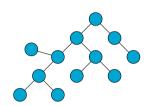
Tuukka Korhonen

27 February 2025

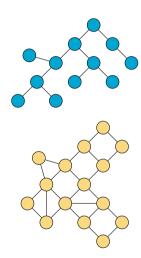
Plan

- 1. Introduction to treewidth
- 2. Background on computing treewidth
- 3. My work on computing treewidth

 Many algorithmic problems can be solved more efficiently on trees than on general graphs

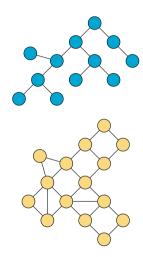


- Many algorithmic problems can be solved more efficiently on trees than on general graphs
- What if a graph is not a tree, but almost?

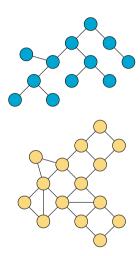


3/20

- Many algorithmic problems can be solved more efficiently on trees than on general graphs
- What if a graph is not a tree, but almost?
- The treewidth of a graph

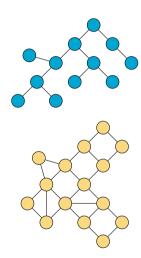


- Many algorithmic problems can be solved more efficiently on trees than on general graphs
- What if a graph is not a tree, but almost?
- The treewidth of a graph
- Trees have treewidth 1

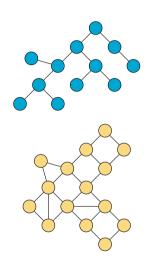


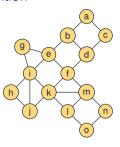
3/20

- Many algorithmic problems can be solved more efficiently on trees than on general graphs
- What if a graph is not a tree, but almost?
- The treewidth of a graph
- Trees have treewidth 1
- The example graph has treewidth 2

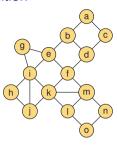


- Many algorithmic problems can be solved more efficiently on trees than on general graphs
- What if a graph is not a tree, but almost?
- The treewidth of a graph
- Trees have treewidth 1
- The example graph has treewidth 2
- Applications in graph algorithms, constraint solving, databases, probabilistic inference, simulating quantum computers...

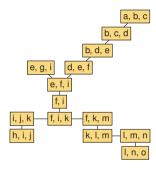




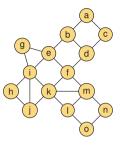
Graph G



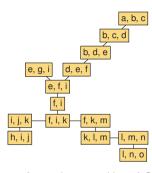
Graph G



A tree decomposition of G



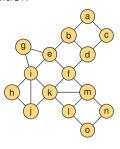
Graph G



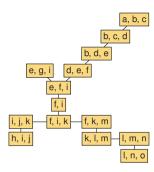
A tree decomposition of G

Tree decomposition:

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree



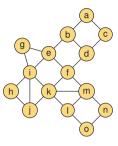
Graph G



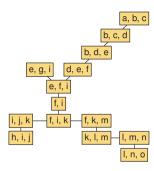
A tree decomposition of GWidth = 2

Tree decomposition:

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- Width = maximum bag size −1



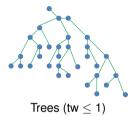
Graph *G*Treewidth 2



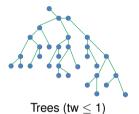
A tree decomposition of GWidth = 2

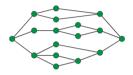
Tree decomposition:

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
 - Width = maximum bag size −1
 - Treewidth of G = the minimum width of a tree decomposition of G



Examples of graphs of small treewidth:

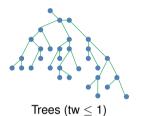


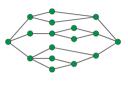


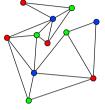
Series-parallel (tw \leq 2)

5/20

Examples of graphs of small treewidth:



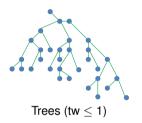


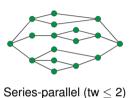


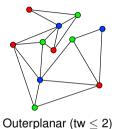
Series-parallel (tw \leq 2)

Outerplanar (tw \leq 2)

5/20

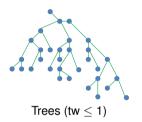


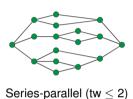




Examples of graphs of large treewidth:

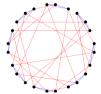
Cliques (tw = n - 1)



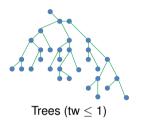


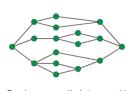
Outerplanar (tw ≤ 2)

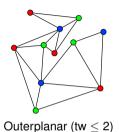
Examples of graphs of large treewidth:



Random graphs (tw = $\Theta(n)$)



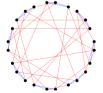




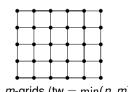
Series-parallel (tw \leq 2)

Examples of graphs of large treewidth:

Cliques (tw = n - 1)



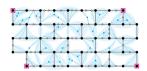
Random graphs (tw = $\Theta(n)$)



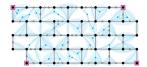
 $n \times m$ -grids (tw = min(n, m))

Treewidth was invented in different formulations by...

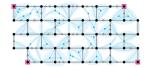
• Robertson & Seymour for their Graph Minors series, 1983–2012



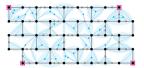
- Robertson & Seymour for their Graph Minors series, 1983–2012
- Bertele & Brioschi for solving optimization problems, 1972



- Robertson & Seymour for their Graph Minors series, 1983–2012
- Bertele & Brioschi for solving optimization problems, 1972
- Arnborg & Proskurowski for solving graph problems, 1989



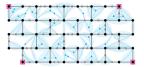
- Robertson & Seymour for their Graph Minors series, 1983–2012
- Bertele & Brioschi for solving optimization problems, 1972
- Arnborg & Proskurowski for solving graph problems, 1989
- Lauritzen & Spiegelhalter for probabilistic inference, 1988

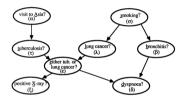




Treewidth was invented in different formulations by...

- Robertson & Seymour for their Graph Minors series, 1983–2012
- Bertele & Brioschi for solving optimization problems, 1972
- Arnborg & Proskurowski for solving graph problems, 1989
- Lauritzen & Spiegelhalter for probabilistic inference, 1988
- Mikkel Thorup for compiler optimization, 1997





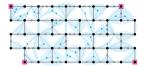
6/20

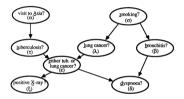
Treewidth was invented in different formulations by...

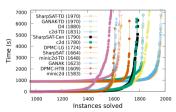
- Robertson & Seymour for their Graph Minors series, 1983–2012
- Bertele & Brioschi for solving optimization problems, 1972
- Arnborg & Proskurowski for solving graph problems, 1989
- Lauritzen & Spiegelhalter for probabilistic inference, 1988
- Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

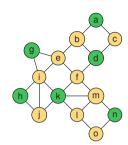
- Probabilistic inference
- Propositional model counting (#SAT)
- Database query evaluation
- Simulating quantum computers







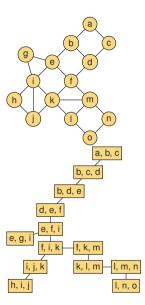
Treewidth: Example application



• Example: Solving the maximum independent set problem

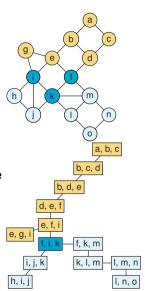
Treewidth: Example application

- Example: Solving the maximum independent set problem
- $\mathcal{O}(2^k \cdot n)$ time solution, where k width and n the graph size



Treewidth: Example application

- Example: Solving the maximum independent set problem
- $\mathcal{O}(2^k \cdot n)$ time solution, where k width and n the graph size
- Dynamic programming over states dp[t][S], where t is a node and S ⊆ bag(t)



Need the tree decomposition!

Need the tree decomposition!

• Central problem: Compute a tree decomposition of small width if one exists

Need the tree decomposition!

- Central problem: Compute a tree decomposition of small width if one exists
 - Approximation fine, but slows down the next step

Need the tree decomposition!

- Central problem: Compute a tree decomposition of small width if one exists
 - Approximation fine, but slows down the next step
 - Running time exponential in k fine

Need the tree decomposition!

- Central problem: Compute a tree decomposition of small width if one exists
 - Approximation fine, but slows down the next step
 - Running time exponential in k fine
- [Arnborg, Corneil & Proskurowski '87]:
 - Computing treewidth is NP-hard
 - ► Algorithm with running time $\mathcal{O}(n^{k+2})$

8/20

Need the tree decomposition!

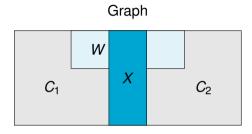
- Central problem: Compute a tree decomposition of small width if one exists
 - Approximation fine, but slows down the next step
 - Running time exponential in k fine
- [Arnborg, Corneil & Proskurowski '87]:
 - Computing treewidth is NP-hard
 - ▶ Algorithm with running time $\mathcal{O}(n^{k+2})$
- [Robertson & Seymour, Graph Minors 13, '87]:
 - ▶ 4-approximation algorithm with running time $\mathcal{O}(3^{3k} \cdot n^2)$
 - Introduced the "top-down" approach for computing tree decompositions

The Robertson-Seymour top-down approach

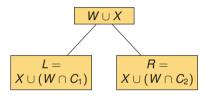


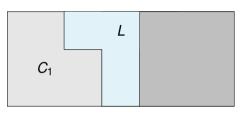
Tree decomposition

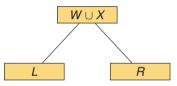
W

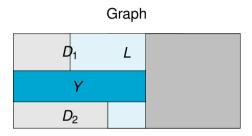


Balanced separator X with components C_1 and C_2

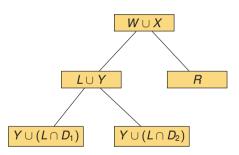


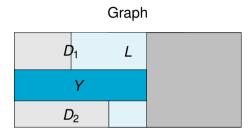






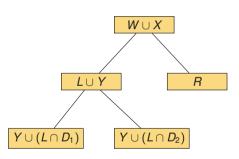
Balanced separator Y with components D_1 and D_2





Balanced separator Y with components D_1 and D_2

Continue recursively...



Reference	Appx. ratio	Running time
[Robertson & Seymour '87]	4	$\mathcal{O}(3^{3k} \cdot n^2)$
[Matoušek & Thomas '91]	6	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Lagergren '96]	8	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Reed '92]	8	$k^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '95]	$\mathcal{O}(\log n)$	poly(n)
[Amir '10]	4.5	$\mathcal{O}(2^{3k} \cdot n^2)$
[Amir '10]	$\mathcal{O}(\log k)$	$\mathcal{O}(k \log k \cdot n^4)$
[Feige, Hajiaghayi & Lee '08]	$\mathcal{O}(\sqrt{\log k})$	poly(n)
[Bodlaender et al. '16]	3	$2^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '16]	5	$2^{\mathcal{O}(k)} \cdot n$
[Fomin et al. '18]	$\mathcal{O}(k)$	$\mathcal{O}(k^7 \cdot n \log n)$
[Belbasi & Fürer '21]	5	$\mathcal{O}(2^{7k} \cdot n \log n)$

Reference	Appx. ratio	Running time
[Robertson & Seymour '87]	4	$\mathcal{O}(3^{3k} \cdot n^2)$
[Matoušek & Thomas '91]	6	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Lagergren '96]	8	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Reed '92]	8	$k^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '95]	$\mathcal{O}(\log n)$	poly(n)
[Amir '10]	4.5	$\mathcal{O}(2^{3k} \cdot n^2)$
[Amir '10]	$\mathcal{O}(\log k)$	$\mathcal{O}(k \log k \cdot n^4)$
[Feige, Hajiaghayi & Lee '08]	$\mathcal{O}(\sqrt{\log k})$	poly(n)
[Bodlaender et al. '16]	3	$2^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '16]	5	$2^{\mathcal{O}(k)} \cdot n$
[Fomin et al. '18]	$\mathcal{O}(k)$	$\mathcal{O}(k^7 \cdot n \log n)$
[Belbasi & Fürer '21]	5	$\mathcal{O}(2^{7k} \cdot n \log n)$

• Before 2021, all approximation algorithms for treewidth used this approach

Reference	Appx. ratio	Running time
[Robertson & Seymour '87]	4	$\mathcal{O}(3^{3k} \cdot n^2)$
[Matoušek & Thomas '91]	6	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Lagergren '96]	8	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Reed '92]	8	$k^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '95]	$\mathcal{O}(\log n)$	poly(n)
[Amir '10]	4.5	$\mathcal{O}(2^{3k} \cdot n^2)$
[Amir '10]	$\mathcal{O}(\log k)$	$\mathcal{O}(k \log k \cdot n^4)$
[Feige, Hajiaghayi & Lee '08]	$\mathcal{O}(\sqrt{\log k})$	poly(n)
[Bodlaender et al. '16]	3	$2^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '16]	5	$2^{\mathcal{O}(k)} \cdot n$
[Fomin et al. '18]	$\mathcal{O}(k)$	$\mathcal{O}(k^7 \cdot n \log n)$
[Belbasi & Fürer '21]	5	$\mathcal{O}(2^{7k} \cdot n \log n)$

- Before 2021, all approximation algorithms for treewidth used this approach
- Barrier at approximation ratio 3

10/20

Reference	Appx. ratio	Running time
[Robertson & Seymour '87]	4	$\mathcal{O}(3^{3k} \cdot n^2)$
[Matoušek & Thomas '91]	6	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Lagergren '96]	8	$k^{\mathcal{O}(k)} \cdot n \log^2 n$
[Reed '92]	8	$k^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '95]	$\mathcal{O}(\log n)$	poly(n)
[Amir '10]	4.5	$\mathcal{O}(2^{3k} \cdot n^2)$
[Amir '10]	$\mathcal{O}(\log k)$	$\mathcal{O}(k \log k \cdot n^4)$
[Feige, Hajiaghayi & Lee '08]	$\mathcal{O}(\sqrt{\log k})$	poly(n)
[Bodlaender et al. '16]	3	$2^{\mathcal{O}(k)} \cdot n \log n$
[Bodlaender et al. '16]	5	$2^{\mathcal{O}(k)} \cdot n$
[Fomin et al. '18]	$\mathcal{O}(k)$	$\mathcal{O}(k^7 \cdot n \log n)$
[Belbasi & Fürer '21]	5	$\mathcal{O}(2^{7k} \cdot n \log n)$

- Before 2021, all approximation algorithms for treewidth used this approach
- Barrier at approximation ratio 3
- Hard to implement in linear time

10/20

• State-of-the-art before 2021:

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - $\triangleright \mathcal{O}(\sqrt{\log k})$ -approximation in $\operatorname{poly}(n)$ time [Feige, Hajiaghayi & Lee '08]

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ $\mathcal{O}(\sqrt{\log k})$ -approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen '21)

There is a 2-approximation algorithm for treewidth with running time $2^{O(k)} \cdot n$

- State-of-the-art before 2021:
 - exact in $2^{O(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ $\mathcal{O}(\sqrt{\log k})$ -approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen '21)

There is a 2-approximation algorithm for treewidth with running time $2^{\mathcal{O}(k)} \cdot n$

A completely new approach

- State-of-the-art before 2021:
 - exact in $2^{\mathcal{O}(k^3)} \cdot n$ time [Bodlaender '96]
 - ▶ 3-approximation in $2^{\mathcal{O}(k)} \cdot n \log n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 5-approximation in $2^{\mathcal{O}(k)} \cdot n$ time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ $\mathcal{O}(\sqrt{\log k})$ -approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen '21)

There is a 2-approximation algorithm for treewidth with running time $2^{\mathcal{O}(k)} \cdot n$

- A completely new approach
 - Inspired by the proofs of [Thomas '90] and [Bellenbaum & Diestel '02] on "lean tree decompositions"

The Algorithm

The 2-approximation algorithm

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W

Output: A tree decomposition of G of width $\leq w - 1$ or the conclusion that $w \leq 2 \cdot \text{tw}(G) + 1$

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W

Output: A tree decomposition of G of width $\leq w - 1$ or the conclusion that $w \leq 2 \cdot \text{tw}(G) + 1$

- 1. If $w > 2 \cdot tw(G) + 1$ then T can be improved by a certain improvement operation
 - Decreases the number of largest bags and does not increase the width

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W

Output: A tree decomposition of G of width $\leq w - 1$ or the conclusion that $w \leq 2 \cdot \text{tw}(G) + 1$

- 1. If $w > 2 \cdot tw(G) + 1$ then T can be improved by a certain improvement operation
 - Decreases the number of largest bags and does not increase the width
- 2. To improve the width by one, $\Omega(n)$ improvement operations may be needed

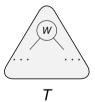
By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W

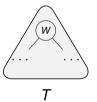
Output: A tree decomposition of G of width $\leq w - 1$ or the conclusion that $w \leq 2 \cdot \text{tw}(G) + 1$

- 1. If $w > 2 \cdot tw(G) + 1$ then T can be improved by a certain improvement operation
 - Decreases the number of largest bags and does not increase the width
- 2. To improve the width by one, $\Omega(n)$ improvement operations may be needed
 - Efficient implementation by amortized analysis of the improvements and dynamic programming over the tree decomposition

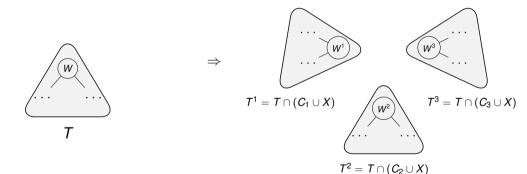
• Let W be the largest bag



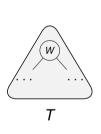
- Let W be the largest bag
- Take a separator X of G with a partition (X, C_1, C_2, C_3) of V(G), s.t. $|X \cup (W \cap C_i)| < |W|$ for all i

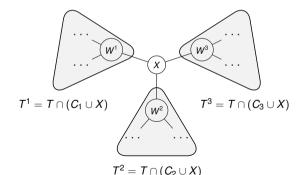


- Let W be the largest bag
- Take a separator X of G with a partition (X, C_1, C_2, C_3) of V(G), s.t. $|X \cup (W \cap C_i)| < |W|$ for all i
- For each i, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag B



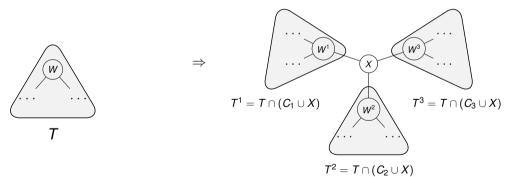
- Let W be the largest bag
- Take a separator X of G with a partition (X, C_1, C_2, C_3) of V(G), s.t. $|X \cup (W \cap C_i)| < |W|$ for all i
- For each i, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag B
- The following is almost a tree decomposition of *G*:





Tuukka Korhonen Computing Treewidth 14/20

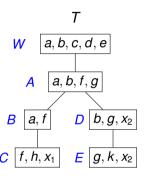
- Let W be the largest bag
- Take a separator X of G with a partition (X, C_1, C_2, C_3) of V(G), s.t. $|X \cup (W \cap C_i)| < |W|$ for all i
- For each i, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag B
- The following is almost a tree decomposition of *G*:



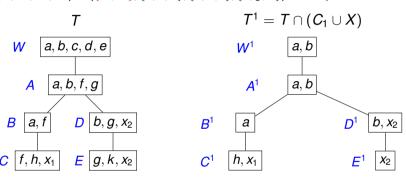
Except that vertices in X may violate the connectedness condition

• Fix the connectedness condition by inserting vertices of X to bags

Fix the connectedness condition by inserting vertices of X to bags

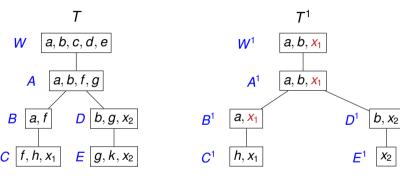


Fix the connectedness condition by inserting vertices of X to bags



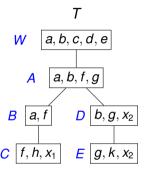
Fix the connectedness condition by inserting vertices of X to bags

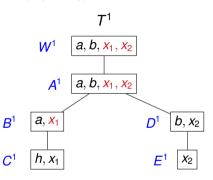
Example: Let $(X, C_1, C_2, C_3) = (\{x_1, x_2\}, \{a, b, h\}, \{c, d, f\}, \{e, g, k\})$ be the partition:



• Insert x_1 to B^1 , A^1 , and W^1

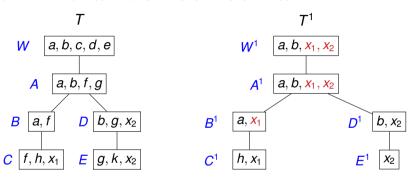
Fix the connectedness condition by inserting vertices of X to bags





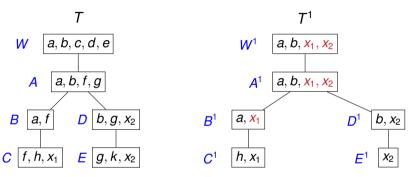
- Insert x_1 to B^1 , A^1 , and W^1
- Insert x_2 to A^1 and W^1

Fix the connectedness condition by inserting vertices of X to bags



- Insert x_1 to B^1 , A^1 , and W^1
- Insert x_2 to A^1 and W^1
- Now $X \subseteq W^1$ and T^1 satisfies the connectedness condition

Fix the connectedness condition by inserting vertices of X to bags



- Insert x_1 to B^1 , A^1 , and W^1
- Insert x_2 to A^1 and W^1
- Now $X \subseteq W^1$ and T^1 satisfies the connectedness condition
- ⇒ The whole construction satisfies the connectedness condition

The main insight

Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Lemma

If (X, C_1, C_2, C_3) is a good separation, then $|B^i| \leq |B|$ for all bags B and all i

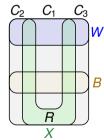
Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Lemma

If (X, C_1, C_2, C_3) is a good separation, then $|B^i| \leq |B|$ for all bags B and all i

• Suppose that i = 1 and $|B^1| > |B|$



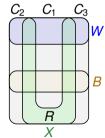
Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Lemma

If (X, C_1, C_2, C_3) is a good separation, then $|B^i| \leq |B|$ for all bags B and all i

- Suppose that i = 1 and $|B^1| > |B|$
- $\Rightarrow |R| > |B \cap (C_2 \cup C_3)|$



16/20

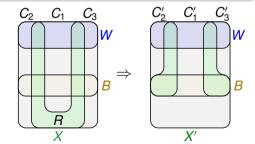
Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Lemma

If (X, C_1, C_2, C_3) is a good separation, then $|B^i| \leq |B|$ for all bags B and all i

- Suppose that i = 1 and $|B^1| > |B|$
- $\Rightarrow |R| > |B \cap (C_2 \cup C_3)|$
- Take a separation with $X' = (X \setminus R) \cup (B \cap (C_2 \cup C_3))$



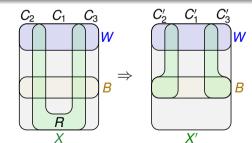
Definition (Good separation)

A separation (X, C_1, C_2, C_3) is a *good separation* if (1) $|X \cup (W \cap C_i)| < |W|$ for all i, and (2) among those, we minimize |X|.

Lemma

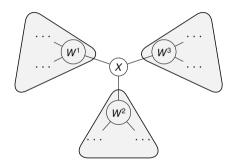
If (X, C_1, C_2, C_3) is a good separation, then $|B^i| \leq |B|$ for all bags B and all i

- Suppose that i = 1 and $|B^1| > |B|$
- $\Rightarrow |R| > |B \cap (C_2 \cup C_3)|$
- Take a separation with $X' = (X \setminus R) \cup (B \cap (C_2 \cup C_3))$
- $\Rightarrow |X'| < |X|$ so this contradicts the minimality



We have shown:

- Root bag W replaced by four smaller bags, W¹, W², W³, and X
- Width did not increase

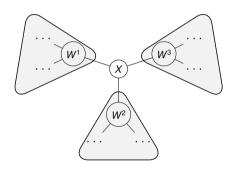


We have shown:

- Root bag W replaced by four smaller bags, W¹, W², W³, and X
- Width did not increase

Should also show:

Number of bags of size | W | decreases

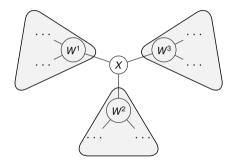


We have shown:

- Root bag W replaced by four smaller bags, W¹, W², W³, and X
- Width did not increase

Should also show:

- Number of bags of size | W | decreases
- Good separations can be found efficiently

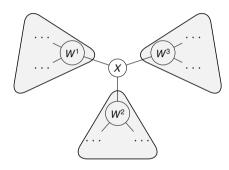


We have shown:

- Root bag W replaced by four smaller bags, W¹, W², W³, and X
- Width did not increase

Should also show:

- Number of bags of size | W | decreases
- Good separations can be found efficiently
- *n* iterations of improvements can be implemented in total $2^{\mathcal{O}(w)}n$ time



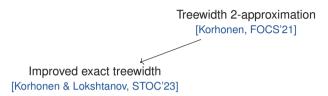
Final remarks

Final remarks

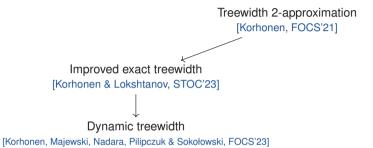
Follow-up work

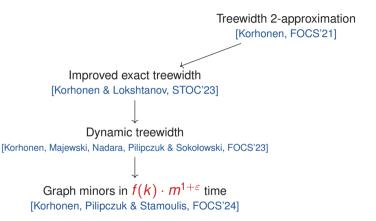
Treewidth 2-approximation [Korhonen, FOCS'21]

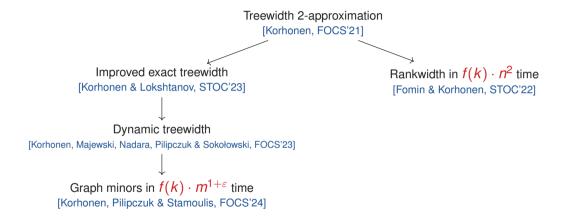
Follow-up work

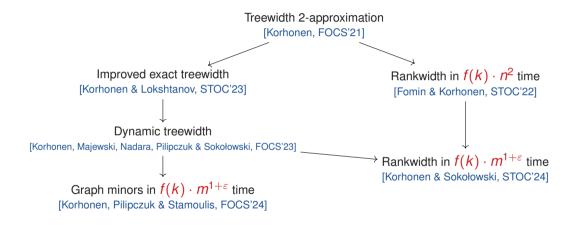


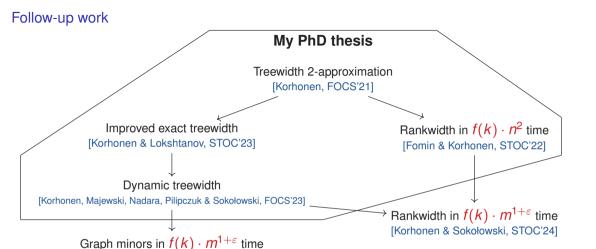
Follow-up work











[Korhonen, Pilipczuk & Stamoulis, FOCS'24]

• Treewidth has applications in many areas of computer science

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing
 - Approximate, exact, and dynamic computing of treewidth, also rankwidth and graph minors

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing
 - Approximate, exact, and dynamic computing of treewidth, also rankwidth and graph minors

Future:

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing
 - Approximate, exact, and dynamic computing of treewidth, also rankwidth and graph minors

Future:

• End goal: $2^{O(k)}n$ time exact algorithm for treewidth?

20/20

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing
 - Approximate, exact, and dynamic computing of treewidth, also rankwidth and graph minors

Future:

- End goal: $2^{\mathcal{O}(k)}n$ time exact algorithm for treewidth?
- Currently working on:
 - Improved dynamic treewidth
 - Preprocessing for treewidth

20/20

- Treewidth has applications in many areas of computer science
- My PhD thesis: New paradigm in treewidth computing
 - Approximate, exact, and dynamic computing of treewidth, also rankwidth and graph minors

Future:

- End goal: $2^{O(k)}n$ time exact algorithm for treewidth?
- Currently working on:
 - Improved dynamic treewidth
 - Preprocessing for treewidth

Thank you!

