
Computing Treewidth

Tuukka Korhonen

27 February 2025

Tuukka Korhonen Computing Treewidth 1 / 20

Plan

1. Introduction to treewidth

2. Background on computing treewidth

3. My work on computing treewidth

Tuukka Korhonen Computing Treewidth 2 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Introduction

Many algorithmic problems can be solved more efficiently on
trees than on general graphs

What if a graph is not a tree, but almost?

The treewidth of a graph

Trees have treewidth 1

The example graph has treewidth 2

Applications in graph algorithms, constraint solving, databases,
probabilistic inference, simulating quantum computers...

Tuukka Korhonen Computing Treewidth 3 / 20

Treewidth: Definition
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree

- Width = maximum bag size −1
- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4 / 20

Treewidth: Definition
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2
Tree decomposition:

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree

- Width = maximum bag size −1
- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4 / 20

Treewidth: Definition
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2

Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree

- Width = maximum bag size −1
- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4 / 20

Treewidth: Definition
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree

- Width = maximum bag size −1

- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4 / 20

Treewidth: Definition
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G
Treewidth 2

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

Tree decomposition:
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree

- Width = maximum bag size −1
- Treewidth of G = the minimum width of a tree decomposition of G

Tuukka Korhonen Computing Treewidth 4 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1)

Series-parallel (tw ≤ 2)
Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1) Random graphs (tw = Θ(n)) n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2)

Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1) Random graphs (tw = Θ(n)) n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1) Random graphs (tw = Θ(n)) n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1)

Random graphs (tw = Θ(n)) n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1) Random graphs (tw = Θ(n))

n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth of graphs
Examples of graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) Outerplanar (tw ≤ 2)

Examples of graphs of large treewidth:

Cliques (tw = n − 1) Random graphs (tw = Θ(n))
n ×m-grids (tw = min(n,m))

Tuukka Korhonen Computing Treewidth 5 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: History and Applications

Treewidth was invented in different formulations by...

Robertson & Seymour for their Graph Minors series, 1983–2012

Bertele & Brioschi for solving optimization problems, 1972

Arnborg & Proskurowski for solving graph problems, 1989

Lauritzen & Spiegelhalter for probabilistic inference, 1988

Mikkel Thorup for compiler optimization, 1997

Modern practical applications include at least:

Probabilistic inference

Propositional model counting (#SAT)

Database query evaluation

Simulating quantum computers

Tuukka Korhonen Computing Treewidth 6 / 20

Treewidth: Example application

Example: Solving the maximum independent set problem

O(2k · n) time solution, where k width and n the graph size

Dynamic programming over states dp[t][S], where t is a node
and S ⊆ bag(t)

b c

e

a

d
g

i

j

m

o

f

l

h k

n

a

d
g

h k

n

fi

kh

j l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i
e, g, i

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Computing Treewidth 7 / 20

Treewidth: Example application

Example: Solving the maximum independent set problem

O(2k · n) time solution, where k width and n the graph size

Dynamic programming over states dp[t][S], where t is a node
and S ⊆ bag(t)

b c

e

a

d
g

i

j

m

o

f

l

h k

n

a

d
g

h k

n

fi

kh

j l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i
e, g, i

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Computing Treewidth 7 / 20

Treewidth: Example application

Example: Solving the maximum independent set problem

O(2k · n) time solution, where k width and n the graph size

Dynamic programming over states dp[t][S], where t is a node
and S ⊆ bag(t)

b c

e

a

d
g

i

j

m

o

f

l

h k

n

a

d
g

h k

n

fi

kh

j l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i
e, g, i

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

f, i, k

h, i, j

i, j, k

f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Computing Treewidth 7 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists
I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists

I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists
I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists
I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists
I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

Computing treewidth

Need the tree decomposition!

Central problem: Compute a tree decomposition of small width if one exists
I Approximation fine, but slows down the next step

I Running time exponential in k fine

[Arnborg, Corneil & Proskurowski ’87]:
I Computing treewidth is NP-hard

I Algorithm with running time O(nk+2)

[Robertson & Seymour, Graph Minors 13, ’87]:
I 4-approximation algorithm with running time O(33k · n2)

I Introduced the “top-down” approach for computing tree decompositions

Tuukka Korhonen Computing Treewidth 8 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

WW ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W

L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W

L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)

L RL ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)

L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

The Robertson-Seymour top-down approach

Graph

XC1 C2

Balanced separator X with components C1 and C2

W L

Y

D1

D2

Balanced separator Y with components D1 and D2

Continue recursively...

Tree decomposition

W

W ∪ X

L =
X ∪ (W ∩ C1)

R =
X ∪ (W ∩ C2)L R

L ∪ Y R

Y ∪ (L ∩ D1) Y ∪ (L ∩ D2)

Tuukka Korhonen Computing Treewidth 9 / 20

Influence of the top-down approach

Reference Appx. ratio Running time
[Robertson & Seymour ’87] 4 O(33k · n2)

[Matoušek & Thomas ’91] 6 kO(k) · n log2 n
[Lagergren ’96] 8 kO(k) · n log2 n

[Reed ’92] 8 kO(k) · n log n
[Bodlaender et al. ’95] O(log n) poly(n)

[Amir ’10] 4.5 O(23k · n2)
[Amir ’10] O(log k) O(k log k · n4)

[Feige, Hajiaghayi & Lee ’08] O(
√

log k) poly(n)

[Bodlaender et al. ’16] 3 2O(k) · n log n
[Bodlaender et al. ’16] 5 2O(k) · n

[Fomin et al. ’18] O(k) O(k7 · n log n)

[Belbasi & Fürer ’21] 5 O(27k · n log n)

Before 2021, all approximation algorithms for treewidth used this approach
Barrier at approximation ratio 3
Hard to implement in linear time

Tuukka Korhonen Computing Treewidth 10 / 20

Influence of the top-down approach

Reference Appx. ratio Running time
[Robertson & Seymour ’87] 4 O(33k · n2)

[Matoušek & Thomas ’91] 6 kO(k) · n log2 n
[Lagergren ’96] 8 kO(k) · n log2 n

[Reed ’92] 8 kO(k) · n log n
[Bodlaender et al. ’95] O(log n) poly(n)

[Amir ’10] 4.5 O(23k · n2)
[Amir ’10] O(log k) O(k log k · n4)

[Feige, Hajiaghayi & Lee ’08] O(
√

log k) poly(n)

[Bodlaender et al. ’16] 3 2O(k) · n log n
[Bodlaender et al. ’16] 5 2O(k) · n

[Fomin et al. ’18] O(k) O(k7 · n log n)

[Belbasi & Fürer ’21] 5 O(27k · n log n)

Before 2021, all approximation algorithms for treewidth used this approach

Barrier at approximation ratio 3
Hard to implement in linear time

Tuukka Korhonen Computing Treewidth 10 / 20

Influence of the top-down approach

Reference Appx. ratio Running time
[Robertson & Seymour ’87] 4 O(33k · n2)

[Matoušek & Thomas ’91] 6 kO(k) · n log2 n
[Lagergren ’96] 8 kO(k) · n log2 n

[Reed ’92] 8 kO(k) · n log n
[Bodlaender et al. ’95] O(log n) poly(n)

[Amir ’10] 4.5 O(23k · n2)
[Amir ’10] O(log k) O(k log k · n4)

[Feige, Hajiaghayi & Lee ’08] O(
√

log k) poly(n)

[Bodlaender et al. ’16] 3 2O(k) · n log n
[Bodlaender et al. ’16] 5 2O(k) · n

[Fomin et al. ’18] O(k) O(k7 · n log n)

[Belbasi & Fürer ’21] 5 O(27k · n log n)

Before 2021, all approximation algorithms for treewidth used this approach
Barrier at approximation ratio 3

Hard to implement in linear time

Tuukka Korhonen Computing Treewidth 10 / 20

Influence of the top-down approach

Reference Appx. ratio Running time
[Robertson & Seymour ’87] 4 O(33k · n2)

[Matoušek & Thomas ’91] 6 kO(k) · n log2 n
[Lagergren ’96] 8 kO(k) · n log2 n

[Reed ’92] 8 kO(k) · n log n
[Bodlaender et al. ’95] O(log n) poly(n)

[Amir ’10] 4.5 O(23k · n2)
[Amir ’10] O(log k) O(k log k · n4)

[Feige, Hajiaghayi & Lee ’08] O(
√

log k) poly(n)

[Bodlaender et al. ’16] 3 2O(k) · n log n
[Bodlaender et al. ’16] 5 2O(k) · n

[Fomin et al. ’18] O(k) O(k7 · n log n)

[Belbasi & Fürer ’21] 5 O(27k · n log n)

Before 2021, all approximation algorithms for treewidth used this approach
Barrier at approximation ratio 3
Hard to implement in linear time

Tuukka Korhonen Computing Treewidth 10 / 20

My contribution

State-of-the-art before 2021:

I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]

I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

My contribution

State-of-the-art before 2021:
I exact in 2O(k3) · n time [Bodlaender ’96]
I 3-approximation in 2O(k) · n log n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I 5-approximation in 2O(k) · n time [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’16]

I O(
√

log k)-approximation in poly(n) time [Feige, Hajiaghayi & Lee ’08]

Theorem (Korhonen ’21)

There is a 2-approximation algorithm for treewidth with running time 2O(k) · n

A completely new approach

I Inspired by the proofs of [Thomas ’90] and [Bellenbaum & Diestel ’02] on “lean tree
decompositions”

Tuukka Korhonen Computing Treewidth 11 / 20

The Algorithm

The 2-approximation algorithm

Tuukka Korhonen Computing Treewidth 12 / 20

Outline

By a self-reduction technique of [Bodlaender ’96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width w
Output: A tree decomposition of G of width≤ w − 1 or the conclusion that w ≤ 2 · tw(G) + 1

Running time: 2O(w)n

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of largest bags and does not increase the width

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13 / 20

Outline

By a self-reduction technique of [Bodlaender ’96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width w
Output: A tree decomposition of G of width≤ w − 1 or the conclusion that w ≤ 2 · tw(G) + 1

Running time: 2O(w)n

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of largest bags and does not increase the width

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13 / 20

Outline

By a self-reduction technique of [Bodlaender ’96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width w
Output: A tree decomposition of G of width≤ w − 1 or the conclusion that w ≤ 2 · tw(G) + 1

Running time: 2O(w)n

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of largest bags and does not increase the width

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13 / 20

Outline

By a self-reduction technique of [Bodlaender ’96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width w
Output: A tree decomposition of G of width≤ w − 1 or the conclusion that w ≤ 2 · tw(G) + 1

Running time: 2O(w)n

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of largest bags and does not increase the width

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13 / 20

Outline

By a self-reduction technique of [Bodlaender ’96] we can focus on giving an improver algorithm:

Input: An graph G and a tree decomposition T of G of width w
Output: A tree decomposition of G of width≤ w − 1 or the conclusion that w ≤ 2 · tw(G) + 1

Running time: 2O(w)n

1. If w > 2 · tw(G) + 1 then T can be improved by a certain improvement operation

I Decreases the number of largest bags and does not increase the width

2. To improve the width by one, Ω(n) improvement operations may be needed

I Efficient implementation by amortized analysis of the improvements and dynamic programming over
the tree decomposition

Tuukka Korhonen Computing Treewidth 13 / 20

The improvement operation
Let W be the largest bag

Take a separator X of G with a partition (X ,C1,C2,C3) of V (G), s.t. |X ∪ (W ∩ Ci)| < |W | for all i

For each i , obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting B i = B ∩ (Ci ∪ X) for each bag B

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14 / 20

The improvement operation
Let W be the largest bag

Take a separator X of G with a partition (X ,C1,C2,C3) of V (G), s.t. |X ∪ (W ∩ Ci)| < |W | for all i

For each i , obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting B i = B ∩ (Ci ∪ X) for each bag B

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14 / 20

The improvement operation
Let W be the largest bag

Take a separator X of G with a partition (X ,C1,C2,C3) of V (G), s.t. |X ∪ (W ∩ Ci)| < |W | for all i

For each i , obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting B i = B ∩ (Ci ∪ X) for each bag B

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14 / 20

The improvement operation
Let W be the largest bag

Take a separator X of G with a partition (X ,C1,C2,C3) of V (G), s.t. |X ∪ (W ∩ Ci)| < |W | for all i

For each i , obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting B i = B ∩ (Ci ∪ X) for each bag B

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14 / 20

The improvement operation
Let W be the largest bag

Take a separator X of G with a partition (X ,C1,C2,C3) of V (G), s.t. |X ∪ (W ∩ Ci)| < |W | for all i

For each i , obtain a tree decomposition T i = T ∩ (Ci ∪ X) by setting B i = B ∩ (Ci ∪ X) for each bag B

The following is almost a tree decomposition of G:

W

.

T

⇒
W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

T 1 = T ∩ (C1 ∪ X) T 3 = T ∩ (C3 ∪ X)

T 2 = T ∩ (C2 ∪ X)

X

Except that vertices in X may violate the connectedness condition

Tuukka Korhonen Computing Treewidth 14 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

Fixing a tree decomposition
Fix the connectedness condition by inserting vertices of X to bags

Example: Let (X ,C1,C2,C3) = ({x1, x2}, {a, b, h}, {c, d , f}, {e, g, k}) be the partition:

T

a, b, c, d , eW

a, b, f , gA

a, fB

f , h, x1C

b, g, x2D

g, k , x2E

T 1 = T ∩ (C1 ∪ X)

T 1

a, b

a, b

a

h, x1

b, x2

x2

W 1

A1

B1

C1

D1

E1

a, b, x1

a, b, x1

a, x1

h, x1

b, x2

x2

a, b, x1, x2

a, b, x1, x2

a, x1

h, x1

b, x2

x2

Insert x1 to B1, A1, and W 1

Insert x2 to A1 and W 1

Now X ⊆ W 1 and T 1 satisfies the connectedness condition

⇒ The whole construction satisfies the connectedness condition

Tuukka Korhonen Computing Treewidth 15 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality
R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality
R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality

R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality

R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality

R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

The main insight

Definition (Good separation)

A separation (X ,C1,C2,C3) is a good separation if (1) |X ∪ (W ∩ Ci)| < |W | for all i , and (2) among those,
we minimize |X |.

Lemma

If (X ,C1,C2,C3) is a good separation, then |B i | ≤ |B| for all bags B and all i

Suppose that i = 1 and |B1| > |B|

⇒ |R| > |B ∩ (C2 ∪ C3)|

Take a separation with X ′ = (X \ R) ∪ (B ∩ (C2 ∪ C3))

⇒ |X ′| < |X | so this contradicts the minimality
R

C2 C1 C3

B

W

X

⇒

C ′2 C ′1 C ′3

B

W

X ′

Tuukka Korhonen Computing Treewidth 16 / 20

Outlook

We have shown:

Root bag W replaced by four smaller bags,
W 1, W 2, W 3, and X

Width did not increase

Should also show:

Number of bags of size |W | decreases

Good separations can be found efficiently

n iterations of improvements can be
implemented in total 2O(w)n time

W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

X

Tuukka Korhonen Computing Treewidth 17 / 20

Outlook

We have shown:

Root bag W replaced by four smaller bags,
W 1, W 2, W 3, and X

Width did not increase

Should also show:

Number of bags of size |W | decreases

Good separations can be found efficiently

n iterations of improvements can be
implemented in total 2O(w)n time

W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

X

Tuukka Korhonen Computing Treewidth 17 / 20

Outlook

We have shown:

Root bag W replaced by four smaller bags,
W 1, W 2, W 3, and X

Width did not increase

Should also show:

Number of bags of size |W | decreases

Good separations can be found efficiently

n iterations of improvements can be
implemented in total 2O(w)n time

W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

X

Tuukka Korhonen Computing Treewidth 17 / 20

Outlook

We have shown:

Root bag W replaced by four smaller bags,
W 1, W 2, W 3, and X

Width did not increase

Should also show:

Number of bags of size |W | decreases

Good separations can be found efficiently

n iterations of improvements can be
implemented in total 2O(w)n time

W 1

. . .

. . .

W 3

. . .

. . .

W 2

.

X

Tuukka Korhonen Computing Treewidth 17 / 20

Final remarks

Final remarks

Tuukka Korhonen Computing Treewidth 18 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokołowski, FOCS’23]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokołowski, FOCS’23]

Graph minors in f (k) ·m1+ε time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokołowski, FOCS’23]

Graph minors in f (k) ·m1+ε time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Rankwidth in f (k) · n2 time
[Fomin & Korhonen, STOC’22]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokołowski, FOCS’23]

Graph minors in f (k) ·m1+ε time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Rankwidth in f (k) · n2 time
[Fomin & Korhonen, STOC’22]

Rankwidth in f (k) ·m1+ε time
[Korhonen & Sokołowski, STOC’24]

Tuukka Korhonen Computing Treewidth 19 / 20

Follow-up work

Treewidth 2-approximation
[Korhonen, FOCS’21]

Improved exact treewidth
[Korhonen & Lokshtanov, STOC’23]

Dynamic treewidth
[Korhonen, Majewski, Nadara, Pilipczuk & Sokołowski, FOCS’23]

Graph minors in f (k) ·m1+ε time
[Korhonen, Pilipczuk & Stamoulis, FOCS’24]

Rankwidth in f (k) · n2 time
[Fomin & Korhonen, STOC’22]

Rankwidth in f (k) ·m1+ε time
[Korhonen & Sokołowski, STOC’24]

My PhD thesis

Tuukka Korhonen Computing Treewidth 19 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

Conclusion

Treewidth has applications in many areas of computer science

My PhD thesis: New paradigm in treewidth computing

I Approximate, exact, and dynamic computing of treewidth, also
rankwidth and graph minors

Future:

End goal: 2O(k)n time exact algorithm for treewidth?

Currently working on:
I Improved dynamic treewidth
I Preprocessing for treewidth

Thank you!

Tuukka Korhonen Computing Treewidth 20 / 20

