
SharpSAT-TD: Improving SharpSAT
by Exploiting Tree Decompositions

Tuukka Korhonen and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

MC-2021
Online

July 6, 2021

SharpSAT-TD

New modification of SharpSAT [Thurley ’06]

1. Integrates low-width tree decompositions to the variable selection
heuristic

2. Implements new preprocessor

3. Directly supports weighted model counting

MCC-2021 Results on Public Instances

Overview

Overview of SharpSAT-TD

1. Preprocess
2. Compute a tree decomposition with FlowCutter [Strasser ’17]
3. Count using tree decomposition guided variable selection

I will first talk about (3), then about (1), and then about other changes
compared to SharpSAT

Overview

Overview of SharpSAT-TD

1. Preprocess
2. Compute a tree decomposition with FlowCutter [Strasser ’17]
3. Count using tree decomposition guided variable selection

I will first talk about (3), then about (1), and then about other changes
compared to SharpSAT

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root x2, x3, x5

x2, x3, x5x2, x3, x5x2, x3, x5

x1, x2, x5

x1, x2, x5x1, x2, x5x1, x2, x5x1, x2, x5

x3, x5, x6

x3, x5, x6x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)

(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root

x2, x3, x5

x2, x3, x5

x2, x3, x5x2, x3, x5

x1, x2, x5

x1, x2, x5

x1, x2, x5x1, x2, x5x1, x2, x5

x3, x5, x6

x3, x5, x6x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1,

x3 = 1, x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)

(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5

x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5

x1, x2, x5

x1, x2, x5x1, x2, x5 x3, x5, x6

x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1,

x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5x1, x2, x5

x1, x2, x5

x1, x2, x5 x3, x5, x6x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1,

x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5x1, x2, x5x1, x2, x5

x1, x2, x5

x3, x5, x6x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1, x1 = 1

Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

W
id

th

Instances

Track 1
Track 2

Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

W
id

th

Instances

Track 1
Track 2

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT
I C chosen per-instance based on the width of the tree decomposition

Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)

Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)

Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)

Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)

Preprocessing

New preprocessor implementation, with

1. Complete vivification (minimalize each clause, with SAT solver)

2. Redundant clause deletion

3. Equivalent variable merging (treewidth-aware)

4. Re-implementation of B+E [LLM16] (treewidth-aware)

Other Modifications

“Implicit BCP” disabled

LBD learned clause scoring scheme [AS09]

Probabilistic component caching [SRSM19]

Extension to weighted model counting via template parameters – easily
extensible to model counting over any semiring

Other Modifications

“Implicit BCP” disabled

LBD learned clause scoring scheme [AS09]

Probabilistic component caching [SRSM19]

Extension to weighted model counting via template parameters – easily
extensible to model counting over any semiring

The end

Thank you for your attention!

Bibliography

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

F. Bacchus, S. Dalmao, and T. Pitassi.

Algorithms and complexity results for #SAT and Bayesian inference.
In FOCS, pages 340–351. IEEE, 2003.

A. Darwiche.

Decomposable negation normal form.
J. ACM, 48(4):608–647, 2001.

J. Lagniez, E. Lonca, and P. Marquis.

Improving model counting by leveraging definability.
In IJCAI, pages 751–757. IJCAI/AAAI Press, 2016.

S. Sharma, S. Roy, M. Soos, and K. S. Meel.

GANAK: A scalable probabilistic exact model counter.
In IJCAI, pages 1169–1176. ijcai.org, 2019.

	Appendix

