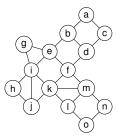
An Improved Parameterized Algorithm for Treewidth

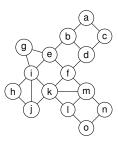
Tuukka Korhonen

joint work with Daniel Lokshtanov, UCSB

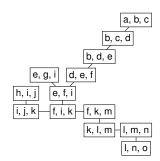
Jagiellonian TCS seminar
18 January 2023



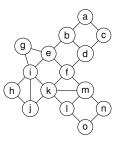
Graph G



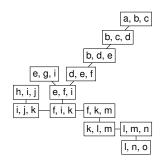
Graph G



A tree decomposition of G

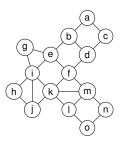


Graph G

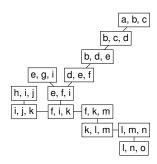


A tree decomposition of G

1. Every vertex should be in a bag

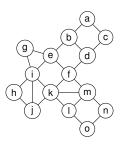


Graph G

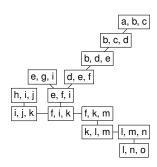


A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag

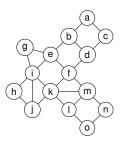


Graph G

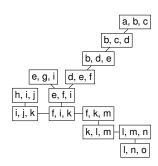


A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree

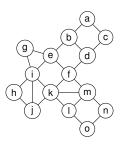


Graph G

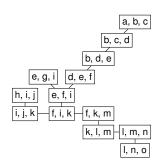


A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1

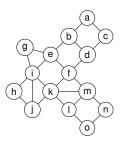


Graph G

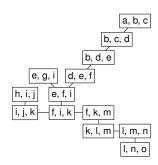


A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1

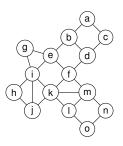


Graph G

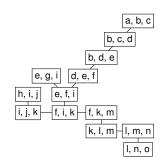


A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

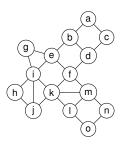


Graph *G* Treewidth 2

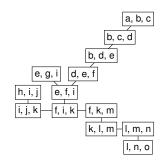


A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G



Graph *G* Treewidth 2



A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

[Bertele & Brioschi'72, Halin'76, Robertson & Seymour'84]

• NP-complete [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- ullet $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]
- $2^{\mathcal{O}(k^3)} n \log^2 n$ time [Bodlaender & Kloks, Lagergren & Arnborg, '91]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]
- $2^{\mathcal{O}(k^3)} n \log^2 n$ time [Bodlaender & Kloks, Lagergren & Arnborg, '91]
 - ▶ DP + $k^{O(k)}n\log^2 n$ time 8-approximation of [Lagergren '90]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]
- $2^{\mathcal{O}(k^3)} n \log^2 n$ time [Bodlaender & Kloks, Lagergren & Arnborg, '91]
 - ▶ DP + $k^{O(k)}n\log^2 n$ time 8-approximation of [Lagergren '90]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender '93]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]
- $2^{\mathcal{O}(k^3)} n \log^2 n$ time [Bodlaender & Kloks, Lagergren & Arnborg, '91]
 - ▶ DP + $k^{O(k)}n\log^2 n$ time 8-approximation of [Lagergren '90]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender '93]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows'99], [Telle'06], [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk'16], [Bodlaender, Jaffke & Telle'20]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-constructive [Robertson & Seymour'86]
- $2^{\mathcal{O}(k^3)} n \log^2 n$ time [Bodlaender & Kloks, Lagergren & Arnborg, '91]
 - ▶ DP + $k^{O(k)}n\log^2 n$ time 8-approximation of [Lagergren '90]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender '93]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows'99], [Telle'06], [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk'16], [Bodlaender, Jaffke & Telle'20]

Theorem (This work)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

• Polynomial-time approximation:

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]

- Polynomial-time approximation:
 - ▶ $\mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:

- Polynomial-time approximation:
 - ▶ $\mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour'86]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour'86]
 - ► $k^{\mathcal{O}(k)} n \log^2 n$ [Matoušek and Thomas'91, Lagergren'91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed'92] approximations

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour'86]
 - ► $k^{\mathcal{O}(k)} n \log^2 n$ [Matoušek and Thomas'91, Lagergren'91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed'92] approximations
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk'16]

- Polynomial-time approximation:
 - $ightharpoonup \mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour'86]
 - ► $k^{\mathcal{O}(k)} n \log^2 n$ [Matoušek and Thomas'91, Lagergren'91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed'92] approximations
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk'16]
 - ▶ $2^{\mathcal{O}(k)}n$ time 2-approximation [K. '21]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log(k)})$ -approximation [Feige, Hajiaghayi & Lee'08]
 - Constant-factor approximation NP-hard for any constant, assuming SSE-conjecture [Wu, Austrin, Pitassi & Liu'14]
- FPT-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour'86]
 - ▶ $k^{\mathcal{O}(k)} n \log^2 n$ [Matoušek and Thomas'91, Lagergren'91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed'92] approximations
 - ▶ 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk'16]
 - ▶ $2^{O(k)}n$ time 2-approximation [K. '21]

Theorem (This work)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation algorithm for treewidth.

Outline

Outline

1. How to improve a tree decomposition

Suffices to solve the Subset treewidth problem

Outline

1. How to improve a tree decomposition

Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem

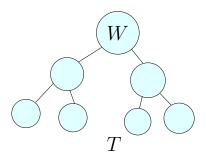
Algorithms for subset treewidth that then imply algorithms for treewidth

1. How to improve a tree decomposition

How to improve a tree decomposition

Setting

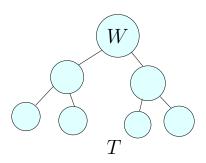
Suppose we have a tree decomposition T whose largest bag is W



Setting

Suppose we have a tree decomposition ${\it T}$ whose largest bag is ${\it W}$

Goal:

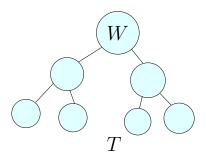


Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W| while not increasing the width of T, or

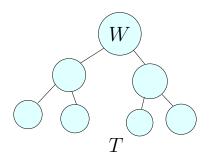


Setting

Suppose we have a tree decomposition \mathcal{T} whose largest bag is \mathcal{W}

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is (approximately) optimal



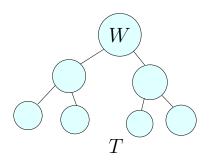
Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition



Setting

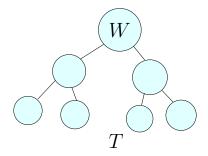
Suppose we have a tree decomposition T whose largest bag is W

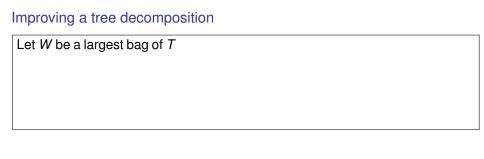
Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition

(assume to start with width $\mathcal{O}(\mathsf{tw}(G))$ decomposition)





Let W be a largest bag of T

Want to find:

Let W be a largest bag of T

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- ullet a tree decomposition of ${ t torso}(X)$ of width $\leq |W|-2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- ullet a tree decomposition of ${ t torso}(X)$ of width $\leq |W|-2$

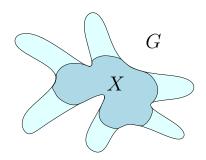
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- ullet a tree decomposition of ${ t torso}(X)$ of width $\leq |W|-2$

Torso?



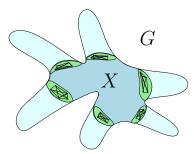
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?



• Make neighborhoods of components of $G \setminus X$ into cliques

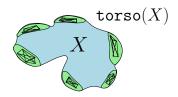
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?



- Make neighborhoods of components of $G \setminus X$ into cliques
- Delete V(G) \ X

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

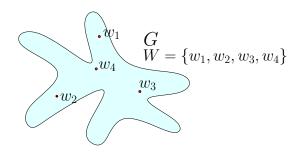
- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W|-2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$



Let W be a largest bag of T

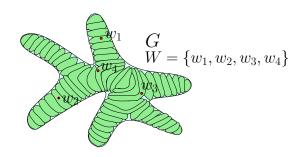
SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

• If T is not optimal, then such X exists by taking X = V(G)



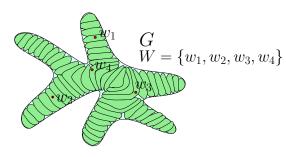
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



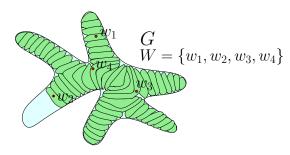
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



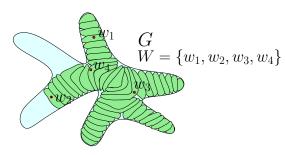
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



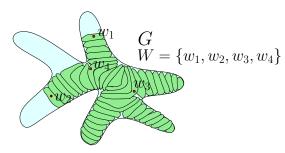
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



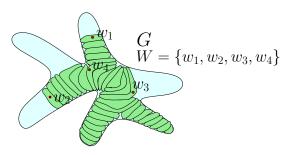
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



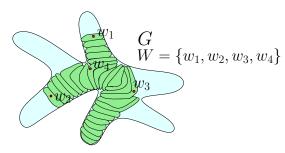
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



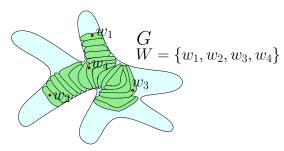
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



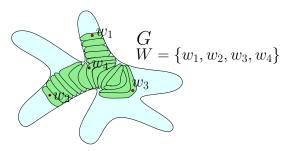
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$



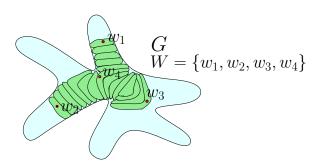
Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W|-2$

Big-leaf formulation:



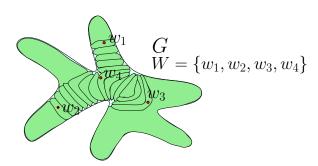
SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W|-2$

Big-leaf formulation:

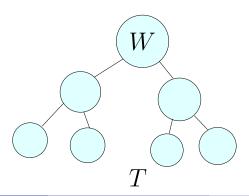
• Find a tree decomposition of G whose internal bags have size $\leq |W| - 1$ and cover W, but leaf bags can be arbitrarily large



SUBSET TREEWIDTH

Have:

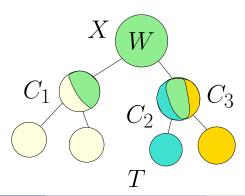
- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$



SUBSET TREEWIDTH

Have:

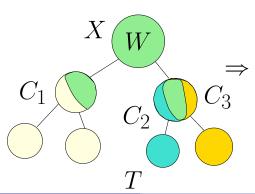
- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

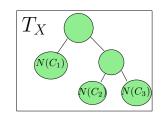


SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

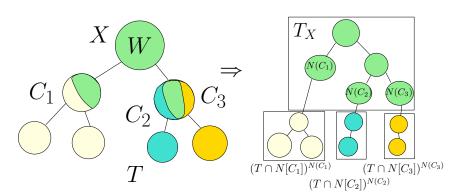


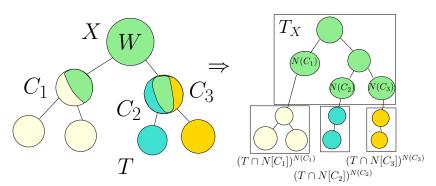


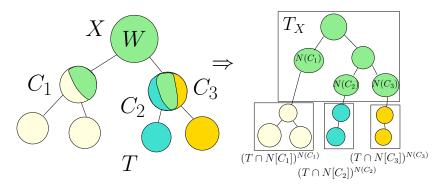
SUBSET TREEWIDTH

Have:

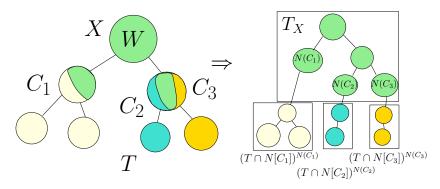
- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$



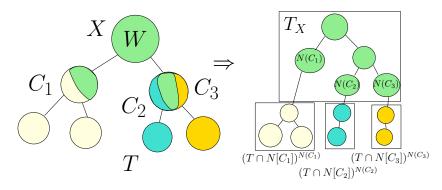




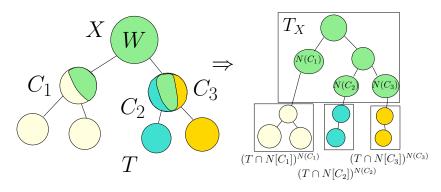
• Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag



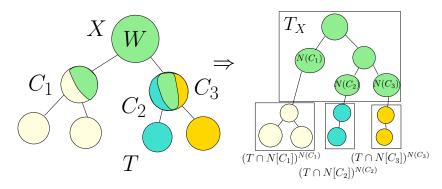
- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- ullet This holds if T_X is preprocessed so that its every bag is linked into W



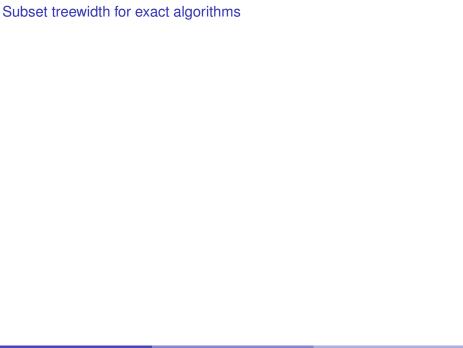
- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- ullet This holds if T_X is preprocessed so that its every bag is linked into W
 - $\triangleright k^{\mathcal{O}(1)} n^4$ time here



- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- This holds if T_X is preprocessed so that its every bag is linked into W
 - $\triangleright k^{\mathcal{O}(1)} n^4$ time here
- Proofs by Bellenbaum-Diestel type arguments



- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- This holds if T_X is preprocessed so that its every bag is linked into W
 - $\triangleright k^{\mathcal{O}(1)} n^4$ time here
- Proofs by Bellenbaum-Diestel type arguments
- (actually need a bit stronger condition than linkedness for improvement)



Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

(actually if and only if)

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

(actually if and only if)

 $2^{\mathcal{O}(k^2)} \textit{n}^2 \text{ time algorithm for subset treewidth} \rightarrow 2^{\mathcal{O}(k^2)} \textit{n}^4 \text{ time algorithm for treewidth}$

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into t cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into t cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k,t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k),\mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$ -approximation algorithm for treewidth with the same function f.

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into t cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k,t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k),\mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$ -approximation algorithm for treewidth with the same function f.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\to k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1+\varepsilon)$ -approximation algorithm for treewidth

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth

2. Solving the subset treewidth problem

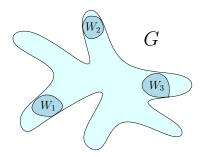
Solving the subset treewidth problem

Goal: Sketch $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth

(this is also a $k^{\mathcal{O}(k^2)} n^{\mathcal{O}(1)}$ time algorithm for subset treewidth)

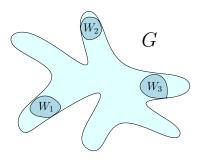
Setting:

• Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k



Setting:

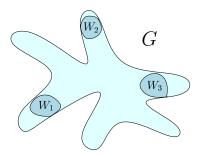
- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^t W_i$ and a tree decomposition of torso(X) of width $\leq k$



Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^t W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

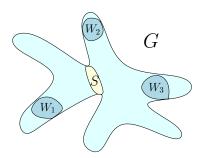


Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^t W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Let S be a non-trivial minimum size (W_i, W_j) -separator

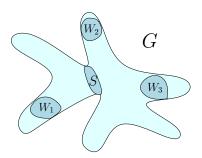


Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^t W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Let S be a non-trivial minimum size (W_i, W_j) -separator Make S into a terminal clique and solve both sides independently

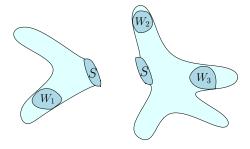


Setting:

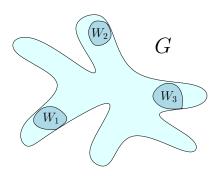
- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^t W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

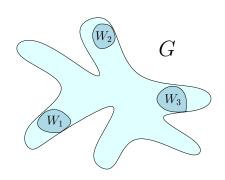
Let S be a non-trivial minimum size (W_i, W_j) -separator Make S into a terminal clique and solve both sides independently



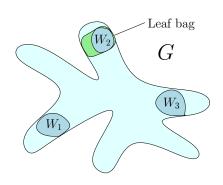
Now terminal cliques strongly linked into each other



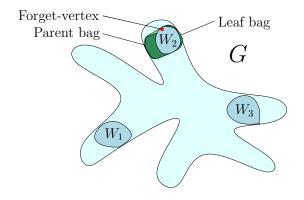
- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique



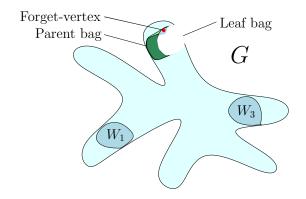
- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique



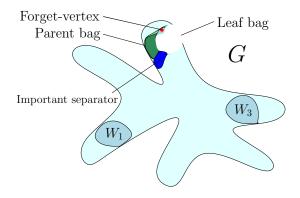
- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique



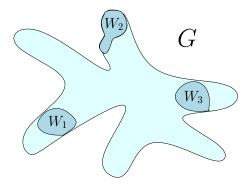
- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique



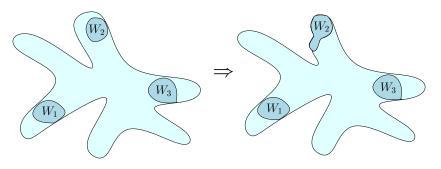
- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique
- Increase W₂ by guessing an important separator



- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique
- Increase W₂ by guessing an important separator

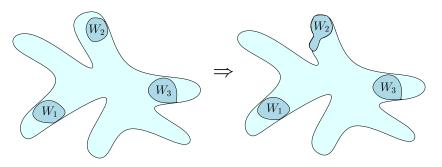


Analysis of branching



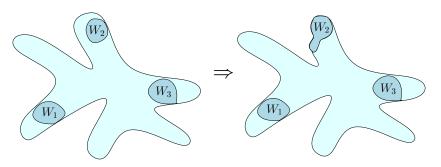
 Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator

Analysis of branching



- Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator
- ullet Sum of sizes/flows of terminal cliques at most (k+1)t, so branching depth at most kt

Analysis of branching



- Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator
- ullet Sum of sizes/flows of terminal cliques at most (k+1)t, so branching depth at most kt
- To get $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time, need also an important separator hitting set lemma

Open questions:

 \bullet Is there $2^{\mathcal{O}(k^{1.999})} n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?

- Is there $2^{\mathcal{O}(k^{1.999})}n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?
- When $t = \mathcal{O}(1)$, is there $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth?

- Is there $2^{\mathcal{O}(k^{1.999})}n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?
- When $t = \mathcal{O}(1)$, is there $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth?
- How much can the n⁴ factor be optimized?

- Is there $2^{\mathcal{O}(k^{1.999})}n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?
- When $t = \mathcal{O}(1)$, is there $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth?
- How much can the n⁴ factor be optimized?
- Can we prove a $2^{\Omega(k)}$ lower bound assuming ETH?

Thank you!

Thank you!