
Computing Treewidth

Tuukka Korhonen

FPT Fest 2023 in the honor of Mike Fellows

15 June 2023

Tuukka Korhonen Computing Treewidth 1 / 26

Treewidth

Measures how close a graph is to a tree

I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1

I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2

I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n

I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag

2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag

3. bags containing a vertex form a connected
subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen Computing Treewidth 2 / 26

Why treewidth

Most of NP-hard graph problems are FPT
parameterized by treewidth

Formalized by Courcelle’s theorem, giving
f (k) · n time algorithms for problems definable
in MSO2-logic

Often 2O(k)n time algorithms

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth 3 / 26

Why treewidth

Most of NP-hard graph problems are FPT
parameterized by treewidth

Formalized by Courcelle’s theorem, giving
f (k) · n time algorithms for problems definable
in MSO2-logic

Often 2O(k)n time algorithms

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth 3 / 26

Why treewidth

Most of NP-hard graph problems are FPT
parameterized by treewidth

Formalized by Courcelle’s theorem, giving
f (k) · n time algorithms for problems definable
in MSO2-logic

Often 2O(k)n time algorithms

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth 3 / 26

Why treewidth

Most of NP-hard graph problems are FPT
parameterized by treewidth

Formalized by Courcelle’s theorem, giving
f (k) · n time algorithms for problems definable
in MSO2-logic

Often 2O(k)n time algorithms

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth 3 / 26

Why treewidth

Most of NP-hard graph problems are FPT
parameterized by treewidth

Formalized by Courcelle’s theorem, giving
f (k) · n time algorithms for problems definable
in MSO2-logic

Often 2O(k)n time algorithms

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth 3 / 26

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

2. Classic exact FPT algorithms

3. New FPT algorithms based on local improvement

Tuukka Korhonen Computing Treewidth 4 / 26

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

2. Classic exact FPT algorithms

3. New FPT algorithms based on local improvement

Tuukka Korhonen Computing Treewidth 4 / 26

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

2. Classic exact FPT algorithms

3. New FPT algorithms based on local improvement

Tuukka Korhonen Computing Treewidth 4 / 26

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

2. Classic exact FPT algorithms

3. New FPT algorithms based on local improvement

Tuukka Korhonen Computing Treewidth 4 / 26

Robertson-Seymour FPT-approximation

1. Robertson-Seymour FPT-approximation

Tuukka Korhonen Computing Treewidth 5 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

X

W

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

X

W

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

W

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

W

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

W

Tuukka Korhonen Computing Treewidth 6 / 26

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set X ⊆ V (G) is a balanced separator of a vertex set W ⊆ V (G) if
for every component C of G − X it holds that |W ∩ C| ≤ |W |/2.

Lemma
If treewidth ≤ k , then every W ⊆ V (G) has a balanced separator of size ≤ k + 1.

Proof:

X

W

Tuukka Korhonen Computing Treewidth 6 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

WW ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W

L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W

L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)

L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)

L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Constructing the decomposition

Lemma

If every W ⊆ V (G) has a balanced separator of size ≤ k + 1, then
tw(G) ≤ 4k + 3

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 7 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n

I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:
3-approximation in time 2O(k)n log n

F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n

F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

How to improve the polynomial n2: Sometimes break the graph by a
balanced separator of V (G)

I [Matoušek & Thomas ’91, Lagergren ’91]: O(1)-approximation in time
kO(k)n log2 n

I [Reed ’92]: 8-approximation in time kO(k)n log n
I [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’16]:

3-approximation in time 2O(k)n log n
F and 5-approximation in time 2O(k)n

I [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna’18]:
O(k)-approximation in time kO(1)n log n

I [Belbasi & Fürer ’21]: 5-approximation in time 27kn log n

Tuukka Korhonen Computing Treewidth 8 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

Idea applied to many other width parameters:

I FPT-approximation of cliquewidth/rankwidth [Oum&Seymour’06],
[Oum’08], matroid branchwidth [Hlinený ’05], [Oum&Seymour’06],
H-treewidth [Jansen, de Kroon & Wlodarczyk ’21]

I XP-approximation of hypertreewidth [Adler, Gottlob, Grohe ’07],
fractional hypertreewidth [Marx ’10], and minor-matching
hypertreewidth [Yolov ’17]

I And many more...

Tuukka Korhonen Computing Treewidth 9 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

Idea applied to many other width parameters:

I FPT-approximation of cliquewidth/rankwidth [Oum&Seymour’06],
[Oum’08], matroid branchwidth [Hlinený ’05], [Oum&Seymour’06],
H-treewidth [Jansen, de Kroon & Wlodarczyk ’21]

I XP-approximation of hypertreewidth [Adler, Gottlob, Grohe ’07],
fractional hypertreewidth [Marx ’10], and minor-matching
hypertreewidth [Yolov ’17]

I And many more...

Tuukka Korhonen Computing Treewidth 9 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

Idea applied to many other width parameters:

I FPT-approximation of cliquewidth/rankwidth [Oum&Seymour’06],
[Oum’08], matroid branchwidth [Hlinený ’05], [Oum&Seymour’06],
H-treewidth [Jansen, de Kroon & Wlodarczyk ’21]

I XP-approximation of hypertreewidth [Adler, Gottlob, Grohe ’07],
fractional hypertreewidth [Marx ’10], and minor-matching
hypertreewidth [Yolov ’17]

I And many more...

Tuukka Korhonen Computing Treewidth 9 / 26

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson & Seymour ’86)

There is a 2O(k)n2 time 4-approximation for treewidth

Idea applied to many other width parameters:

I FPT-approximation of cliquewidth/rankwidth [Oum&Seymour’06],
[Oum’08], matroid branchwidth [Hlinený ’05], [Oum&Seymour’06],
H-treewidth [Jansen, de Kroon & Wlodarczyk ’21]

I XP-approximation of hypertreewidth [Adler, Gottlob, Grohe ’07],
fractional hypertreewidth [Marx ’10], and minor-matching
hypertreewidth [Yolov ’17]

I And many more...

Tuukka Korhonen Computing Treewidth 9 / 26

Classic exact FPT algorithms

2. Classic exact FPT algorithms

Tuukka Korhonen Computing Treewidth 10 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

Classic exact FPT algorithms

Theorem (Robertson & Seymour ’86)

There is a f (k) · n2 time (non-uniform) algorithm for treewidth

Proof: tw(G) ≤ k is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, ’91]: 2O(k3)n time dynamic
programming for treewidth by Typical Sequences

I Implied 2O(k3)n log2 n time algorithm at the time

I [Bodlaender ’93]: Improvement to 2O(k3)n by a recursive
“compression” technique

Typical sequences applied to branchwidth [Bodlaender & Thilikos ’97],
cutwidth and carving-width [Thilikos, Serna & Bodlaender ’00], rankwidth
and matroid branchwidth [Jeong, Kim & Oum ’18], and more...

Tuukka Korhonen Computing Treewidth 11 / 26

New FPT algorithms based on local improvement

3. New FPT algorithms based on local improvement

Tuukka Korhonen Computing Treewidth 12 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

Local improvement based FPT 2-approximation

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, & Pilipczuk ’16]

Breaks the 3-approximation barrier of Robertson-Seymour-type
algorithms

Improves the 2O(k) from ≈ 240k to 211k

Techniques extended also to 2-approximating branchwidth in time 2O(k)n
and rankwidth in time 22O(k)

n2 [Fomin & K. ’22]

Tuukka Korhonen Computing Treewidth 13 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender ’93] we can focus on:

Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w ≤ 2 · tw(G) + 1

Time complexity: 2O(w)n

Let T be a tree decomposition of width w

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of bags of size w + 1 and does not increase the width

I Inspired by a proofs on Lean Tree Decompositions [Thomas ’90, Bellenbaum
& Diestel ’02]

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortizatized analysis of the improvements and
dynamic programming over the tree decomposition

Tuukka Korhonen Computing Treewidth 14 / 26

The improvement operation

Let W be a largest bag

Take a small balanced separator X of W with partition (X ,C1,C2,C3) of V (G)

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting
B i = B ∩ (Ci ∪ X) for each bag B of T .

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 26

The improvement operation

Let W be a largest bag

Take a small balanced separator X of W with partition (X ,C1,C2,C3) of V (G)

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting
B i = B ∩ (Ci ∪ X) for each bag B of T .

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 26

The improvement operation

Let W be a largest bag

Take a small balanced separator X of W with partition (X ,C1,C2,C3) of V (G)

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting
B i = B ∩ (Ci ∪ X) for each bag B of T .

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 26

The improvement operation

Let W be a largest bag

Take a small balanced separator X of W with partition (X ,C1,C2,C3) of V (G)

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting
B i = B ∩ (Ci ∪ X) for each bag B of T .

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 26

The improvement operation

Let W be a largest bag

Take a small balanced separator X of W with partition (X ,C1,C2,C3) of V (G)

For each i ∈ {1, 2, 3}, obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting
B i = B ∩ (Ci ∪ X) for each bag B of T .

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 26

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Tuukka Korhonen Computing Treewidth 16 / 26

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Tuukka Korhonen Computing Treewidth 16 / 26

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Tuukka Korhonen Computing Treewidth 16 / 26

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Tuukka Korhonen Computing Treewidth 16 / 26

Fixing a tree decomposition

Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Tuukka Korhonen Computing Treewidth 16 / 26

Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator X is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i .

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases

Tuukka Korhonen Computing Treewidth 17 / 26

Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator X is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i .

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases

Tuukka Korhonen Computing Treewidth 17 / 26

Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator X is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i .

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases

Tuukka Korhonen Computing Treewidth 17 / 26

Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator X is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i .

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases

Tuukka Korhonen Computing Treewidth 17 / 26

Analysis of the improvement

Each bag B is replaced by bags B1, B2, B3

Lemma

If the balanced separator X is chosen according to specific criteria, then |B i | ≤ |B| for
all bags B and each i .

|B i | = |B| holds only in a degenerate case where we can throw B j for j 6= i away

For the bag W , |W i | < |W | is ensured by the definition of the balanced separator

⇒ The number of bags of size |W | decreases

Tuukka Korhonen Computing Treewidth 17 / 26

Below 2-approximation with local improvement

Below 2-approximation with local improvement

Tuukka Korhonen Computing Treewidth 18 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Below 2-approximation with local improvement

Barrier at approximation ratio 2 when using balanced separators

Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov ’23)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Asked by [Downey & Fellows ’99] if the 2O(k3) factor in Bodlaender’s algorithm
could be improved

Same idea of improving a tree decomposition by decreasing the number
of largest bags

Tuukka Korhonen Computing Treewidth 19 / 26

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and

a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G − X into cliques

Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

torso(X)

X

Make neighborhoods of components of G − X into cliques
Delete V (G) \ X

Tuukka Korhonen Computing Treewidth 20 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Computing Treewidth 21 / 26

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

W

T
Tuukka Korhonen Computing Treewidth 22 / 26

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

T
Tuukka Korhonen Computing Treewidth 22 / 26

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

T
Tuukka Korhonen Computing Treewidth 22 / 26

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T
Tuukka Korhonen Computing Treewidth 22 / 26

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Computing Treewidth 23 / 26

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Computing Treewidth 23 / 26

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Computing Treewidth 23 / 26

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Computing Treewidth 23 / 26

Subset treewidth for FPT-approximation

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Tuukka Korhonen Computing Treewidth 24 / 26

Subset treewidth for FPT-approximation

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Tuukka Korhonen Computing Treewidth 24 / 26

Subset treewidth for FPT-approximation

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Tuukka Korhonen Computing Treewidth 24 / 26

Subset treewidth for FPT-approximation

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Tuukka Korhonen Computing Treewidth 24 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:

Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm

Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators

Branching on important separators [Marx ’06]

G

W1

W2

W3

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators

Branching on important separators [Marx ’06]

G

W1

W2

W3
S

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators

Branching on important separators [Marx ’06]

G

W1

W2

W3
S

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators

Branching on important separators [Marx ’06]

W1

S

W2

W3
S

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

.

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

Leaf bag
.

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Important separator

Tuukka Korhonen Computing Treewidth 25 / 26

Solving Subset Treewidth
2O(k2)n2 time algorithm for Subset Treewidth and kO(kt)n2 time algorithm
for Partitioned Subset Treewidth

Techniques:
Recursive branching algorithm
Greedy selection of safe separators
Branching on important separators [Marx ’06]

G

W1

W2

W3

W2

Tuukka Korhonen Computing Treewidth 25 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Conclusion

Classic approaches for computing width parameters:

Robertson-Seymour FPT-approximation

Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Improve either dependence on k or n in the 2O(k2)n4 exact treewidth
algorithm

Tuukka Korhonen Computing Treewidth 26 / 26

Thank you!

Thank you!

Tuukka Korhonen Computing Treewidth 27 / 26

