
SharpSAT-TD: Improving SharpSAT
by Exploiting Tree Decompositions

Tuukka Korhonen and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

MC-2021
Online

July 6, 2021



SharpSAT-TD

New modification of SharpSAT [Thurley ’06]

1. Integrates low-width tree decompositions to the variable selection
heuristic

2. Implements new preprocessor

3. Directly supports weighted model counting
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Overview

Overview of SharpSAT-TD

1. Preprocess
2. Compute a tree decomposition with FlowCutter [Strasser ’17]
3. Count using tree decomposition guided variable selection

I will first talk about (3), then about (1), and then about other changes
compared to SharpSAT
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Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)
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Width of a tree decomposition: Size of the largest bag -1
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Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition
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Component analysis

x2 = 1, x3 = 1, x5 = 1, x1 = 1
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Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.
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Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition
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Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)
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Other Modifications

“Implicit BCP” disabled

LBD learned clause scoring scheme [AS09]

Probabilistic component caching [SRSM19]

Extension to weighted model counting via template parameters – easily
extensible to model counting over any semiring
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The end

Thank you for your attention!
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