Computing Width Parameters of Graphs

Tuukka Korhonen

UNIVERSITY OF BERGEN

15 May 2024

Opponent: Hans L. Bodlaender

Opponent: Archontia C. Giannopoulou

Leader of the committee: Torstein J. F. Strømme

Leader of the defense: Tom Michoel

Main supervisor: Fedor V. Fomin Co-supervisor: Petr A. Golovach

Names of two cities

Names of two cities

• Vertices (points) connected by edges (lines)

- Vertices (points) connected by edges (lines)
- Road networks

- Vertices (points) connected by edges (lines)
- Road networks
- Connections in social media

- Vertices (points) connected by edges (lines)
- Road networks
- Connections in social media
- Interactions between variables

The maximum independent set problem:

The maximum independent set problem: Input: A graph

The maximum independent set problem:

Input: A graph

Output: Largest set of vertices with no edges between them

The maximum independent set problem:

Input: A graph

Output: Largest set of vertices with no edges between them

NP-hard \rightarrow no efficient algorithm for finding an optimal solution

What if the input graph is a tree

What if the input graph is a tree

No cycles

Algorithm to find an optimal solution in linear time

• What if a graph is not a tree, but almost?

- What if a graph is not a tree, but almost?
- The treewidth of a graph [Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]

- What if a graph is not a tree, but almost?
- The treewidth of a graph [Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]
- Trees have treewidth 1

- What if a graph is not a tree, but almost?
- The treewidth of a graph [Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]
- Trees have treewidth 1
- The example graph has treewidth 2

Almost trees

- What if a graph is not a tree, but almost?
- The treewidth of a graph [Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times m$ grid has treewidth min(n, m)

Almost trees

- What if a graph is not a tree, but almost?
- The treewidth of a graph [Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times m$ grid has treewidth min(n, m)
- Maximum independent set can be solved in linear time on graphs with constant treewidth [Arnborg & Proskurowski'89, Bodlaender'96]

Graph G

A tree decomposition of \boldsymbol{G}

Graph G

A tree decomposition of G

1. Every vertex should be in a bag

Graph G

A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag

A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree

Graph G

A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1

Graph G

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1

Graph G

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

- Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - ▶ *n* is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:
 - ► Constraint satisfaction [Freuder '90, Dechter & Pearl '89]

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:
 - Constraint satisfaction [Freuder '90, Dechter & Pearl '89]
 - Probabilistic inference [Lauritzen & Spiegelhalter '88]

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:
 - Constraint satisfaction [Freuder '90, Dechter & Pearl '89]
 - Probabilistic inference [Lauritzen & Spiegelhalter '88]
 - Compiler optimization [Thorup '98, Bodlaender, Gusted & Telle '98]

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:
 - Constraint satisfaction [Freuder '90, Dechter & Pearl '89]
 - Probabilistic inference [Lauritzen & Spiegelhalter '88]
 - Compiler optimization [Thorup '98, Bodlaender, Gusted & Telle '98]
 - Quantum computer simulation [Markov & Shi '08]

- Many NP-hard graph problems can be solved in time $f(k) \cdot n$
 - k is the width of a given tree decomposition
 - n is the number of vertices
- Often $2^{\mathcal{O}(k)}n$ time algorithms
- Not only about graph problems:
 - Constraint satisfaction [Freuder '90, Dechter & Pearl '89]
 - Probabilistic inference [Lauritzen & Spiegelhalter '88]
 - Compiler optimization [Thorup '98, Bodlaender, Gusted & Telle '98]
 - Quantum computer simulation [Markov & Shi '08]

Need the tree decomposition!

Algorithms for computing small-width tree decompositions

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. (FOCS 2021, to appear in SICOMP)

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth. (STOC 2023) Computing tree decompositions

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. *A single-exponential time* 2-approximation algorithm for treewidth. (FOCS 2021, to appear in SICOMP)

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth. (STOC 2023) Computing tree decompositions

Paper 3: Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski. Dynamic treewidth. (FOCS 2023) Maintaining tree decompositions of dynamic graphs

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. *A single-exponential time* 2-approximation algorithm for treewidth. (FOCS 2021, to appear in SICOMP)

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth. (STOC 2023) Computing tree decompositions

Paper 3: Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski. Dynamic treewidth. (FOCS 2023)

Paper 4: Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. (STOC 2022, to appear in SICOMP) Maintaining tree decompositions of dynamic graphs

Computing branch and rank decompositions

• NP-complete [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \bullet $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \circ $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]
- Exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \circ $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]
- Exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - Using the dynamic programming of [Bodlaender & Kloks '96]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \circ $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]
- Exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - Using the dynamic programming of [Bodlaender & Kloks '96]
- $\mathcal{O}(\sqrt{\log k})$ -approximation in polynomial time [Feige, Hajiaghayi & Lee '08]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \circ $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]
- Exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - Using the dynamic programming of [Bodlaender & Kloks '96]
- $\mathcal{O}(\sqrt{\log k})$ -approximation in polynomial time [Feige, Hajiaghayi & Lee '08]
 - No polynomial-time constant-factor approximation, assuming the SSE-hypothesis [Wu, Austrin, Pitassi & Liu¹14]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- \circ $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- 4-approximation in $2^{\mathcal{O}(k)} \cdot n^2$ time, exact in $f(k) \cdot n^2$ time [Robertson & Seymour '86]
- Constant-approximation in $k^{\mathcal{O}(k)} \cdot n$ polylog n time [Matoušek&Thomas'91,Lagergren'91, Reed '92]
- Exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - Using the dynamic programming of [Bodlaender & Kloks '96]
- $\mathcal{O}(\sqrt{\log k})$ -approximation in polynomial time [Feige, Hajiaghayi & Lee '08]
 - No polynomial-time constant-factor approximation, assuming the SSE-hypothesis [Wu, Austrin, Pitassi & Liu¹14]
- 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk' 16]

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a $2^{\mathcal{O}(k)} \cdot n$ time 2-approximation algorithm for treewidth.

Theorem (This thesis, paper 1)

There is a $2^{\mathcal{O}(k)} \cdot n$ time 2-approximation algorithm for treewidth.

• Can be compared to the 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time by [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

Theorem (This thesis, paper 1)

There is a $2^{\mathcal{O}(k)} \cdot n$ time 2-approximation algorithm for treewidth.

• Can be compared to the 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time by [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

Theorem (This thesis, paper 2)

There is a $2^{\mathcal{O}(k^2)} \cdot n^4$ time exact algorithm for treewidth.

Theorem (This thesis, paper 1)

There is a $2^{\mathcal{O}(k)} \cdot n$ time 2-approximation algorithm for treewidth.

• Can be compared to the 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time by [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

Theorem (This thesis, paper 2)

There is a $2^{\mathcal{O}(k^2)} \cdot n^4$ time exact algorithm for treewidth.

• Can be compared to the $2^{\mathcal{O}(k^3)} \cdot n$ time algorithm by [Bodlaender '96]

Theorem (This thesis, paper 1)

There is a $2^{\mathcal{O}(k)} \cdot n$ time 2-approximation algorithm for treewidth.

• Can be compared to the 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time by [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

Theorem (This thesis, paper 2)

There is a $2^{\mathcal{O}(k^2)} \cdot n^4$ time exact algorithm for treewidth.

- Can be compared to the $2^{\mathcal{O}(k^3)} \cdot n$ time algorithm by [Bodlaender '96]
- Solves the open problem of whether there is a $2^{o(k^3)} \cdot n^{O(1)}$ time exact algorithm for treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], $2^{\mathcal{O}(k^3)} \cdot n$ update time

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], $2^{\mathcal{O}(k^3)} \cdot n$ update time

Can we do O(n) update time for fixed k?

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], $2^{\mathcal{O}(k^3)} \cdot n$ update time

Can we do o(n) update time for fixed k?

• $\mathcal{O}(\log n)$ update time for k = 2 [Bodlaender '93]

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], $2^{\mathcal{O}(k^3)} \cdot n$ update time

Can we do o(n) update time for fixed k?

- $\mathcal{O}(\log n)$ update time for k=2 [Bodlaender '93]
- n^{o(1)} amortized update time, but only n^{o(1)}-approximate, and only for bounded-degree graphs [Goranci, Räcke, Saranurak & Tan '21]

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

- edge additions
- edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], $2^{\mathcal{O}(k^3)} \cdot n$ update time

Can we do o(n) update time for fixed k?

- $\mathcal{O}(\log n)$ update time for k=2 [Bodlaender '93]
- n^{o(1)} amortized update time, but only n^{o(1)}-approximate, and only for bounded-degree graphs [Goranci, Räcke, Saranurak & Tan '21]

Theorem (This thesis, paper 3)

Data structure for maintaining 6-approximate tree decomposition of a dynamic graph with treewidth at most k, with amortized update time $f(k) \cdot n^{o(1)}$. Supports also maintaining any dynamic programming scheme.

Rank decompositions and rankwidth

• Similar to tree decompositions and treewidth, but suitable also for dense graphs

- Similar to tree decompositions and treewidth, but suitable also for dense graphs
- Introduced by [Oum & Seymour '06] to approximate cliquewidth, which was introduced by [Courcelle, Engelfriet & Rozenberg '93]

- Similar to tree decompositions and treewidth, but suitable also for dense graphs
- Introduced by [Oum & Seymour '06] to approximate cliquewidth, which was introduced by [Courcelle, Engelfriet & Rozenberg '93]
- $\mathcal{O}(8^k \cdot n^9 \log n)$ time 3-approximation [Oum&Seymour'06]

- Similar to tree decompositions and treewidth, but suitable also for dense graphs
- Introduced by [Oum & Seymour '06] to approximate cliquewidth, which was introduced by [Courcelle, Engelfriet & Rozenberg '93]

- $\mathcal{O}(8^k \cdot n^9 \log n)$ time 3-approximation [Oum&Seymour'06]
- $f(k) \cdot n^3$ time exact [Hlinený & Oum'08]

Rank decompositions and rankwidth

- Similar to tree decompositions and treewidth, but suitable also for dense graphs
- Introduced by [Oum & Seymour '06] to approximate cliquewidth, which was introduced by [Courcelle, Engelfriet & Rozenberg '93]

- $\mathcal{O}(8^k \cdot n^9 \log n)$ time 3-approximation [Oum&Seymour'06]
- $f(k) \cdot n^3$ time exact [Hlinený & Oum'08]

Theorem (This thesis, paper 4)

There is a $2^{2^{\mathcal{O}(k)}} \cdot n^2$ time 2-approximation algorithm for rankwidth.

Rank decompositions and rankwidth

- Similar to tree decompositions and treewidth, but suitable also for dense graphs
- Introduced by [Oum & Seymour '06] to approximate cliquewidth, which was introduced by [Courcelle, Engelfriet & Rozenberg '93]

- $\mathcal{O}(8^k \cdot n^9 \log n)$ time 3-approximation [Oum&Seymour'06]
- $f(k) \cdot n^3$ time exact [Hlinený & Oum'08]

Theorem (This thesis, paper 4)

There is a $2^{2^{O(k)}} \cdot n^2$ time 2-approximation algorithm for rankwidth.

Improves algorithms parameterized by rankwidth/cliquewidth from $f(k)n^3$ to $f(k)n^2$

New method for computing decompositions of graphs: Local improvement

• Repeatedly re-arrange the tree decomposition to make the largest bag smaller

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions
- New ideas in both the graph-theoretic part of the re-arrangement, and in the efficient algorithmic implementation

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions
- New ideas in both the graph-theoretic part of the re-arrangement, and in the efficient algorithmic implementation
 - Introduced in Paper 1 for 2-approximating treewidth

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions
- New ideas in both the graph-theoretic part of the re-arrangement, and in the efficient algorithmic implementation
 - Introduced in Paper 1 for 2-approximating treewidth
 - Generalized in Paper 2 for exact treewidth

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions
- New ideas in both the graph-theoretic part of the re-arrangement, and in the efficient algorithmic implementation
 - Introduced in Paper 1 for 2-approximating treewidth
 - Generalized in Paper 2 for exact treewidth
 - Applied in Paper 3 for dynamic treewidth

- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- Inspired by the proofs of [Thomas'90, Bellenbaum & Diestel '02] about lean tree decompositions
- New ideas in both the graph-theoretic part of the re-arrangement, and in the efficient algorithmic implementation
 - Introduced in Paper 1 for 2-approximating treewidth
 - Generalized in Paper 2 for exact treewidth
 - Applied in Paper 3 for dynamic treewidth
 - Extended in Paper 4 for 2-approximating rankwidth

• Let W be the largest bag of a tree decomposition T of width $\geq 2k + 2$

- Let W be the largest bag of a tree decomposition T of width $\geq 2k + 2$
- Take a small balanced separator S of W with a partition (C_1, C_2, C_3, S) of V

- Let W be the largest bag of a tree decomposition T of width $\geq 2k + 2$
- Take a small balanced separator S of W with a partition (C_1, C_2, C_3, S) of V
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup S)$ by setting $B^i = B \cap (C_i \cup S)$ for each bag B of T.

- Let W be the largest bag of a tree decomposition T of width $\geq 2k + 2$
- Take a small balanced separator S of W with a partition (C_1, C_2, C_3, S) of V
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup S)$ by setting $B^i = B \cap (C_i \cup S)$ for each bag B of T.
- The following is almost a tree decomposition of G:

- Let W be the largest bag of a tree decomposition T of width $\geq 2k + 2$
- Take a small balanced separator S of W with a partition (C_1, C_2, C_3, S) of V
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup S)$ by setting $B^i = B \cap (C_i \cup S)$ for each bag B of T.
- The following is almost a tree decomposition of *G*:

Except that vertices in *S* may violate the connectedness condition

Fixing a tree decomposition

• Fix the connectedness condition by inserting vertices of S to bags

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of S to bags

Example: Let $(C_1, C_2, C_3, S) = (\{a, b, h\}, \{c, d, f\}, \{e, g, k\}, \{s_1, s_2\})$ be the partition:

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of S to bags

Example: Let $(C_1, C_2, C_3, S) = (\{a, b, h\}, \{c, d, f\}, \{e, g, k\}, \{s_1, s_2\})$ be the partition:

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of S to bags

Example: Let $(C_1, C_2, C_3, S) = (\{a, b, h\}, \{c, d, f\}, \{e, g, k\}, \{s_1, s_2\})$ be the partition:

• Insert s_1 to B^1 , A^1 , and W^1

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of S to bags

Example: Let $(C_1, C_2, C_3, S) = (\{a, b, h\}, \{c, d, f\}, \{e, g, k\}, \{s_1, s_2\})$ be the partition:

- Insert s_1 to B^1 , A^1 , and W^1
- Insert s_2 to A^1 and W^1

• Each bag B is replaced by bags B^1 , B^2 , B^3

• Each bag B is replaced by bags B^1 , B^2 , B^3

Lemma

If the balanced separator S is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each $i \in \{1,2,3\}$.

• Each bag B is replaced by bags B¹, B², B³

Lemma

If the balanced separator S is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each $i \in \{1, 2, 3\}$.

• $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away

• Each bag B is replaced by bags B¹, B², B³

Lemma

If the balanced separator S is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each $i \in \{1, 2, 3\}$.

- $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away
- ullet For the bag W, |W'|<|W| is ensured by the definition of the balanced separator

• Each bag B is replaced by bags B¹, B², B³

Lemma

If the balanced separator S is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each $i \in \{1, 2, 3\}$.

- $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away
- ullet For the bag W, |W'|<|W| is ensured by the definition of the balanced separator
- \Rightarrow The number of bags of size |W| decreases

New method for computing width parameters of graphs: Local improvement

New method for computing width parameters of graphs: Local improvement

 Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth

New method for computing width parameters of graphs: Local improvement

- Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth
- Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum & Diestel '02]

New method for computing width parameters of graphs: Local improvement

- Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth
- Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum & Diestel '02]

Future directions:

New method for computing width parameters of graphs: Local improvement

- Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth
- Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum & Diestel '02]

Future directions:

• Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)

New method for computing width parameters of graphs: Local improvement

- Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth
- Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum & Diestel '02]

Future directions:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH $(2^{\Omega(\sqrt{k})}$ known)
- Dynamic treewidth in amortized f(k) · polylog n time?

New method for computing width parameters of graphs: Local improvement

- Solutions to open problems about computing treewidth, dynamic treewidth, and computing rankwidth
- Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum & Diestel '02]

Future directions:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH $(2^{\Omega(\sqrt{k})}$ known)
- Dynamic treewidth in amortized f(k) · polylog n time?

Thank you!