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Graph G A tree decomposition of G
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Treewidth

Graph G

A tree decomposition of G

Width = 2
. Every vertex should be in a bag

. Every edge should be in a bag

. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1

. Treewidth of G = minimum width of tree decomposition of G

a b~ 0w =
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Treewidth

Graph G
Treewidth 2 Width = 2
. Every vertex should be in a bag
. Every edge should be in a bag
. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1
. Treewidth of G = minimum width of tree decomposition of G

A tree decomposition of G

a b~ 0w =

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]
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o When given a graph with a tree decomposition of bounded width,
many NP-hard graph problems can be solved in polynomial time
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Why treewidth?

o When given a graph with a tree decomposition of bounded width,
many NP-hard graph problems can be solved in polynomial time

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs by dynamic programming

e Courcelle’s Theorem gives f(k) - n time algorithms for all
CMSO,-definable problems
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Why treewidth?

o When given a graph with a tree decomposition of bounded width,
many NP-hard graph problems can be solved in polynomial time

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs by dynamic programming

e Courcelle’s Theorem gives f(k) - n time algorithms for all
CMSO,-definable problems

Question

Can we generalize the definition of width, while retaining useful
algorithmic applications?
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Question
Can we generalize the definition of width, while retaining useful algorithmic applications? J

Let (T, Bxev(r)) be a tree decomposition.

e Treewidth: Measure max |By| — 1
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More exotic widths

Question
Can we generalize the definition of width, while retaining useful algorithmic applications?

Let (T, Bxev(r)) be a tree decomposition.
e Treewidth: Measure max |By| — 1

e Tree-independence-number: Measure max o( G[By]), where « is the maximum size of
independent set [Yolov, SODA’18]
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Our result
We generalize the independent set algorithm of [Yolov, SODA’18] to a meta-theorem
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Our result
We generalize the independent set algorithm of [Yolov, SODA’18] to a meta-theorem
Theorem (This paper)
Given an n-vertex graph G with tree-u(G) < k, a CMSO,-sentence ®, and an integer w, we can in
time f(k, w., |®|) - n°*%*) find a maximum-size set X C V(G) so that
1. tw(G[X]) < w
2. GIX|E®
where f is a computable function.
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time f(k, w., |®|) - n°*%*) find a maximum-size set X C V(G) so that
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2. GIX|E®
where f is a computable function.

Implies 7(k) - n®) time algorithms for
@ maximum independent set (given by [Yolov'18])
@ minimum feedback vertex set (given by [Lima, Milani¢, Mursi¢, Okrasa, Rzazewski, and Storgel, '24])

@ maximum induced matching, longest induced path, longest induced cycle, minimum planar vertex
deletion, maximum cubic induced subgraph, etc... [New]

Answers an open problem of [Lima, Milani¢, Mursi¢, Okrasa, Rzazewski, and Storgel, '24], who
gave a similar theorem for tree-independence number
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Step 1: Containers
Yolov’s idea:

Lemma (Yolov’'18)

Foraset B C V(G) with ;(B) < k, there are at most n”(%) possible intersections B N /, where /
is a maximal independent set of G.
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Step 1: Containers
Yolov’s idea:

Lemma (Yolov’'18)

Foraset B C V(G) with ;(B) < k, there are at most n”(%) possible intersections B N /, where /
is a maximal independent set of G.

= leads immediately to an n°®) time algorithm for maximum independent set

Lemma (This work)

Foraset B C V(G) with ;1(B) < k, there are at most f(k, w, ®) - %) possible intersections
BN X, where X is a maximal set X C V(G) so that tw(G[X]) < w and G[X] = ®.

Main ideas of the proof:
e edges of G[X] intersecting B must have vertex cover of size O(kw)
@ guess the vertex cover

@ use Yolov’s lemma, a “kicking out”™-lemma, and properties of CMSO. to guess the rest
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Step 2: Inner tree decomposition

How to figure our whether G[X] |= ®?
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Lemma (Informal)

Let T be a nice tree decomposition of G with ;(T) < k, and X C V(G) a set with tw(G[X]) < w.
There is a tree decomposition Ty of G[X] of width O(kw?), whose structure “follows” T.
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Step 2: Inner tree decomposition
How to figure our whether G[X] = ®?

Lemma (Informal)

Let T be a nice tree decomposition of G with (T) < k,and X C V(G) a set with tw(G[X]) <

There is a tree decomposition Ty of G| X] of width O(kw?), whose structure “follows” T.

w.

@ The trees of T and Ty are the same
e There is a partition (X7, X») of X so that:
» Vertices in X; extend their appearances upwards compared to T
» Vertices in X5 form an independent set and each appears only in its “top bag”

@ This allows to run a dynamic programming on T, that simultaneously:
» Guesses the set X
» Guesses the decomposition Ty
» Evaluates ¢ on G[X] by using Tx
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Conclusion

o An f(k, w, |®|) - n®* ") time algorithm for finding maximum induced subgraph of treewidth
< w satisfying ¢ on graphs of tree-u(G) < k
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@ Open problems:

» More general meta-theorem to also capture c-coloring for constant c¢?
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< w satisfying ® on graphs of tree-u(G) < k
@ Open problems:

» More general meta-theorem to also capture c-coloring for constant c¢?

» Even more general parameters for tree decompositions?
* For example: Measuring a largest induced collection of Ps:s intersecting a bag?
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Conclusion

o An f(k, w, |®|) - n®* ") time algorithm for finding maximum induced subgraph of treewidth
< w satisfying ® on graphs of tree-u(G) < k

@ Open problems:

» More general meta-theorem to also capture c-coloring for constant c¢?

» Even more general parameters for tree decompositions?
* For example: Measuring a largest induced collection of Ps:s intersecting a bag?

Thank you!
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