
Computing Width Parameters of Graphs

Tuukka Korhonen

15 May 2024

Opponent: Hans L. Bodlaender
Opponent: Archontia C. Giannopoulou
Leader of the committee: Torstein J. F. Strømme
Leader of the defense: Tom Michoel
Main supervisor: Fedor V. Fomin
Co-supervisor: Petr A. Golovach



Algorithms



Algorithms



Algorithms



Algorithms



Algorithms



Algorithms



Graphs

Vertices (points) connected by edges (lines)

Road networks

Connections in social media

Interactions between variables



Graphs

Vertices (points) connected by edges (lines)

Road networks

Connections in social media

Interactions between variables



Graphs

Vertices (points) connected by edges (lines)

Road networks

Connections in social media

Interactions between variables



Graphs

Vertices (points) connected by edges (lines)

Road networks

Connections in social media

Interactions between variables



Graphs

Vertices (points) connected by edges (lines)

Road networks

Connections in social media

Interactions between variables



Simple but tough graph problem

The maximum independent set problem:

Input: A graph
Output: Largest set of vertices with no edges between them

NP-hard→ no efficient algorithm for finding an optimal solution
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Almost trees

What if a graph is not a tree, but almost?

The treewidth of a graph [Robertson &

Seymour’84, Arnborg & Proskurowski’89, Bertele &

Brioschi’72, Halin’76]

Trees have treewidth 1

The example graph has treewidth 2

The n ×m grid has treewidth min(n,m)

Maximum independent set can be solved
in linear time on graphs with constant
treewidth [Arnborg & Proskurowski’89, Bodlaender’96]
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A tree decomposition of G
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1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth of G = minimum width of tree decomposition of G
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Why treewidth

Many NP-hard graph problems can be solved in
time f (k) · n
I k is the width of a given tree decomposition
I n is the number of vertices

Often 2O(k)n time algorithms

Not only about graph problems:

I Constraint satisfaction [Freuder ’90, Dechter & Pearl ’89]

I Probabilistic inference [Lauritzen & Spiegelhalter ’88]

I Compiler optimization [Thorup ’98, Bodlaender, Gusted &

Telle ’98]

I Quantum computer simulation [Markov & Shi ’08]
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Previous work on treewidth computing

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

4-approximation in 2O(k) · n2 time, exact in f (k) · n2 time [Robertson & Seymour ’86]

Constant-approximation in kO(k) · n polylog n time [Matoušek&Thomas’91,Lagergren’91,

Reed ’92]

Exact in 2O(k3) · n time [Bodlaender ’96]

I Using the dynamic programming of [Bodlaender & Kloks ’96]

O(
√

log k)-approximation in polynomial time [Feige, Hajiaghayi & Lee ’08]

I No polynomial-time constant-factor approximation, assuming the
SSE-hypothesis [Wu, Austrin, Pitassi & Liu’14]

5-approximation in 2O(k) · n time [Bodlaender,Drange,Dregi,Fomin,Lokshtanov&Pilipczuk’16]
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New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 2O(k) · n time 2-approximation algorithm for treewidth.

Can be compared to the 5-approximation in 2O(k) · n time by [Bodlaender,
Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

Theorem (This thesis, paper 2)

There is a 2O(k2) · n4 time exact algorithm for treewidth.

Can be compared to the 2O(k3) · n time algorithm by [Bodlaender ’96]

Solves the open problem of whether there is a 2o(k3) · nO(1) time exact algorithm
for treewidth
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Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by

edge additions

edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender ’96], 2O(k3) · n update time

Can we do o(n) update time for fixed k?

O(log n) update time for k = 2 [Bodlaender ’93]

no(1) amortized update time, but only no(1)-approximate, and only for
bounded-degree graphs [Goranci, Räcke, Saranurak & Tan ’21]

Theorem (This thesis, paper 3)
Data structure for maintaining 6-approximate tree decomposition of a dynamic graph
with treewidth at most k , with amortized update time f (k) · no(1). Supports also
maintaining any dynamic programming scheme.
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Rankwidth

Rank decompositions and rankwidth

Similar to tree decompositions and treewidth, but
suitable also for dense graphs

Introduced by [Oum & Seymour ’06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg ’93]

O(8k · n9 log n) time 3-approximation [Oum&Seymour’06]

f (k) · n3 time exact [Hlinený & Oum’08]

Theorem (This thesis, paper 4)

There is a 22O(k) · n2 time 2-approximation algorithm for rankwidth.

Improves algorithms parameterized by rankwidth/cliquewidth from f (k)n3 to f (k)n2
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Theorem (This thesis, paper 4)

There is a 22O(k) · n2 time 2-approximation algorithm for rankwidth.

Improves algorithms parameterized by rankwidth/cliquewidth from f (k)n3 to f (k)n2



Rankwidth

Rank decompositions and rankwidth

Similar to tree decompositions and treewidth, but
suitable also for dense graphs

Introduced by [Oum & Seymour ’06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg ’93]

O(8k · n9 log n) time 3-approximation [Oum&Seymour’06]

f (k) · n3 time exact [Hlinený & Oum’08]
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Method

New method for computing decompositions of graphs: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel ’02] about lean tree
decompositions

New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation

I Introduced in Paper 1 for 2-approximating treewidth

I Generalized in Paper 2 for exact treewidth

I Applied in Paper 3 for dynamic treewidth

I Extended in Paper 4 for 2-approximating rankwidth
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Improvement operation for 2-approximating treewidth

Let W be the largest bag of a tree decomposition T of width ≥ 2k + 2

Take a small balanced separator S of W with a partition (C1,C2,C3,S) of V

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ S) by setting
B i = B ∩ (Ci ∪ S) for each bag B of T .

The following is almost a tree decomposition of G:

W

. . . . . .

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

. . . . . .

T 1 = T ∩ (C1 ∪ S) T 3 = T ∩ (C3 ∪ S)

T 2 = T ∩ (C2 ∪ S)

S

Except that vertices in S may violate the connectedness condition
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Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of S to bags

Example: Let (C1,C2,C3,S) = ({a, b, h}, {c, d , f}, {e, g, k}, {s1, s2}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB
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h, s1

b, s2

s2

Insert s1 to B1, A1, and W 1

Insert s2 to A1 and W 1
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Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator S is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i ∈ {1, 2, 3}.

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases



Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator S is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i ∈ {1, 2, 3}.

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases



Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator S is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i ∈ {1, 2, 3}.

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases



Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator S is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i ∈ {1, 2, 3}.

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases



Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator S is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i ∈ {1, 2, 3}.

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases



Conclusion

New method for computing width parameters of graphs: Local improvement

Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

Inspired by a proof about lean tree decompositions [Thomas’90, Bellenbaum &
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Future directions:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
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k) known)

Dynamic treewidth in amortized f (k) · polylog n time?
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