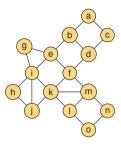
Dynamic Treewidth in Logarithmic Time

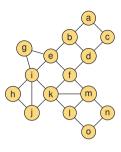
Tuukka Korhonen

FOCS 2025

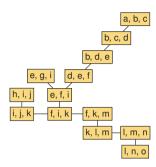
16 December 2025



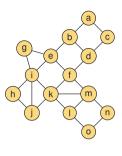
Graph G



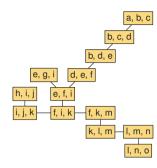
Graph G



A tree decomposition of G

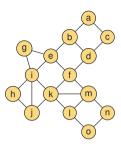


Graph G



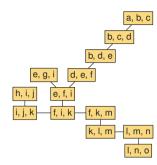
A tree decomposition of G

1. Every vertex should be in a bag

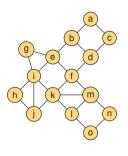


Graph G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag



A tree decomposition of G

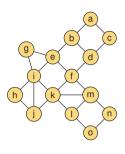


b, c, d
b, d, e
e, g, i d, e, f
h, i, j e, f, i
i, j, k f, i, k f, k, m
k, l, m l, m,
l, n, c

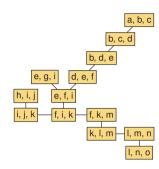
Graph G

A tree decomposition of G

- Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree

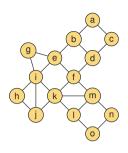


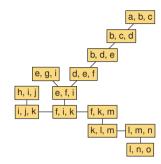
Graph G



A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1





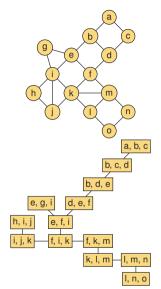
Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

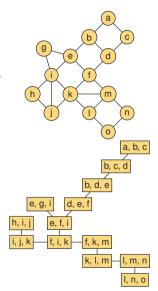
- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- Width = maximum bag size −1
- 5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour'84, Arnborg & Proskurowski'89, Bertele & Brioschi'72, Halin'76]

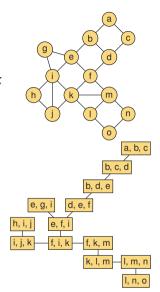
 Algorithms for trees often generalize to algorithms for graphs of small treewidth



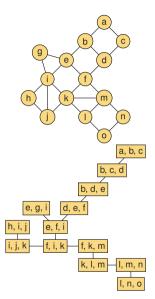
- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs



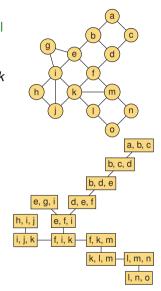
- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic



- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic
- Need the tree decomposition!



- Algorithms for trees often generalize to algorithms for graphs of small treewidth
- Example: Maximum independent set in $\mathcal{O}(2^k \cdot n)$ time on treewidth-k graphs
- Courcelle's theorem gives $f(k) \cdot n$ time algorithms for all problems definable in **MSO**-logic
- Need the tree decomposition!
 - ≥ 2^{O(k³)} n time algorithm to compute an optimum-width tree decomposition [Bodlaender '96]
 - ▶ $2^{O(k)}n$ time for 2-approximation [K. '21]
 - ▶ $n^{\mathcal{O}(1)}$ time for $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi, Lee'08]



Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)
 Previous work:

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)
 Previous work:

• Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)
- Treewidth-k: 2^{kO(1)} n^{o(1)} amortized update time 6-approximate tree decomposition. [K., Majewski, Nadara, Pilipczuk, Sokołowski '23]

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

• Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

Previous work:

- Treewidth-1 (dynamic forests): $\mathcal{O}(\log n)$ update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)
- Treewidth-k: 2^{kO(1)} n^{O(1)} amortized update time 6-approximate tree decomposition. [K., Majewski, Nadara, Pilipczuk, Sokołowski '23]

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

Question [Bodlaender '93, Dvořák, Kupec & Tůma '14, Alman, Mnich & Vassilevska Williams '20]

Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

• Would also like to maintain dynamic programming on the decomposition (dynamic Courcelle's theorem)

Previous work:

- Treewidth-1 (dynamic forests): O(log n) update time [Sleator & Tarjan'83, Frederickson'85,97, Alstrup, Holm, de Lichtenberg, Thorup'05...]
- Treewidth-2: $\mathcal{O}(\log n)$ update time [Bodlaender'93]
- Treewidth-k: n^{o(1)} amortized update time n^{o(1)}-approximate tree decomposition on bounded-degree graphs. [Goranci, Räcke, Saranurak, Tan '21] (not suitable for dynamic Courcelle's theorem)
- Treewidth-k: 2^{kO(1)} n^{O(1)} amortized update time 6-approximate tree decomposition. [K., Majewski, Nadara, Pilipczuk, Sokołowski '23]

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

• Arguably optimal update time: $\Omega(\log n)$ needed for dynamic forests [Patrascu&Demaine'04]

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

There is data structure that:

- is initialized with an integer k and an edgeless n-vertex graph G
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most 9 ⋅ tw(G) + 8

Theorem (This work)

 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

There is data structure that:

- is initialized with an integer k and an edgeless n-vertex graph G
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most 9 ⋅ tw(G) + 8
- can also maintain any dynamic programming scheme on the decomposition within similar running time (formalized by tree decomposition automata)

Theorem (This work)

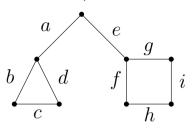
 $2^{\mathcal{O}(k)} \log n$ amortized update time 9-approximate tree decomposition.

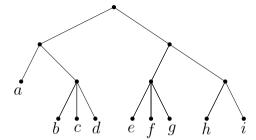
There is data structure that:

- is initialized with an integer k and an edgeless n-vertex graph G
- supports edge insertions/deletions in amortized time $2^{\mathcal{O}(k)} \log n$ under the promise that $\mathrm{tw}(G) \leq k$
- maintains a tree decomposition of G of width at most 9 ⋅ tw(G) + 8
- can also maintain any dynamic programming scheme on the decomposition within similar running time (formalized by tree decomposition automata)
- \Rightarrow Dynamic Courcelle's theorem in $f(k) \cdot \log n$ amortized update time

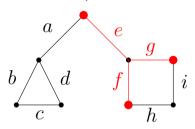
The algorithm

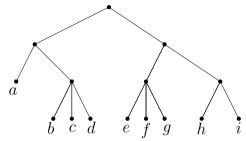
The algorithm



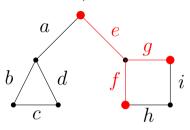


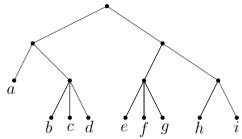
• Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph



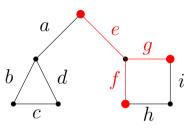


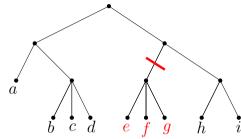
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.



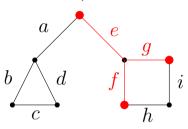


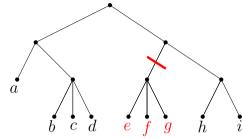
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$



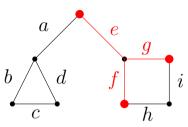


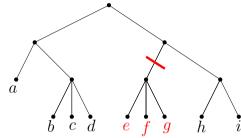
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness"



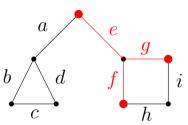


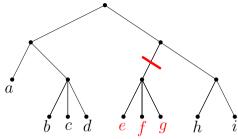
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$



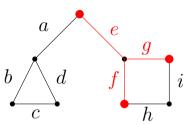


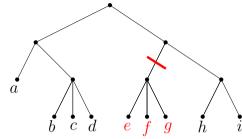
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$
- Also: Degree at most $2^{\mathcal{O}(k)}$





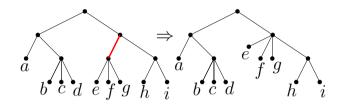
- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness"
 ⇒ Boundaries have size O(k)
- Also: Degree at most $2^{\mathcal{O}(k)}$
 - \Rightarrow Tree decomposition of width $2^{\mathcal{O}(k)}$ (later optimize to $\mathcal{O}(k)$)



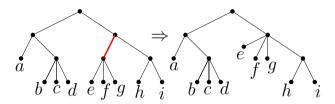


- Branch decomposition: Rooted tree whose leaves correspond to the edges of the graph
- Boundary $\partial(F)$ of a set of edges $F \subseteq E$: The vertices incident to edges from both F and $E \setminus F$.
- A set of edges $F \subseteq E$ is well-linked if it cannot be partitioned to (C_1, C_2) so that $|\partial(C_1)| < |\partial(F)|$ and $|\partial(C_2)| < |\partial(F)|$
- Want to maintain: Every edge set corresponding to a subtree is well-linked "downwards well-linkedness" \Rightarrow Boundaries have size $\mathcal{O}(k)$
- Also: Degree at most $2^{\mathcal{O}(k)}$
 - \Rightarrow Tree decomposition of width $2^{\mathcal{O}(k)}$ (later optimize to $\mathcal{O}(k)$)
- Depth at most $2^{O(k)} \log n$

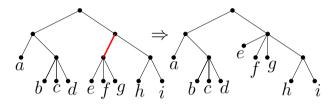
1. **Contraction**: Given an edge *uv* of the decomposition, contract it.



- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - ► Maintains downwards well-linkedness

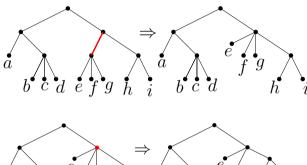


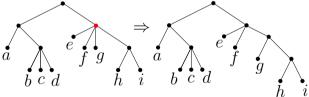
- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - ► Maintains downwards well-linkedness
- 2. **Splitting**: Given a node of degree $> f(k) = 2^{O(k)}$, locally split it to multiple nodes



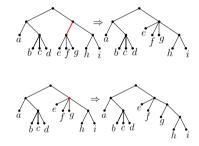


- 1. **Contraction**: Given an edge *uv* of the decomposition, contract it.
 - Maintains downwards well-linkedness
- 2. **Splitting**: Given a node of degree $> f(k) = 2^{O(k)}$, locally split it to multiple nodes
 - ► Lemma: Can be done so that downwards well-linkedness is maintained

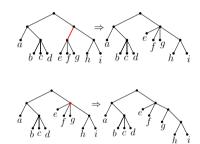




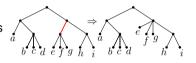
• Idea: Implement splay-tree-like rotations with the local rotations

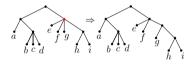


- Idea: Implement splay-tree-like rotations with the local rotations
- Potential-function: $\Phi(t) = (\#\text{children}(t) 1) \cdot \log(\text{size}(t))$

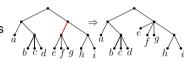


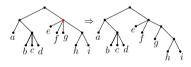
- Idea: Implement splay-tree-like rotations with the local rotations
- Potential-function: $\Phi(t) = (\#\text{children}(t) 1) \cdot \log(\text{size}(t))$
- To facilitate edge insertions/deletions, additional self-loops on vertices



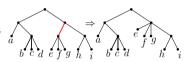


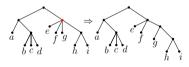
- Idea: Implement splay-tree-like rotations with the local rotations
- Potential-function: $\Phi(t) = (\#\text{children}(t) 1) \cdot \log(\text{size}(t))$
- To facilitate edge insertions/deletions, additional self-loops on vertices
- To insert an edge *uv*:
 - 1. rotate the self-loops u and v to be children of the root
 - 2. insert uv as another child of the root
 - 3. re-balance



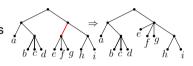


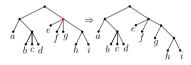
- Idea: Implement splay-tree-like rotations with the local rotations
- Potential-function: $\Phi(t) = (\#\text{children}(t) 1) \cdot \log(\text{size}(t))$
- To facilitate edge insertions/deletions, additional self-loops on vertices
- To insert an edge uv:
 - 1. rotate the self-loops u and v to be children of the root
 - 2. insert uv as another child of the root
 - 3. re-balance
- Deletion of uv is similar





- Idea: Implement splay-tree-like rotations with the local rotations
- Potential-function: $\Phi(t) = (\#\text{children}(t) 1) \cdot \log(\text{size}(t))$
- To facilitate edge insertions/deletions, additional self-loops on vertices
- To insert an edge uv:
 - 1. rotate the self-loops u and v to be children of the root
 - 2. insert uv as another child of the root
 - 3. re-balance
- Deletion of uv is similar
- Post-processing: Replace each node of size $2^{\mathcal{O}(k)}$ by a tree decomposition of width $\mathcal{O}(k)$





• Dynamic treewidth in $2^{O(k)} \log n$ amortized update time

- Dynamic treewidth in $2^{O(k)} \log n$ amortized update time
 - ► Tree decomposition of width at most $9 \cdot \text{tw}(G) + 8$ of dynamic graph of treewidth $\text{tw}(G) \leq k$
 - ► Can also maintain dynamic programming schemes on the tree decomposition

- Dynamic treewidth in $2^{O(k)} \log n$ amortized update time
 - ▶ Tree decomposition of width at most $9 \cdot \text{tw}(G) + 8$ of dynamic graph of treewidth $\text{tw}(G) \leq k$
 - ► Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:

- Dynamic treewidth in $2^{O(k)} \log n$ amortized update time
 - ▶ Tree decomposition of width at most $9 \cdot \text{tw}(G) + 8$ of dynamic graph of treewidth $\text{tw}(G) \leq k$
 - ► Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?
 - ► Can we rule out $f(k) + O(\log n)$ update time?
 - Improve approximation ratio (3 seems to be a lower bound)

- Dynamic treewidth in $2^{O(k)} \log n$ amortized update time
 - ▶ Tree decomposition of width at most $9 \cdot \text{tw}(G) + 8$ of dynamic graph of treewidth $\text{tw}(G) \leq k$
 - ► Can also maintain dynamic programming schemes on the tree decomposition
- Open problems:
 - From amortized to worst-case?
 - ► Can we rule out $f(k) + O(\log n)$ update time?
 - Improve approximation ratio (3 seems to be a lower bound)

Thank you!