Computing Treewidth

Tuukka Korhonen

UNIVERSITY OF
COPENHAGEN

27 February 2025

Tuukka Korhonen Computing Treewidth

1/20

Plan

1. Introduction to treewidth
2. Background on computing treewidth

3. My work on computing treewidth

Tuukka Korhonen Computing Treewidth

Chandelier
‘Tree

Treewidth: Introduction

@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs

Tuukka Korhonen Computing Treewidth

Treewidth: Introduction
@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs

o What if a graph is not a tree, but almost?

Tuukka Korhonen Computing Treewidth

3/20

Treewidth: Introduction

@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs

o What if a graph is not a tree, but almost?

e The treewidth of a graph

Tuukka Korhonen Computing Treewidth

3/20

Treewidth: Introduction

@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs

o What if a graph is not a tree, but almost?
e The treewidth of a graph

@ Trees have treewidth 1

Tuukka Korhonen Computing Treewidth

3/20

Treewidth: Introduction

@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs

o What if a graph is not a tree, but almost?
e The treewidth of a graph
o Trees have treewidth 1

@ The example graph has treewidth 2

Tuukka Korhonen Computing Treewidth

3/20

Treewidth: Introduction
@ Many algorithmic problems can be solved more efficiently on
trees than on general graphs
o What if a graph is not a tree, but almost?
e The treewidth of a graph
o Trees have treewidth 1
@ The example graph has treewidth 2

e Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth

3/20

Treewidth: Definition

Tuukka Korhonen Computing Treewidth

Treewidth: Definition

Graph G A tree decomposition of G

Tuukka Korhonen Computing Treewidth

Treewidth: Definition

Graph G A tree decomposition of G

Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

Tuukka Korhonen Computing Treewidth

Treewidth: Definition

Graph G A tree decomposition of G

3 Width = 2
Tree decomposition:

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

- Width = maximum bag size —1

Tuukka Korhonen Computing Treewidth

Treewidth: Definition

Graph G A tree decomposition of G
Treewidth 2 Width = 2
Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

- Width = maximum bag size —1
- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4/20

Treewidth of graphs
Examples of graphs of small treewidth:

)

Trees (tw < 1)

Tuukka Korhonen Computing Treewidth

Treewidth of graphs
Examples of graphs of small treewidth:

)

Trees (tw < 1) Series-parallel (tw < 2)

Tuukka Korhonen Computing Treewidth

Treewidth of graphs
Examples of graphs of small treewidth:

Ay an P

Trees (t Series-parallel (tw < 2) Outerplanar (tw < 2)

Tuukka Korhonen Computing Treewidth

5/20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw < 1) Series-parallel (tw < 2)

Cliques (tw = n—1)

Outerplanar (tw < 2)

5/20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw < 1) Series-parallel (tw < 2)

Cliques (tw = n—1) Random graphs (tw = ©(n))

Outerplanar (tw < 2)

5/20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw < 1) Series-parallel (tw < 2) Outerplanar (tw < 2)

Cliques (tw = n—1) Random graphs (tw = ©(n)) 1> m-grids (tw = min(n, m))

Tuukka Korhonen Computing Treewidth

5/20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Tuukka Korhonen Computing Treewidth

Treewidth: History and Applications

Treewidth was invented in different formulations by... K/NAZA N _F
@ Robertson & Seymour for their Graph Minors series, 19832012 MNANFVAL A

Tuukka Korhonen Computing Treewidth

Treewidth: History and Applications

Treewidth was invented in different formulations by...
@ Robertson & Seymour for their Graph Minors series, 1983-2012
@ Bertele & Brioschi for solving optimization problems, 1972

Tuukka Korhonen Computing Treewidth

6/20

Treewidth: History and Applications

Treewidth was invented in different formulations by...
@ Robertson & Seymour for their Graph Minors series, 1983-2012
@ Bertele & Brioschi for solving optimization problems, 1972
@ Arnborg & Proskurowski for solving graph problems, 1989

Tuukka Korhonen Computing Treewidth

6/20

Treewidth: History and Applications

Treewidth was invented in different formulations by...
@ Robertson & Seymour for their Graph Minors series, 1983-2012
@ Bertele & Brioschi for solving optimization problems, 1972
@ Arnborg & Proskurowski for solving graph problems, 1989
@ Lauritzen & Spiegelhalter for probabilistic inference, 1988

Tuukka Korhonen Computing Treewidth

6/20

Treewidth: History and Applications

Treewidth was invented in different formulations by...
@ Robertson & Seymour for their Graph Minors series, 1983-2012
@ Bertele & Brioschi for solving optimization problems, 1972
@ Arnborg & Proskurowski for solving graph problems, 1989
@ Lauritzen & Spiegelhalter for probabilistic inference, 1988
@ Mikkel Thorup for compiler optimization, 1997

Tuukka Korhonen Computing Treewidth

6/20

Treewidth: History and Applications

Treewidth was invented in different formulations by...
@ Robertson & Seymour for their Graph Minors series, 1983-2012
@ Bertele & Brioschi for solving optimization problems, 1972
@ Arnborg & Proskurowski for solving graph problems, 1989
@ Lauritzen & Spiegelhalter for probabilistic inference, 1988
@ Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:
@ Probabilistic inference
@ Propositional model counting (#SAT)

@ Database query evaluation
@ Simulating quantum computers

Time (s)

= T
SharpSAT-TD (1970) '

| GANAKTD (1970) R
]
[
H

(1880)
c2d-TD (1831)
['SharpsAT-Cen (1790) —#—

c2d (1780)
[DPMC-LG (1724) @
SharpSAT (1664)
[~ minic2d-TD (1648)
GANAK (1623)
I~ DPMC-HTB (1609)
minic2d (1583)

1000 1200 1400 1600 1800 2000
Instances solved

6/20

Treewidth: Example application

o Example: Solving the maximum independent set problem

Tuukka Korhonen Computing Treewidth

Treewidth: Example application

o Example: Solving the maximum independent set problem

e O(2K . n) time solution, where k width and n the graph size

Tuukka Korhonen Computing Treewidth

Treewidth: Example application

o Example: Solving the maximum independent set problem
e O(2K . n) time solution, where k width and n the graph size

@ Dynamic programming over states dp[{][S], where t is a node
and S C bag(f)

Tuukka Korhonen Computing Treewidth

Computing treewidth

Need the tree decomposition!

Tuukka Korhonen Computing Treewidth

Computing treewidth

Need the tree decomposition!

@ Central problem: Compute a tree decomposition of small width if one exists

Tuukka Korhonen Computing Treewidth

Computing treewidth

Need the tree decomposition!

@ Central problem: Compute a tree decomposition of small width if one exists
» Approximation fine, but slows down the next step

Tuukka Korhonen Computing Treewidth

8/20

Computing treewidth

Need the tree decomposition!

@ Central problem: Compute a tree decomposition of small width if one exists
» Approximation fine, but slows down the next step

» Running time exponential in k fine

Tuukka Korhonen Computing Treewidth

8/20

Computing treewidth

Need the tree decomposition!

@ Central problem: Compute a tree decomposition of small width if one exists
» Approximation fine, but slows down the next step

» Running time exponential in k fine

@ [Arnborg, Corneil & Proskurowski '87]:
» Computing treewidth is NP-hard

> Algorithm with running time O(n**2)

Tuukka Korhonen Computing Treewidth

8/20

Computing treewidth

Need the tree decomposition!

@ Central problem: Compute a tree decomposition of small width if one exists
» Approximation fine, but slows down the next step

» Running time exponential in k fine

@ [Arnborg, Corneil & Proskurowski '87]:
» Computing treewidth is NP-hard

> Algorithm with running time O(n**2)

@ [Robertson & Seymour, Graph Minors 13, ’87]:
> 4-approximation algorithm with running time O(3%% - n?)

» Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth

8/20

The Robertson-Seymour top-down approach

Graph

Tuukka Korhonen Computing Treewidth

The Robertson-Seymour top-down approach

Graph

Tree decomposition

w

Tuukka Korhonen Computing Treewidth

The Robertson-Seymour top-down approach

Graph

w

Cy

C

Balanced separator X with components C; and C>

Tree decomposition

Wwu X

L:
XU(WnCr)

H:
XU(WnG)

Tuukka Korhonen

Computing Treewidth

9/20

The Robertson-Seymour top-down approach

Graph

Tree decomposition

L

Cy

Tuukka Korhonen Computing Treewidth

The Robertson-Seymour top-down approach

Graph

4 L

D»

Balanced separator Y with components D; and D

Tree decomposition

[Yu(Lnby|

[Yu(LnDy)|

Tuukka Korhonen Computing Treewidth

9/20

The Robertson-Seymour top-down approach

Graph

4 L

D>

Balanced separator Y with components D; and D

Tree decomposition

[Yu(Lnby|

[Yu(LnDy)|

Continue recursively...

Tuukka Korhonen Computing Treewidth

9/20

Influence of the top-down approach

Reference Appx. ratio | Running time
[Robertson & Seymour '87] 4 O3 .)
[Matouek & Thomas '91] 6 k9" . nlog?n
[Lagergren '96] 8 kM . nlog? n
[Reed '92] 8 k°®) . nlogn
[Bodlaender et al. '95] O(log n) poly(n)
[Amir *10] 45 0(2% . ?)
[Amir *10] O(logk) | O(klogk-n*)
[Feige, Hajiaghayi & Lee '08] | O(4/log k) poly(n)
[Bodlaender et al. '16] 3 2°0) . nlogn
[Bodlaender et al. *16] 5 200 . n
[Fomin et al. ’18] O(k) O(K” - nlog n)
[Belbasi & Firer '21] 5 02 - nlog n)

Tuukka Korhonen Computing Treewidth

Influence of the top-down approach

Reference Appx. ratio | Running time
[Robertson & Seymour '87] 4 O3 .)
[Matousek & Thomas '91] 6 k®® . nlog? n
[Lagergren '96] 8 kM . nlog? n
[Reed '92] 8 KO®) . nlog n
[Bodlaender et al. '95] O(log n) poly(n)
[Amir *10] 45 0(2% . ?)
[Amir *10] O(logk) | O(klogk-n*)
[Feige, Hajiaghayi & Lee '08] | O(4/log k) poly(n)
[Bodlaender et al. '16] 3 2°0) . nlogn
[Bodlaender et al. *16] 5 200 . n
[Fomin et al. 18] O(k) O(k” - nlog n)
[Belbasi & Fiirer '21] 5 O(27% . nlog n)

o Before 2021, all approximation algorithms for treewidth used this approach

Tuukka Korhonen Computing Treewidth

10/20

Influence of the top-down approach

Reference Appx. ratio | Running time
[Robertson & Seymour '87] 4 O3 .)
[Matousek & Thomas '91] 6 k®® . nlog? n
[Lagergren '96] 8 kM . nlog? n
[Reed '92] 8 k°®) . nlogn
[Bodlaender et al. '95] O(log n) poly(n)
[Amir *10] 45 0(2% . ?)
[Amir *10] O(logk) | O(klogk-n*)
[Feige, Hajiaghayi & Lee '08] | O(4/log k) poly(n)
[Bodlaender et al. '16] 3 2°0) . nlogn
[Bodlaender et al. '16] 5 200 . p
[Fomin et al. 18] O(k) O(k” - nlog n)
[Belbasi & Fiirer '21] 5 O(27% . nlog n)

o Before 2021, all approximation algorithms for treewidth used this approach
o Barrier at approximation ratio 3

Tuukka Korhonen Computing Treewidth 10/20

Influence of the top-down approach

Reference Appx. ratio | Running time
[Robertson & Seymour '87] 4 O3 .)
[Matousek & Thomas '91] 6 k®® . nlog? n
[Lagergren '96] 8 kM . nlog? n
[Reed '92] 8 k°®) . nlogn
[Bodlaender et al. '95] O(log n) poly(n)
[Amir *10] 45 0(2% . ?)
[Amir *10] O(logk) | O(klogk-n*)
[Feige, Hajiaghayi & Lee '08] | O(4/log k) poly(n)
[Bodlaender et al. '16] 3 2°0) . nlogn
[Bodlaender et al. '16] 5 200 . p
[Fomin et al. 18] O(k) O(k” - nlog n)
[Belbasi & Fiirer '21] 5 02 - nlog n)

o Before 2021, all approximation algorithms for treewidth used this approach
o Barrier at approximation ratio 3
e Hard to implement in linear time

Tuukka Korhonen Computing Treewidth 10/20

My contribution

o State-of-the-art before 2021:

Tuukka Korhonen Computing Treewidth

My contribution

o State-of-the-art before 2021:
» exact in 2°(<°) . 1 time [Bodlaender '96]

Tuukka Korhonen Computing Treewidth

My contribution
o State-of-the-art before 2021:

. 3 . ,
» exactin 29(5°) . n time [Bodlaender '96]
» 3-approximation in 20(k) . p log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk 16]

Tuukka Korhonen Computing Treewidth

My contribution

o State-of-the-art before 2021:

. 3 . ,
» exact in 29(5°) . n time [Bodlaender '96]
» 3-approximation in 2°(%) . nlog n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
pp g
» 5-approximation in 2°() . n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
pp

Tuukka Korhonen Computing Treewidth 11/20

My contribution

o State-of-the-art before 2021:

exact in 2°(%°) . n time [Bodlaender '96]

3-approximation in 20(k) . p log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk 16]
5-approximation in 20(K) . ntime [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
O(+/log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

v

v

v

v

Tuukka Korhonen Computing Treewidth 11/20

My contribution

o State-of-the-art before 2021:
» exact in 2°(°) . 1 time [Bodlaender '96]
» 3-approximation in 20(k) . p log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]
» 5-approximation in 20(K) . ntime [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
> O(\/@)-approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen °21) J

There is a 2-approximation algorithm for treewidth with running time 2009 15

Tuukka Korhonen Computing Treewidth 11/20

My contribution

o State-of-the-art before 2021:
» exact in 2°(°) . 1 time [Bodlaender '96]
» 3-approximation in 20(k) . p log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]
» 5-approximation in 20(K) . ntime [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
> O(\/@)-approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen °21) J

There is a 2-approximation algorithm for treewidth with running time 2009 15

@ A completely new approach

Tuukka Korhonen Computing Treewidth 11/20

My contribution

o State-of-the-art before 2021:
» exact in 2°(°) . 1 time [Bodlaender '96]
» 3-approximation in 20(k) . p log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk *16]
» 5-approximation in 20(K) . ntime [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
> O(\/@)-approximation in poly(n) time [Feige, Hajiaghayi & Lee '08]

Theorem (Korhonen °21) J

There is a 2-approximation algorithm for treewidth with running time 2009 15

@ A completely new approach

» Inspired by the proofs of [Thomas '90] and [Bellenbaum & Diestel '02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11/20

The Algorithm

The 2-approximation algorithm

Tuukka Korhonen Computing Treewidth

Outline

Computing Treewidth

Outline

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W
Output: A tree decomposition of G of width < W — 1 or the conclusion that w < 2 - tw(G) + 1

Running time: 2°(")n

Tuukka Korhonen Computing Treewidth 13/20

Outline

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W
Output: A tree decomposition of G of width < W — 1 or the conclusion that w < 2 - tw(G) + 1

Running time: 2°(")n

1. 1fw > 2 -tw(G) + 1 then T can be improved by a certain improvement operation

» Decreases the number of largest bags and does not increase the width

Tuukka Korhonen Computing Treewidth 13/20

Outline

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W
Output: A tree decomposition of G of width < W — 1 or the conclusion that w < 2 - tw(G) + 1

Running time: 2°(")n

1. 1fw > 2 -tw(G) + 1 then T can be improved by a certain improvement operation

» Decreases the number of largest bags and does not increase the width

2. To improve the width by one, £2(17) improvement operations may be needed

Tuukka Korhonen Computing Treewidth 13/20

Outline

By a self-reduction technique of [Bodlaender '96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width W
Output: A tree decomposition of G of width < W — 1 or the conclusion that w < 2 - tw(G) + 1

Running time: 2°(")n

1. 1fw > 2 -tw(G) + 1 then T can be improved by a certain improvement operation

» Decreases the number of largest bags and does not increase the width

2. To improve the width by one, £2(17) improvement operations may be needed

» Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13/20

The improvement operation
@ Let W be the largest bag

Tuukka Korhonen Computing Treewidth

The improvement operation
@ Let W be the largest bag

@ Take a separator X of G with a partition (X, C1, Cs, C3) of V(G), s.t. [X U (W N C;)| < |W|forall i

Tuukka Korhonen Computing Treewidth

The improvement operation
@ Let W be the largest bag

@ Take a separator X of G with a partition (X, C, Cz, C3) of V(G), s.t. [X U (W N C;)| < |W/|forall i
@ For each i, obtain a tree decomposition T/ = T N (C; U X) by setting B' = B (C; U X) for each bag B

Tuukka Korhonen Computing Treewidth 14/20

The improvement operation
@ Let W be the largest bag

@ Take a separator X of G with a partition (X, C, Cz, C3) of V(G), s.t. [X U (W N C;)| < |W/|forall i
@ For each i, obtain a tree decomposition T/ = T N (C; U X) by setting B' = B (C; U X) for each bag B

@ The following is almost a tree decomposition of G:

Tuukka Korhonen Computing Treewidth 14/20

The improvement operation
@ Let W be the largest bag

@ Take a separator X of G with a partition (X, C, Cz, C3) of V(G), s.t. [X U (W N C;)| < |W/|forall i
@ For each i, obtain a tree decomposition T/ = T N (C; U X) by setting B' = B (C; U X) for each bag B

@ The following is almost a tree decomposition of G:

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14/20

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of X to bags

Tuukka Korhonen Computing Treewidth

Fixing a tree decomposition
@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

B laf| Dby x]

Clf.hx| E|g kx|

Tuukka Korhonen Computing Treewidth 15/20

Fixing a tree decomposition

@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

T' = TN(CiUX)

B |af| D|bg x| B!

f.hxi| E|g.k x| c'

C

Tuukka Korhonen Computing Treewidth 15/20

Fixing a tree decomposition
@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

B |af| D|bg x| B!

f.hxi| E|g.k x| c'

C

@ Insert x; to B', A", and W'

Tuukka Korhonen Computing Treewidth 15/20

Fixing a tree decomposition
@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

B |af| D|bg x| B!

f.hxi| E|g.k x| c'

C

@ Insert x; to B', A", and W'
@ Insert x> to A' and W'

Tuukka Korhonen Computing Treewidth 15/20

Fixing a tree decomposition
@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

B |af| D|bg x| B!

f.hxi| E|g.k x| c'

C

@ Insert x; to B', A", and W'
@ Insert x> to A' and W'
@ Now X C W' and T' satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15/20

Fixing a tree decomposition
@ Fix the connectedness condition by inserting vertices of X to bags
Example: Let (X, Cy, Co, C3) = ({x1, x2},{a, b, h},{c, d, f},{e, g, k}) be the partition:

B |af| D|bg x| B!

f.hxi| E|g.k x| c'

C

@ Insert x; to B', A", and W'

@ Insert xo to A' and W'

@ Now X C W' and T satisfies the connectedness condition
= The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15/20

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,
we minimize | X]|.

Tuukka Korhonen Computing Treewidth

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,
we minimize | X]|.

Lemma

If (X, Cy, Ca, C3) is a good separation, then |B'| < | B for all bags B and all i

Tuukka Korhonen Computing Treewidth

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,

we minimize | X]|.

Lemma

If (X, Cy, Ca, C3) is a good separation, then |B'| < | B for all bags B and all i

C C G
P — 1
@ Suppose that i =1 and |B'| > |B] L)
f D
N- Y
—/
\i&
X

16/20

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,

we minimize | X]|.

Lemma

If (X, Cy, Ca, C3) is a good separation, then |B'| < | B for all bags B and all i

C C G
@ Suppose thati = 1and |B'| > |B] L J
= |R| > |BN(CoU C3)|
f D
N- Y
__/
\i&
X

16/20

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,
we minimize | X]|.

Lemma

If (X, Cy, Ca, C3) is a good separation, then |B'| < | B for all bags B and all i

C. Ci GCs C, C, Cj

0 W G W
@ Suppose thati = 1and |B'| > |B] L W . |w
= Rl >[BN(CoU Gs)l N J L
@ Take a separation with X’ = (X \ R) U (BN (C2U Cs)) : B [1B

—_/
\;L/R
X X

Tuukka Korhonen Computing Treewidth 16/20

The main insight

Definition (Good separation)

A separation (X, Cy, Co, C3) is a good separation if (1) [X U (W N C;)| < |W| for all i, and (2) among those,
we minimize | X]|.

Lemma

If (X, Cy, Ca, C3) is a good separation, then |B'| < | B for all bags B and all i

C Ci G C, C; C
YT)
@ Suppose thati = 1and |B'| > |B] L W . |w
= |R > |BN (C2U G3)| J L
: : ! N = r R
@ Take a separation with X' = (X \ R) U (BN (Cz2 U C3)) B B
= |X’| < |X] so this contradicts the minimality L/R
X X

Tuukka Korhonen Computing Treewidth 16/20

Outlook

We have shown:

o Root bag W replaced by four smaller bags,
w1, W2, W8, and X

@ Width did not increase @

Tuukka Korhonen Computing Treewidth 17/20

Outlook

We have shown:

o Root bag W replaced by four smaller bags,
w1, W2, W8, and X

@ Width did not increase @

Should also show:
o Number of bags of size | /| decreases @

Tuukka Korhonen Computing Treewidth 17/20

Outlook

We have shown:

o Root bag W replaced by four smaller bags,
w1, W2, W8, and X

@ Width did not increase @

Should also show:
o Number of bags of size | /| decreases @

o Good separations can be found efficiently

Tuukka Korhonen Computing Treewidth 17/20

Outlook

We have shown:

o Root bag W replaced by four smaller bags,
w1, W2, W8, and X

@ Width did not increase @

Should also show:
o Number of bags of size | /| decreases @
o Good separations can be found efficiently

e n iterations of improvements can be
implemented in total 2°(") 1 time

Tuukka Korhonen Computing Treewidth 17/20

Final remarks

Final remarks

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

|

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokotowski, FOCS’23]

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

|

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokotowski, FOCS’23]

|

Graph minors in f(k) - m'*< time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

T

Improved exact treewidth Rankwidth in f(k) - n? time
[Korhonen & Lokshtanov, STOC'23] [Fomin & Korhonen, STOC'22]

|

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokotowski, FOCS’23]

|

Graph minors in f(k) - m'*< time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Tuukka Korhonen Computing Treewidth

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

T

Improved exact treewidth Rankwidth in f(k) - n? time
[Korhonen & Lokshtanov, STOC'23] [Fomin & Korhonen, STOC'22]

|

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokotowski, FOCS’23]
| > Rankwidth in f(k) - m'*< time
[Korhonen & Sokotowski, STOC'24]
Graph minors in f(k) - m'*< time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Tuukka Korhonen Computing Treewidth

Follow-up work

My PhD thesis

Treewidth 2-approximation
[Korhonen, FOCS’21]

T

Improved exact treewidth Rankwidth in (k) - n® time
[Fomin & Korhonen, STOC’22]

[Korhonen & Lokshtanov, STOC’23]

|

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokotowski, FOCS’23]
|

Graph minors in f(k) - m'*< time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Tuukka Korhonen Computing Treewidth

Rankwidth in f(k) - m'*< time
+ [Korhonen & Sokotowski, STOC’24]

19/20

Conclusion

o Treewidth has applications in many areas of computer science

Tuukka Korhonen Computing Treewidth 20/20

Conclusion

o Treewidth has applications in many areas of computer science

o My PhD thesis: New paradigm in treewidth computing

Tuukka Korhonen Computing Treewidth 20/20

Conclusion

o Treewidth has applications in many areas of computer science
o My PhD thesis: New paradigm in treewidth computing

» Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Tuukka Korhonen Computing Treewidth 20/20

Conclusion

o Treewidth has applications in many areas of computer science
o My PhD thesis: New paradigm in treewidth computing
» Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

Tuukka Korhonen Computing Treewidth 20/20

Conclusion
o Treewidth has applications in many areas of computer science

o My PhD thesis: New paradigm in treewidth computing

» Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

e End goal: 2°(%) n time exact algorithm for treewidth?

Tuukka Korhonen Computing Treewidth 20/20

Conclusion

e Treewidth has applications in many areas of computer science
o My PhD thesis: New paradigm in treewidth computing
» Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors
Future:
e End goal: 2°(%) n time exact algorithm for treewidth?

@ Currently working on:
» Improved dynamic treewidth
» Preprocessing for treewidth

Tuukka Korhonen Computing Treewidth 20/20

Conclusion

e Treewidth has applications in many areas of computer science
o My PhD thesis: New paradigm in treewidth computing
» Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors
Future:
e End goal: 2°(%) n time exact algorithm for treewidth?

@ Currently working on:
» Improved dynamic treewidth
» Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20/20

