C_2, C_3) or conclude $k \leq 2bw(f)$
- 4. If (uv, C_1, C_2, C_3) found, refine T using it
- 5. Repeat 1-4 until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming per node
 - Too slow! Goal is linear in n

Example with $(uv, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

• Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - ► Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - ► Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$
- Observation: If $T_{uv}[x] \subseteq C_i$, then the subtree of x appears identically in refinement

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - ► Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$
- Observation: If $T_{uv}[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the edit set *R* of the refinement

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$
- Observation: If $T_{uv}[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the edit set *R* of the refinement
 - ▶ Implement refinement by changing only R, in time $O(t(n) \cdot |R|)$

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$
- Observation: If $T_{uv}[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the edit set *R* of the refinement
 - ▶ Implement refinement by changing only R, in time $\mathcal{O}(t(n) \cdot |R|)$
 - ▶ Over any sequence of refinements, $\sum |R| = \mathcal{O}(3^k \cdot k \cdot n)$

- Consider T rooted at uv, for a node x denote by $T_{uv}[x]$ the leafs below x
 - Example: $T_{uv}[x] = \{a, b\}$ and $T_{uv}[y] = \{e, f\}$
- Observation: If $T_{uv}[x] \subseteq C_i$, then the subtree of x appears identically in refinement
- Call the nodes for which this does **not** happen the edit set *R* of the refinement
 - ▶ Implement refinement by changing only R, in time $\mathcal{O}(t(n) \cdot |R|)$
 - ▶ Over any sequence of refinements, $\sum |R| = \mathcal{O}(3^k \cdot k \cdot n)$
- Walk over the decomposition and refine whenever seeing edge uv with f(uv) = k

The end

Thanks for watching!

Paper: https://arxiv.org/abs/2111.03492

Slides: https://tuukkakorhonen.com