Minor Containment and Disjoint Paths in almost-linear time

<u>Tuukka Korhonen</u>¹, Michał Pilipczuk², Giannos Stamoulis²

¹University of Copenhagen

²University of Warsaw

FOCS 2024 28 October 2024

Minors of graphs

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

Minors of graphs

- A graph H is a minor of a graph G if H can be obtained from G by
 - Vertex deletions
 - Edge deletions
 - Edge contractions

Theorem (Kuratowski-Wagner, 1930, 1937)

A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

or

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Corollary

For every minor-closed graph class C, there exists an $O(n^3)$ time algorithm to test if a given n-vertex graph is in C.

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Corollary

For every minor-closed graph class C, there exists an $O(n^3)$ time algorithm to test if a given n-vertex graph is in C.

• More generally, an $f(H) \cdot n^3$ time algorithm for Rooted Minor Containment

Theorem (Robertson & Seymour, 1984-2004)

Let $\mathcal C$ be a minor-closed graph class. There exists a finite set of graphs $\mathcal H$, s.t. a graph G is in $\mathcal C$ if and only if G does not contain a graph from $\mathcal H$ as a minor.

Theorem (Robertson & Seymour, 1984-2012)

There exists an $f(H) \cdot n^3$ time algorithm to test if a given graph H is a minor of a given n-vertex graph G.

Corollary

For every minor-closed graph class C, there exists an $O(n^3)$ time algorithm to test if a given n-vertex graph is in C.

- More generally, an $f(H) \cdot n^3$ time algorithm for Rooted Minor Containment
 - \Rightarrow $f(k) \cdot n^3$ time algorithm for the k-Disjoint Paths problem

 The algorithm of Robertson & Seymour was improved to f(H) ⋅ n² by [Kawarabayashi, Kobayashi & Reed, 2012]

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (This work)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (This work)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

Corollary

Every minor-closed graph class has an $n^{1+o(1)}$ time recognition algorithm

- The algorithm of Robertson & Seymour was improved to $f(H) \cdot n^2$ by [Kawarabayashi, Kobayashi & Reed, 2012]
- Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson, Schrijver & Seymour, 1993]

Theorem (This work)

There is an $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

Corollary

Every minor-closed graph class has an $n^{1+o(1)}$ time recognition algorithm

Corollary

There is an $f(k) \cdot m^{1+o(1)}$ time algorithm for the k-Disjoint Paths problem

Our Algorithm

Our Algorithm

 Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is

A tree decomposition of GWidth = 2

- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time

Graph *G* Treewidth 2

A tree decomposition of GWidth = 2

- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G

Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G
- Robertson & Seymour: Detect irrelevant vertex in $f(H) \cdot n^2$ time $\Rightarrow f(H) \cdot n^3$ time algorithm

Graph *G*Treewidth 2

- Treewidth of a graph: Parameter between 0 and n-1 measuring how tree-like the graph is
- If treewidth of G is $\leq f(H)$, solve the problem by dynamic programming in $f(H) \cdot n$ time
- If treewidth is > f(H), detect and remove an Irrelevant Vertex from G
- g e d b, c, d b, d, e e, g, i d, e, f e, f, i e, f i, j, k f, i, k f, k, m i, i, j k, i, j k, i, i, m l, m, n i, n, o Graph G A tree decomposition of G

- Robertson & Seymour: Detect irrelevant vertex in $f(H) \cdot n^2$ time $\Rightarrow f(H) \cdot n^3$ time algorithm
- Kawarabayashi, Kobayashi & Reed: Detect irrelevant vertex in $f(H) \cdot n$ time $\Rightarrow f(H) \cdot n^2$ time algorithm

Width = 2

Treewidth 2

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - ▶ Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]
- 2. Reducing general graphs to unbreakable graphs

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]
- 2. Reducing general graphs to unbreakable graphs
 - Fast implementation of the recursive understanding technique

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]
- 2. Reducing general graphs to unbreakable graphs
 - Fast implementation of the recursive understanding technique
 - Using recent breakthroughs in almost-linear time graph algorithms:
 - Isolating cuts [Li & Panigrahi, 2020]
 - Almost-linear time (deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023]
 - * Mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]

- 1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs
 - ▶ Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski, FOCS 2023]
- 2. Reducing general graphs to unbreakable graphs
 - Fast implementation of the recursive understanding technique
 - Using recent breakthroughs in almost-linear time graph algorithms:
 - Isolating cuts [Li & Panigrahi, 2020]
 - Almost-linear time (deterministic) max-flow [van den Brand, Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023]
 - * Mimicking networks of [Saranurak & Yingchareonthawornchai, 2022]
- 3. Reducing unbreakable graphs to apex-minor-free graphs
 - Using relatively well-known graph-theoretic techniques

• $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

• Computing the Robertson-Seymour decomposition, topological minor containment

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

- Computing the Robertson-Seymour decomposition, topological minor containment
- Optimization to $f(H) \cdot m$ polylog n

- $f(H) \cdot m^{1+o(1)}$ time algorithm for Rooted Minor Containment
- Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth
- Reduction to apex-minor-free using fast recursive understanding

Future work:

- Computing the Robertson-Seymour decomposition, topological minor containment
- Optimization to $f(H) \cdot m$ polylog n

Thank you!