Computing Width Parameters of Graphs

Tuukka Korhonen

UNIVERSITY OF BERGEN

15 May 2024

Opponent: Hans L. Bodlaender

Opponent: Archontia C. Giannopoulou

Leader of the committee: Torstein J. F. Stramme
Leader of the defense: Tom Michoel

Main supervisor: Fedor V. Fomin
Co-supervisor: Petr A. Golovach

Algorithms

Algorithms

S =[]

Input data

Algorithms

Map of norway

(o] [Bergen

(:) [Oslo

Names of two cities

Algorithms

Fastest route between

Map of norway the cities

(? [Bergen] 1‘
(E) [Oslo]

Names of two cities

Algorithms

Graph with two marked
vertices A and B

Algorithms

Shortest path between

Graph with two marked
A and B

vertices A and B

Graphs

Graphs

@ Vertices (points) connected by edges (lines)

Graphs

@ Vertices (points) connected by edges (lines)

@ Road networks

7"

Graphs

@ Vertices (points) connected by edges (lines)
o Road networks

@ Connections in social media

Graphs

@ Vertices (points) connected by edges (lines)

@ Road networks

@ Connections in social media

@ Interactions between variables

X
X

e % &
IV A VANVEAVAVE)
RO OGP P

LW A OxQ OxQ OxQ

L 4
OxQ OxO OxO 0x0 Oxb

X
X

»,

Ko 0% %
5V

LW AW AW

Ko Ko K f
e Tl ot T e
Koot Amascow

Simple but tough graph problem

The maximum independent set problem:

Simple but tough graph problem

The maximum independent set problem:
Input: A graph

Simple but tough graph problem

The maximum independent set problem:
Input: A graph
Output: Largest set of vertices with no edges between them

Simple but tough graph problem

The maximum independent set problem:
Input: A graph
Output: Largest set of vertices with no edges between them

NP-hard — no efficient algorithm for finding an optimal solution

Structure matters

What if the input graph is a tree

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Structure matters

What if the input graph is a tree

@ No cycles

Algorithm to find an optimal solution in linear time

Almost trees

e What if a graph is not a tree, but almost?

Almost trees

e What if a graph is not a tree, but almost?

@ The treewidth of a graph [Robertson &
Seymour’84, Arnborg & Proskurowski’89, Bertele &
Brioschi'72, Halin’76]

Almost trees

e What if a graph is not a tree, but almost?
@ The treewidth of a graph [Robertson &
Seymour’84, Arnborg & Proskurowski’89, Bertele &

Brioschi'72, Halin’76]

@ Trees have treewidth 1

Almost trees

e What if a graph is not a tree, but almost?

@ The treewidth of a graph [Robertson &
Seymour’84, Arnborg & Proskurowski’89, Bertele &
Brioschi'72, Halin’76]

@ Trees have treewidth 1

e The example graph has treewidth 2

Almost trees

e What if a graph is not a tree, but almost?

@ The treewidth of a graph [Robertson &
Seymour’84, Arnborg & Proskurowski’89, Bertele &
Brioschi'72, Halin’76]

@ Trees have treewidth 1

e The example graph has treewidth 2

e The n x m grid has treewidth min(n, m)

Almost trees

e What if a graph is not a tree, but almost?

@ The treewidth of a graph [Robertson &
Seymour’84, Arnborg & Proskurowski’89, Bertele &
Brioschi'72, Halin’76]

@ Trees have treewidth 1

e The example graph has treewidth 2

@ The n x m grid has treewidth min(n, m)

e Maximum independent set can be solved

in linear time on graphs with constant
treewidth [Arnborg & Proskurowski'89, Bodlaender'96]

Definition of treewidth

Graph G A tree decomposition of G

Definition of treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag

Definition of treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag
2. Every edge should be in a bag

Definition of treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

Definition of treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v, the bags containing v should form a connected subtree
4. Width = maximum bag size —1

Definition of treewidth

Graph G A tree decomposition of G
Width = 2
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree
4. Width = maximum bag size —1

Definition of treewidth

a B~ 0N =

Graph G

A tree decomposition of G
Width = 2

. Every vertex should be in a bag

. Every edge should be in a bag

. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1

. Treewidth of G = minimum width of tree decomposition of G

Definition of treewidth

a B~ 0N =

Graph G
Treewidth 2 Width = 2

A tree decomposition of G

. Every vertex should be in a bag

. Every edge should be in a bag

. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1

. Treewidth of G = minimum width of tree decomposition of G

Why treewidth

Why treewidth
@ Many NP-hard graph problems can be solved in
time f(k) - n

» K is the width of a given tree decomposition
» N is the number of vertices

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n

» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n

» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n
» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

» Constraint satisfaction [Freuder '90, Dechter & Pearl '89]

Why treewidth
@ Many NP-hard graph problems can be solved in
time f(k) - n
» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

» Constraint satisfaction [Freuder '90, Dechter & Pearl '89]

» Probabilistic inference [Lauritzen & Spiegelhalter '88]

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n
» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

» Constraint satisfaction [Freuder '90, Dechter & Pearl '89]
» Probabilistic inference [Lauritzen & Spiegelhalter '88]

» Compiler optimization [Thorup '98, Bodlaender, Gusted &
Telle '98]

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n

» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

v

Constraint satisfaction [Freuder '90, Dechter & Pearl '89]

v

Probabilistic inference [Lauritzen & Spiegelhalter '88]

v

Compiler optimization [Thorup '98, Bodlaender, Gusted &
Telle '98]

v

Quantum computer simulation [Markov & Shi08]

Why treewidth

@ Many NP-hard graph problems can be solved in
time f(k) - n

» K is the width of a given tree decomposition
» N is the number of vertices

o Often 2°() 11 time algorithms

@ Not only about graph problems:

v

Constraint satisfaction [Freuder '90, Dechter & Pearl '89]

v

Probabilistic inference [Lauritzen & Spiegelhalter '88]

v

Compiler optimization [Thorup '98, Bodlaender, Gusted &
Telle '98]

v

Quantum computer simulation [Markov & Shi08]

Need the tree decomposition!

Topic of this thesis:

Topic of this thesis:

Algorithms for computing small-width tree decompositions

Topic of this thesis:

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. A single-exponential time
2-approximation algorithm for treewidth. (FOCS 2021,

to appear in SICOMP) Computing tree

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. decompositions

An improved parameterized algorithm for treewidth.
(STOC 2023)

Topic of this thesis:

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. A single-exponential time
2-approximation algorithm for treewidth. (FOCS 2021,

to appear in SICOMP) Computing tree

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. decompositions

An improved parameterized algorithm for treewidth.
(STOC 2023)

Paper 3: Tuukka Korhonen, Konrad Majewski, Wojciech Maintaining tree
Nadara, Michat Pilipczuk, and Marek Sokotowski. decompositions of
Dynamic treewidth. (FOCS 2023) dynamic graphs

Topic of this thesis:

Algorithms for computing small-width tree decompositions

Paper 1: Tuukka Korhonen. A single-exponential time

2-approximation algorithm for treewidth. (FOCS 2021,

to appear in SICOMP) .
Computing tree

Paper 2: Tuukka Korhonen and Daniel Lokshtanov. decompositions

An improved parameterized algorithm for treewidth.

(STOC 2023)

Paper 3: Tuukka Korhonen, Konrad Majewski, Wojciech Maintaining tree
Nadara, Michat Pilipczuk, and Marek Sokotowski. decompositions of
Dynamic treewidth. (FOCS 2023) dynamic graphs
Paper 4: Fedor V. Fomin and Tuukka Korhonen. Computing branch
Fast FPT-approximation of branchwidth. (STOC 2022, and rank

to appear in SICOMP) decompositions

Previous work on treewidth computing

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]

o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
] O(nk+2) time [Arnborg, Corneil, Proskurowski '87]

@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

3
e Exactin 29(K°) . 1 time [Bodlaender '96]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

3
e Exactin 29(K°) . 1 time [Bodlaender '96]
» Using the dynamic programming of [Bodlaender & Kloks '96]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

3
e Exactin 29(K°) . 1 time [Bodlaender '96]
» Using the dynamic programming of [Bodlaender & Kloks '96]

@ O(+/log k)-approximation in polynomial time [Feige, Hajiaghayi & Lee 08]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

3
e Exactin 29(K°) . 1 time [Bodlaender '96]
» Using the dynamic programming of [Bodlaender & Kloks '96]
@ O(+/log k)-approximation in polynomial time [Feige, Hajiaghayi & Lee '08]

» No polynomial-time constant-factor approximation, assuming the
SSE-hypothesis [Wu, Austrin, Pitassi & Liu'14]

Previous work on treewidth computing

@ NP-complete [Arborg, Corneil, Proskurowski '87]
o O(nk+2) time [Arnborg, Corneil, Proskurowski '87]
@ 4-approximation in 29(K) . n? time, exact in f(k) - N time [Robertson & Seymour '86]

e Constant-approximation in k<“(%) . n polylog 1 time (MatougekaThomas'91,Lagergren'91,
Reed '92]

3
Exact in 29(K%) . 1 time [Bodlaender '96]
» Using the dynamic programming of [Bodlaender & Kloks '96]

O(+/log k)-approximation in polynomial time [Feige, Hajiaghayi & Lee '08]

» No polynomial-time constant-factor approximation, assuming the
SSE-hypothesis [Wu, Austrin, Pitassi & Liu'14]

@ 5-approximation in 2(’)(k) - N time [Bodlaender,Drange,Dregi,Fomin,Lokshtanov&Pilipczuk'16]

New contributions to treewidth computing

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 29(%) - ntime 2-approximation algorithm for treewidth.

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 29(%) - ntime 2-approximation algorithm for treewidth.

@ Can be compared to the 5-approximation in 29K . n time by [Bodlaender,
Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 29(%) - ntime 2-approximation algorithm for treewidth.

@ Can be compared to the 5-approximation in 29K . n time by [Bodlaender,
Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]

Theorem (This thesis, paper 2)

2
There is a 295 . n* time exact algorithm for treewidth.

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 29(%) - ntime 2-approximation algorithm for treewidth.

@ Can be compared to the 5-approximation in 29K . n time by [Bodlaender,
Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]

Theorem (This thesis, paper 2)

2
There is a 295 . n* time exact algorithm for treewidth.

@ Can be compared to the 20(K) . p time algorithm by [Bodlaender '96]

New contributions to treewidth computing

Theorem (This thesis, paper 1)

There is a 29(%) - ntime 2-approximation algorithm for treewidth.

@ Can be compared to the 5-approximation in 29K . n time by [Bodlaender,
Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]

Theorem (This thesis, paper 2)

There is a ZO(kZ) - n* time exact algorithm for treewidth.

@ Can be compared to the 20(K) . p time algorithm by [Bodlaender '96]

@ Solves the open problem of whether there is a 2°(k3) - n°M) time exact algorithm
for treewidth

Dynamic treewidth

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], 20(K%) . p update time

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition
By [Bodlaender '96], 20(K%) . p update time

Can we do 0(n) update time for fixed k?

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition
By [Bodlaender '96], 20(K%) . p update time

Can we do 0(n) update time for fixed k?

e O(log n) update time for k = 2 [Bodlaender ‘93]

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition
By [Bodlaender '96], 20(K%) . p update time
Can we do 0(n) update time for fixed k?

e O(log n) update time for k = 2 [Bodlaender ‘93]

o n°() amortized update time, but only no(1)-approximate, and only for
bounded-degree graphs [Goranci, Racke, Saranurak & Tan '21]

Dynamic treewidth

Goal: Maintain a good tree decomposition of a treewidth-k graph that is updated by
@ edge additions
@ edge deletions

Also, maintain any dynamic programming scheme on the decomposition

By [Bodlaender '96], 20(K%) . p update time
Can we do 0(n) update time for fixed k?

e O(log n) update time for k = 2 [Bodlaender ‘93]

o n°(") amortized update time, but only n°(1)-approximate, and only for
bounded-degree graphs [Goranci, Racke, Saranurak & Tan '21]

Theorem (This thesis, paper 3)

Data structure for maintaining 6-approximate tree decomposition of a dynamic graph

with treewidth at most k, with amortized update time (k) - n°("). Supports also
maintaining any dynamic programming scheme.

Rankwidth

Rank decompositions and rankwidth

Rankwidth

Rank decompositions and rankwidth

@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

Rankwidth
Rank decompositions and rankwidth
@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

@ Introduced by [Oum & Seymour '06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg '93]

Rankwidth

Rank decompositions and rankwidth

@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

@ Introduced by [Oum & Seymour '06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg '93]

° (’)(8" - n°log n) time 3-approximation [Oum&Seymour'06]

Rankwidth

Rank decompositions and rankwidth

@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

@ Introduced by [Oum & Seymour '06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg '93]

° (’)(8" - n°log n) time 3-approximation [Oum&Seymour'06]

o f(Kk) - n° time exact [Hiineny & Oum’08]

Rankwidth

Rank decompositions and rankwidth

@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

@ Introduced by [Oum & Seymour '06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg '93]

° (’)(8" - n°log n) time 3-approximation [Oum&Seymour'06]

o f(Kk) - n° time exact [Hiineny & Oum’08]

Theorem (This thesis, paper 4)

K
There is a 220(" r° time 2-approximation algorithm for rankwidth.

Rankwidth

Rank decompositions and rankwidth

@ Similar to tree decompositions and treewidth, but
suitable also for dense graphs

@ Introduced by [Oum & Seymour '06] to approximate
cliquewidth, which was introduced by [Courcelle,
Engelfriet & Rozenberg '93]

° (’)(8" - n°log n) time 3-approximation [Oum&Seymour'06]

o f(Kk) - n° time exact [Hiineny & Oum’08]

Theorem (This thesis, paper 4)

K
There is a 220(" r° time 2-approximation algorithm for rankwidth.

Improves algorithms parameterized by rankwidth/cliquewidth from f(k)n® to f(k)n?

Method

New method for computing decompositions of graphs: Local improvement

Method

New method for computing decompositions of graphs: Local improvement

@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

@ New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

@ New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation

» Introduced in Paper 1 for 2-approximating treewidth

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

@ New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation

» Introduced in Paper 1 for 2-approximating treewidth
» Generalized in Paper 2 for exact treewidth

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

@ New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation
» Introduced in Paper 1 for 2-approximating treewidth
» Generalized in Paper 2 for exact treewidth
» Applied in Paper 3 for dynamic treewidth

Method

New method for computing decompositions of graphs: Local improvement
@ Repeatedly re-arrange the tree decomposition to make the largest bag smaller

@ Inspired by the proofs of [Thomas’90, Bellenbaum & Diestel '02] about lean tree
decompositions

@ New ideas in both the graph-theoretic part of the re-arrangement, and in the
efficient algorithmic implementation

» Introduced in Paper 1 for 2-approximating treewidth
Generalized in Paper 2 for exact treewidth

v

v

Applied in Paper 3 for dynamic treewidth

v

Extended in Paper 4 for 2-approximating rankwidth

Improvement operation for 2-approximating treewidth

Improvement operation for 2-approximating treewidth

@ Let W be the largest bag of a tree decomposition T of width > 2k + 2

Improvement operation for 2-approximating treewidth

@ Let W be the largest bag of a tree decomposition T of width > 2k + 2
@ Take a small balanced separator S of W with a partition (Cy, Gz, Cs, S) of V

Improvement operation for 2-approximating treewidth

@ Let W be the largest bag of a tree decomposition T of width > 2k + 2
@ Take a small balanced separator S of W with a partition (Cy, Gz, Cs, S) of V

@ Foreach i€ {1,2,3}, obtain a tree decomposition T'= TN (C;uUS8) by setting
B'=Bn(C;juU S) for each bag Bof T.

T3:Tﬂ(03US)

T2=TN(CUS)

Improvement operation for 2-approximating treewidth

@ Let W be the largest bag of a tree decomposition T of width > 2k + 2
@ Take a small balanced separator S of W with a partition (Cy, Gz, Cs, S) of V

@ Foreach i€ {1,2,3}, obtain a tree decomposition T'= TN (C;uUS8) by setting
B'=Bn(C;juU S) for each bag Bof T.

@ The following is almost a tree decomposition of G:

T'=Tn T*=TnN(CUS)

T2=TN(CUS)

Improvement operation for 2-approximating treewidth

@ Let W be the largest bag of a tree decomposition T of width > 2k + 2
@ Take a small balanced separator S of W with a partition (Cy, Gz, Cs, S) of V

@ Foreach i€ {1,2,3}, obtain a tree decomposition T'= TN (C;uUS8) by setting
B'=Bn(C;juU S) for each bag Bof T.

@ The following is almost a tree decomposition of G:

T'=Tn TP=TNn(C3US)

T2=TN(CUS)

Except that vertices in S may violate the connectedness condition

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of S to bags

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of S to bags

Example: Let (Ci, Cs, Cs, S) = ({a, b, h}, {c,d,f},{e, g, k}, {51, s2}) be the partition:

C

f,h, s E’g,k,32\

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of S to bags

Example: Let (Ci, Cs, Cs, S) = ({a, b, h}, {c,d,f},{e, g, k}, {51, s2}) be the partition:

T T'=TnN(CiuS)

C

f.h,si| Elg.k]| c'

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of S to bags

Example: Let (Ci, Cs, Cs, S) = ({a, b, h}, {c,d,f},{e, g, k}, {51, s2}) be the partition:

C

f.h,si| Elg.k]| c'

@ Insert s; to B', A", and W'

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of S to bags

Example: Let (Ci, Cs, Cs, S) = ({a, b, h}, {c,d,f},{e, g, k}, {51, s2}) be the partition:

C

f.h,si| Elg.k]| c'

@ Insert s; to B', A", and W'
@ Insert s, to A" and W'

Analysis of the improvement

@ Each bag B is replaced by bags B', B?, B®

Analysis of the improvement

@ Each bag B is replaced by bags B', B?, B®

Lemma

If the balanced separator S is chosen according to specific criteria, then |B'| < |B| for
all bags B and each i € {1,2,3}.

Analysis of the improvement

@ Each bag B is replaced by bags B', B?, B®

Lemma

If the balanced separator S is chosen according to specific criteria, then |B'| < |B| for
all bags B and each i € {1,2,3}.

@ |B'| = |B] holds only in a degenerate case where we can throw B for j # i away

Analysis of the improvement

@ Each bag B is replaced by bags B', B?, B®

Lemma

If the balanced separator S is chosen according to specific criteria, then |B'| < |B| for
all bags B and each i € {1,2,3}.

@ |B'| = |B] holds only in a degenerate case where we can throw B for j # i away

@ Forthe bag W, |W'| < |W| is ensured by the definition of the balanced separator

Analysis of the improvement

@ Each bag B is replaced by bags B', B?, B®

Lemma

If the balanced separator S is chosen according to specific criteria, then |B'| < |B| for
all bags B and each i € {1,2,3}.

@ |B'| = |B] holds only in a degenerate case where we can throw B for j # i away
@ Forthe bag W, |W'| < |W| is ensured by the definition of the balanced separator

= The number of bags of size |W| decreases

Conclusion

New method for computing width parameters of graphs: Local improvement

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

o Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum &
Diestel '02]

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

o Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum &
Diestel '02]

Future directions:

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

o Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum &
Diestel '02]
Future directions:

o Prove 2% Jower bound for treewidth under ETH (ZQ known)

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

o Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum &
Diestel '02]
Future directions:
o Prove 2% Jower bound for treewidth under ETH (ZQ known)

e Dynamic treewidth in amortized f(k) - polylog n time?

Conclusion

New method for computing width parameters of graphs: Local improvement

@ Solutions to open problems about computing treewidth, dynamic
treewidth, and computing rankwidth

o Inspired by a proof about lean tree decompositions [Thomas'90, Bellenbaum &
Diestel '02]
Future directions:

o Prove 2% Jower bound for treewidth under ETH (ZQ known)

e Dynamic treewidth in amortized f(k) - polylog n time?

Thank you!

