
Minor Containment and Disjoint Paths in almost-linear time

Tuukka Korhonen

based on joint work with Michał Pilipczuk and Giannos Stamoulis
from the University of Warsaw

LIRMM, Montpellier

9 April 2024

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 1 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm

Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].

These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem

Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



The Graph Minors series

A series of 23 papers in 1983–2012 by Robertson
& Seymour

Theorem (Robertson & Seymour, Graph Minors 20)

Any infinite set of graphs contains graphs G1 6= G2 s.t. G1 is a minor of G2.

⇒ Every minor-closed graph class is characterized by a finite set of
obstructions

Theorem (Robertson & Seymour, Graphs Minors 13)

There is anOH(n3) time algorithm to test if H is a minor of G.

⇒ Every minor-closed graph class has aO(n3) recognition algorithm
Improved toOH(n2) by [Kawarabayashi, Kobayashi & Reed, 2012].
These algorithms work for ROOTED MINOR CONTAINMENT, which
captures also the k -DISJOINT PATHS problem
Linear-time algorithms known for some special cases, like planar graphs
[Bodlaender 1993], [Reed, Robertson, Schrijver & Seymour 1993]

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 2 / 14



Our result

Theorem (This work)

There is anOH,|X |(m1+o(1)) time algorithm for ROOTED MINOR
CONTAINMENT

m = |V (G)|+ |E(G)| the number of vertices + edges of G
X ⊆ V (G) the set of roots

Dependence on H and |X | huge but computable.

Corollary

Every minor-closed graph class has aO(n1+o(1)) recognition algorithm

Corollary

There is aOk(m1+o(1)) time algorithm for k -DISJOINT PATHS

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 3 / 14



Our result

Theorem (This work)

There is anOH,|X |(m1+o(1)) time algorithm for ROOTED MINOR
CONTAINMENT

m = |V (G)|+ |E(G)| the number of vertices + edges of G
X ⊆ V (G) the set of roots

Dependence on H and |X | huge but computable.

Corollary

Every minor-closed graph class has aO(n1+o(1)) recognition algorithm

Corollary

There is aOk(m1+o(1)) time algorithm for k -DISJOINT PATHS

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 3 / 14



Our result

Theorem (This work)

There is anOH,|X |(m1+o(1)) time algorithm for ROOTED MINOR
CONTAINMENT

m = |V (G)|+ |E(G)| the number of vertices + edges of G
X ⊆ V (G) the set of roots

Dependence on H and |X | huge but computable.

Corollary

Every minor-closed graph class has aO(n1+o(1)) recognition algorithm

Corollary

There is aOk(m1+o(1)) time algorithm for k -DISJOINT PATHS

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 3 / 14



Our result

Theorem (This work)

There is anOH,|X |(m1+o(1)) time algorithm for ROOTED MINOR
CONTAINMENT

m = |V (G)|+ |E(G)| the number of vertices + edges of G
X ⊆ V (G) the set of roots

Dependence on H and |X | huge but computable.

Corollary

Every minor-closed graph class has aO(n1+o(1)) recognition algorithm

Corollary

There is aOk(m1+o(1)) time algorithm for k -DISJOINT PATHS

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 3 / 14



Our result

Theorem (This work)

There is anOH,|X |(m1+o(1)) time algorithm for ROOTED MINOR
CONTAINMENT

m = |V (G)|+ |E(G)| the number of vertices + edges of G
X ⊆ V (G) the set of roots

Dependence on H and |X | huge but computable.

Corollary

Every minor-closed graph class has aO(n1+o(1)) recognition algorithm

Corollary

There is aOk(m1+o(1)) time algorithm for k -DISJOINT PATHS

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 3 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs

I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &
Sokołowski, 2023]

I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]

I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs

I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs

I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique

I Using recent breakthroughs in almost-linear time graph algorithms: Isolating
cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs

I Using a lemma of Robertson & Seymour about generic folios when containing
a clique minor

I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor

I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



Outline of the algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk &

Sokołowski, 2023]
I In the generality where G − X is apex-minor-free

2. Reducing compact clique-minor-free graphs to apex-minor-free graphs
I Standard fact that near-embeddable graphs are almost apex-minor-free

3. Reducing clique-minor-free graphs to compact clique-minor-free graphs
I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating

cuts [Li & Panigrahi, 2020], almost-linear (deterministic) max-flow [van den
Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023],
and mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
I Using a lemma of Robertson & Seymour about generic folios when containing

a clique minor
I Need again the graph to be compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 4 / 14



The algorithm for apex-minor-free graphs

The algorithm for apex-minor-free graphs

Goal: Given
a graph G (with m vertices+edges),
a set X ⊆ V (G),
an X -rooted graph H, and
an integer p,

return in time OH,|X |(m1+o(1)) either

1. whether H is an X -rooted minor of G (and a minor model of H), or
2. a minor model of an apex-grid of order p in G − X .

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 5 / 14



The algorithm for apex-minor-free graphs

The algorithm for apex-minor-free graphs

Goal: Given
a graph G (with m vertices+edges),
a set X ⊆ V (G),
an X -rooted graph H, and
an integer p,

return in time OH,|X |(m1+o(1)) either

1. whether H is an X -rooted minor of G (and a minor model of H), or
2. a minor model of an apex-grid of order p in G − X .

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 5 / 14



The algorithm for apex-minor-free graphs

The algorithm for apex-minor-free graphs

Goal: Given
a graph G (with m vertices+edges),
a set X ⊆ V (G),
an X -rooted graph H, and
an integer p,

return in time OH,|X |(m1+o(1)) either

1. whether H is an X -rooted minor of G (and a minor model of H), or
2. a minor model of an apex-grid of order p in G − X .

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 5 / 14



The irrelevant vertex technique

Robertson & Seymour: If G has large treewidth, we can remove a vertex
from G without changing the solution

On minor-free graphs, this works via flat walls:
I If G excludes Kt -minor and has high treewidth, then there is a set

Z ⊆ V (G) with |Z | ≤ t2 so that G − Z contains a large flat wall
I If v is a central vertex of a homogeneous flat wall, then v is irrelevant

If G − X is apex-minor-free, then we can assume Z = X

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 6 / 14



The irrelevant vertex technique

Robertson & Seymour: If G has large treewidth, we can remove a vertex
from G without changing the solution

On minor-free graphs, this works via flat walls:

I If G excludes Kt -minor and has high treewidth, then there is a set
Z ⊆ V (G) with |Z | ≤ t2 so that G − Z contains a large flat wall

I If v is a central vertex of a homogeneous flat wall, then v is irrelevant
If G − X is apex-minor-free, then we can assume Z = X

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 6 / 14



The irrelevant vertex technique

Robertson & Seymour: If G has large treewidth, we can remove a vertex
from G without changing the solution

On minor-free graphs, this works via flat walls:
I If G excludes Kt -minor and has high treewidth, then there is a set

Z ⊆ V (G) with |Z | ≤ t2 so that G − Z contains a large flat wall

I If v is a central vertex of a homogeneous flat wall, then v is irrelevant
If G − X is apex-minor-free, then we can assume Z = X

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 6 / 14



The irrelevant vertex technique

Robertson & Seymour: If G has large treewidth, we can remove a vertex
from G without changing the solution

On minor-free graphs, this works via flat walls:
I If G excludes Kt -minor and has high treewidth, then there is a set

Z ⊆ V (G) with |Z | ≤ t2 so that G − Z contains a large flat wall
I If v is a central vertex of a homogeneous flat wall, then v is irrelevant

If G − X is apex-minor-free, then we can assume Z = X

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 6 / 14



The irrelevant vertex technique

Robertson & Seymour: If G has large treewidth, we can remove a vertex
from G without changing the solution

On minor-free graphs, this works via flat walls:
I If G excludes Kt -minor and has high treewidth, then there is a set

Z ⊆ V (G) with |Z | ≤ t2 so that G − Z contains a large flat wall
I If v is a central vertex of a homogeneous flat wall, then v is irrelevant

If G − X is apex-minor-free, then we can assume Z = X

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 6 / 14



Dynamic treewidth

Theorem [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]:

There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time
f (k) · 2

√
log n log log n = f (k) · no(1) under the promise that the treewidth of

G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the
decomposition within similar running time (formalized by CMSO2)

...can easily be extended to also support vertex-colors and to output a
vertex v that satisfies a CMSO2 formula ϕ(v)

...and to deletions of vertices and insertions of isolated vertices

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 7 / 14



Dynamic treewidth

Theorem [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]:

There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time
f (k) · 2

√
log n log log n = f (k) · no(1) under the promise that the treewidth of

G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the
decomposition within similar running time (formalized by CMSO2)

...can easily be extended to also support vertex-colors and to output a
vertex v that satisfies a CMSO2 formula ϕ(v)

...and to deletions of vertices and insertions of isolated vertices

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 7 / 14



Dynamic treewidth

Theorem [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]:

There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time
f (k) · 2

√
log n log log n = f (k) · no(1) under the promise that the treewidth of

G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the
decomposition within similar running time (formalized by CMSO2)

...can easily be extended to also support vertex-colors and to output a
vertex v that satisfies a CMSO2 formula ϕ(v)

...and to deletions of vertices and insertions of isolated vertices

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 7 / 14



Dynamic treewidth

Theorem [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]:

There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time
f (k) · 2

√
log n log log n = f (k) · no(1) under the promise that the treewidth of

G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the
decomposition within similar running time (formalized by CMSO2)

...can easily be extended to also support vertex-colors and to output a
vertex v that satisfies a CMSO2 formula ϕ(v)

...and to deletions of vertices and insertions of isolated vertices

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 7 / 14



Dynamic treewidth

Theorem [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]:

There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time
f (k) · 2

√
log n log log n = f (k) · no(1) under the promise that the treewidth of

G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the
decomposition within similar running time (formalized by CMSO2)

...can easily be extended to also support vertex-colors and to output a
vertex v that satisfies a CMSO2 formula ϕ(v)

...and to deletions of vertices and insertions of isolated vertices

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 7 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8
9

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8

10

11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12
13

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

14

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

12

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

15

16

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

15

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

15

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain
the mega-vertex, and delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it
is the same in the contracted and the original graph

1

2

3

5

6

7

8 11

15

17

18

19 20

21

22

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 8 / 14



Some details

Details:

1. Apex-minor-free graphs admit flat walls without deleting vertices

2. We can always select a flat wall whose compass does not contain the
megavertex

3. We can define “central vertex of a homogeneous flat wall” in MSO2 (16
pages of writing)

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 9 / 14



Some details

Details:

1. Apex-minor-free graphs admit flat walls without deleting vertices

2. We can always select a flat wall whose compass does not contain the
megavertex

3. We can define “central vertex of a homogeneous flat wall” in MSO2 (16
pages of writing)

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 9 / 14



Some details

Details:

1. Apex-minor-free graphs admit flat walls without deleting vertices

2. We can always select a flat wall whose compass does not contain the
megavertex

3. We can define “central vertex of a homogeneous flat wall” in MSO2 (16
pages of writing)

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 9 / 14



Some details

Details:

1. Apex-minor-free graphs admit flat walls without deleting vertices

2. We can always select a flat wall whose compass does not contain the
megavertex

3. We can define “central vertex of a homogeneous flat wall” in MSO2

(16
pages of writing)

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 9 / 14



Some details

Details:

1. Apex-minor-free graphs admit flat walls without deleting vertices

2. We can always select a flat wall whose compass does not contain the
megavertex

3. We can define “central vertex of a homogeneous flat wall” in MSO2 (16
pages of writing)

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 9 / 14



Compact graphs

Let X ⊆ V (G) be the terminals.

G,X is (k , α)-compact if

X is well-linked

There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k .

Lemma (Follows from RS-decomposition)

If G excludes Kt , there is k = f1(t) so that if |X | ≥ k and G is
(k , α)-compact, then G excludes apex-grid of order p = f2(t , α) after
deletion of f3(t) vertices.

Compact clique-minor free⇔ almost apex-minor-free

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 10 / 14



Compact graphs

Let X ⊆ V (G) be the terminals.

G,X is (k , α)-compact if

X is well-linked

There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k .

Lemma (Follows from RS-decomposition)

If G excludes Kt , there is k = f1(t) so that if |X | ≥ k and G is
(k , α)-compact, then G excludes apex-grid of order p = f2(t , α) after
deletion of f3(t) vertices.

Compact clique-minor free⇔ almost apex-minor-free

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 10 / 14



Compact graphs

Let X ⊆ V (G) be the terminals.

G,X is (k , α)-compact if

X is well-linked

There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k .

Lemma (Follows from RS-decomposition)

If G excludes Kt , there is k = f1(t) so that if |X | ≥ k and G is
(k , α)-compact, then G excludes apex-grid of order p = f2(t , α) after
deletion of f3(t) vertices.

Compact clique-minor free⇔ almost apex-minor-free

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 10 / 14



Compact graphs

Let X ⊆ V (G) be the terminals.

G,X is (k , α)-compact if

X is well-linked

There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k .

Lemma (Follows from RS-decomposition)

If G excludes Kt , there is k = f1(t) so that if |X | ≥ k and G is
(k , α)-compact, then G excludes apex-grid of order p = f2(t , α) after
deletion of f3(t) vertices.

Compact clique-minor free⇔ almost apex-minor-free

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 10 / 14



Compact graphs

Let X ⊆ V (G) be the terminals.

G,X is (k , α)-compact if

X is well-linked

There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k .

Lemma (Follows from RS-decomposition)

If G excludes Kt , there is k = f1(t) so that if |X | ≥ k and G is
(k , α)-compact, then G excludes apex-grid of order p = f2(t , α) after
deletion of f3(t) vertices.

Compact clique-minor free⇔ almost apex-minor-free

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 10 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle
I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle
I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k

⇒ Either recurse by a small balanced separator, or add to X a
well-linked set controlling the global tangle

I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle

I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle
I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle
I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k

⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Reducing to compact graphs

Recursive scheme:

1. X not well-linked
⇒ recurse by a separator

2. If X well-linked but |X | < k
⇒ Either recurse by a small balanced separator, or add to X a

well-linked set controlling the global tangle
I (this step key to keep recursion-depth O(log n))

3. X well-linked and |X | ≥ k
⇒ Recursive understanding to make G,X into (k , α)-compact

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 11 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022]

,

deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022]

,

deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022]

,

deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022]

,

deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022],

deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022],deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



Recursive understanding

Now: X is well-linked and |X | ≥ k

Want also: There is no connected set C ⊆ V (G) with |C| ≥ α and |N(C)| < k

While exists such set C, solve Folio recursively on (G[N[C]],N(C)) and
replace C by a gadget of size < α/2

Need to do it fast! Two ingredients:

1. Algorithm for finding a collection of non-touching such sets C containing a
fraction of 1/Ok ,α(log n) of all vertices in such sets

I After color-coding, about computing a (simpler) variant of Gomory-Hu
tree, randomized version almost-directly from [Pettie, Saranurak, and
Yin, 2022],deterministic by combining: Isolating cuts [Li & Panigrahi, 2020], almost-linear

(deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of

[Saranurak & Yingchareonthawornchai, 2022]

2. Construction of gadgets that not only preserve folio, but also don’t create
“new” such sets C

I Challenge: Size of gadget should depend on k , not α

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 12 / 14



From general graphs to minor-free

Lemma (Robertson & Seymour, Graph Minors 13)

If G,X is (k , α)-compact and G contains a K3·(k+δ)·α-minor, then the
(X , δ)-folio of G is generic.

Same recursive scheme to make G,X into (k , α)-compact...

Need actually a new proof of the lemma to make it more algorithmic

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 13 / 14



From general graphs to minor-free

Lemma (Robertson & Seymour, Graph Minors 13)

If G,X is (k , α)-compact and G contains a K3·(k+δ)·α-minor, then the
(X , δ)-folio of G is generic.

Same recursive scheme to make G,X into (k , α)-compact...

Need actually a new proof of the lemma to make it more algorithmic

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 13 / 14



From general graphs to minor-free

Lemma (Robertson & Seymour, Graph Minors 13)

If G,X is (k , α)-compact and G contains a K3·(k+δ)·α-minor, then the
(X , δ)-folio of G is generic.

Same recursive scheme to make G,X into (k , α)-compact...

Need actually a new proof of the lemma to make it more algorithmic

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 13 / 14



From general graphs to minor-free

Lemma (Robertson & Seymour, Graph Minors 13)

If G,X is (k , α)-compact and G contains a K3·(k+δ)·α-minor, then the
(X , δ)-folio of G is generic.

Same recursive scheme to make G,X into (k , α)-compact...

Need actually a new proof of the lemma to make it more algorithmic

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 13 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?

I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14



Conclusion

OH,|X |(m1+o(1)) time algorithm for rooted minor containment

“Simple” algorithm for apex-minor-free graphs with dynamic treewidth

Reduction from general graphs to apex-minor-free with fast recursive
understanding

Future work:

Extensions to compute the Robertson-Seymour decomposition,
topological minor containment

Optimization to OH,|X |(m polylog n)?
I Important problem: Optimization of dynamic treewidth to
Ok (polylog n)?

Thank you!

Tuukka Korhonen Minor Containment and Disjoint Paths in almost-linear time 14 / 14


