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A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]
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Why treewidth?

When given a graph with a tree decomposition of bounded width,
many NP-hard graph problems can be solved in polynomial time

Example: Maximum independent set in O(2k · n) time on
treewidth-k graphs by dynamic programming

Courcelle’s Theorem gives f (k) · n time algorithms for all
CMSO2-definable problems

Question
Can we generalize the definition of width, while retaining useful
algorithmic applications?
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More exotic widths

Question
Can we generalize the definition of width, while retaining useful algorithmic applications?

Let (T ,Bx∈V (T )) be a tree decomposition.

Treewidth: Measure max |Bx | − 1

Tree-independence-number: Measure maxα(G[Bx ]), where α is the maximum size of
independent set [Yolov, SODA’18]

▶ Observation: Maximum independent set in time nO(k)

Induced matching treewidth: Measure maxµ(Bx), where µ(Bx) is the maximum size of an
induced matching M in G, so that every edge uv ∈ M has |{u, v} ∩ Bx | ≥ 1. [Yolov, SODA’18]

▶ Non-trivial result: Maximum independent set in time nO(k) [Yolov, SODA’18]

Observation:
▶ tree-µ(G) ≤ tree-α(G) ≤ tw(G) + 1
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Our result
We generalize the independent set algorithm of [Yolov, SODA’18] to a meta-theorem

Theorem (This paper)

Given an n-vertex graph G with tree-µ(G) ≤ k , a CMSO2-sentence Φ, and an integer w , we can in
time f (k ,w , |Φ|) · nO(kw2) find a maximum-size set X ⊆ V (G) so that
1. tw(G[X ]) ≤ w
2. G[X ] |= Φ

where f is a computable function.

Implies f (k) · nO(k) time algorithms for
maximum independent set (given by [Yolov’18])

minimum feedback vertex set (given by [Lima, Milanič, Muršič, Okrasa, Rzążewski, and Štorgel, ’24])

maximum induced matching, longest induced path, longest induced cycle, minimum planar vertex
deletion, maximum cubic induced subgraph, etc... [New]

Answers an open problem of [Lima, Milanič, Muršič, Okrasa, Rzążewski, and Štorgel, ’24], who
gave a similar theorem for tree-independence number
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maximum induced matching, longest induced path, longest induced cycle, minimum planar vertex
deletion, maximum cubic induced subgraph, etc... [New]

Answers an open problem of [Lima, Milanič, Muršič, Okrasa, Rzążewski, and Štorgel, ’24], who
gave a similar theorem for tree-independence number
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Step 1: Containers
Yolov’s idea:

Lemma (Yolov’18)

For a set B ⊆ V (G) with µ(B) ≤ k , there are at most nO(k) possible intersections B ∩ I, where I
is a maximal independent set of G.

⇒ leads immediately to an nO(k) time algorithm for maximum independent set

Lemma (This work)

For a set B ⊆ V (G) with µ(B) ≤ k , there are at most f (k ,w ,Φ) · nO(kw) possible intersections
B ∩ X , where X is a maximal set X ⊆ V (G) so that tw(G[X ]) ≤ w and G[X ] |= Φ.

Main ideas of the proof:
edges of G[X ] intersecting B must have vertex cover of size O(kw)

guess the vertex cover
use Yolov’s lemma, a “kicking out”-lemma, and properties of CMSO2 to guess the rest
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Step 2: Inner tree decomposition

How to figure our whether G[X ] |= Φ?

Lemma (Informal)

Let T be a nice tree decomposition of G with µ(T ) ≤ k , and X ⊆ V (G) a set with tw(G[X ]) ≤ w .
There is a tree decomposition TX of G[X ] of width O(kw2), whose structure “follows” T .

The trees of T and TX are the same

There is a partition (X1,X2) of X so that:
▶ Vertices in X1 extend their appearances upwards compared to T
▶ Vertices in X2 form an independent set and each appears only in its “top bag”

This allows to run a dynamic programming on T , that simultaneously:
▶ Guesses the set X
▶ Guesses the decomposition TX
▶ Evaluates Φ on G[X ] by using TX
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Conclusion

An f (k ,w , |Φ|) · nO(kw2) time algorithm for finding maximum induced subgraph of treewidth
≤ w satisfying Φ on graphs of tree-µ(G) ≤ k

Open problems:

▶ More general meta-theorem to also capture c-coloring for constant c?
▶ Even more general parameters for tree decompositions?

⋆ For example: Measuring a largest induced collection of P3:s intersecting a bag?

Thank you!
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