Enumerating Potential Maximal Cliques via SAT and ASP

Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo

Three variants

enumeration algorithm.

hypertreewidth computation.

- phylogenetic tree, hypertree decompositions. • BT algorithm of Bouchitté and Todinca: the best algorithm for computing optimal minimal triangulations.
- · Bottleneck of BT runtime: enumeration of potential maximal cliques (PMCs).

- Potential Maximal Cliques

Application: BT algorithm computes an optimal triangulation given the set of PMCs.

Definition 1: A set of vertices is a PMC if it is a maximal clique in some minimal triangulation.

Definition 2: Set of vertices $K \subset V$ is PMC if:

- 1. Any two vertices $u, v \in K$ are connected outside of K.
- 2. No vertex in $V \setminus K$ is connected to all vertices in K outside of K.

Encoding connectivity

Both needed: If and only if.

If: $C_{ii} = 1$ if v_i and v_j are connected outside of the PMC.

Only if: $C_{ij} = 0$ if v_i and v_j are not connected outside of the PMC.

If direction: Propagate existing connectivity trough edges. O(nm)additional clauses.

 $(C_{ik} \land (v_k, v_i) \in E \land \neg P_k) \rightarrow C_{ii}$

- Lazy SAT does not enumerate most of the minimal separators.
- Original PMC enumeration algorithm enumerates all minimal separators.

 $TW(G, \Pi_k(G)) = \infty$ $(G, \Pi_k(G))$ Let k = k + 1 $BT-DP(G, \Pi_k(G))$ $\mathsf{TW}(G,\Pi_s) < \infty$ TW(G)

Encoding: Boolean variables *P_i* and *C_{ij}*

• $P_i = 1$ iff the vertex v_i is in PMC.

• Experiments: treewidth and generalized

Improvement over the original PMC

• $C_{ii} = 1$ iff the vertices v_i and v_j are connected outside of the PMC.

Encoding: Two conditions of PMC

1.
$$(P_i \land P_j) \to C_{ij}$$

2. $\neg P_i \to \bigvee_{i=1}^n (P_i \land \neg C_{ij})$

Hard part: Encoding the semantics of *C*_{*ii*}.

 v_2 v_4 v_1

Connectedness: Let K be a set of vertices. Two vertices *u*, *v* are *connected outside of K* if there is a path $u, w_1, w_2, \ldots, w_k, v$ with no *intermediate* vertex w_i in K.

Lazy SAT does not include any constraints for the only if direction at first.

If a false PMC is found:

UNIVERSITY OF HELSINKI

FACULTY OF SCIENCE

- $C_{ij} = 1$ for some not connected v_i, v_j .
- A minimal separator inside the false PMC proves that v_i and v_j are not connected.
- Find such minimal separator S and add encoding for it:

- $(\bigwedge_{v_i \in S} P_i) \to M_S$ - $\bigwedge_{i,j: S \text{ separates } v_i, v_j} M_S \to \neg C_{ij}$

п	Original (s)	Lazy SAT (s)
6	0.46	0.04
7	3.27	0.06
8	26.80	0.06
9	261.20	0.09
10	2576.73	0.09
20	ТО	0.38
50	ТО	3.52
100	ТО	39.00
200	ТО	384.95

• Lazy SAT avoids the worst case complexity in melon graphs which have exponential number of minimal separators.

2.
$$\neg P_i \rightarrow \bigvee_{j=1}^n (P_j \land \neg C_{ij})$$

Only if direction: Three variants

1. Path-length encoding in SAT:

- Additional variables $C_{ij}[k]$: v_i and v_j are connected outside of the PMC with a path of length k.
- Existence of shorter path required for existence of longer path.
- $O(n^3)$ additional variables.
- 2. ASP semantics:
- Existence of a path must have external support.
- No additional variables or constraints.

3. Lazy SAT:

- Use minimal separators to prove not connectedness when needed.
- Number of additional variables and clauses depends on the structure.

Runtime on *melon graphs* with 3n + 2 vertices.

п	Original (s)	Lazy SAT (s)
6	0.46	0.04
7	3.27	0.06
8	26.80	0.06
9	261.20	0.09
10	2576.73	0.09
20	ТО	0.38
50	ТО	3.52
100	ТО	39.00
200	ТО	384.95