Tuukka Korhonen

based on joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski, University of Warsaw

Friday Seminar

12 May 2023

 Setting: Design a data structure that maintains a graph G and supports the following operations:

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(n): Create G as an empty n-vertex graph

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(n): Create G as an empty n-vertex graph
 - 2. Insert(u, v): Insert edge between u and v

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete (u, v): Delete edge between u and v

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete (u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

Example: Connectivity (Query: Are *s* and *t* in the same component?)

1. Naive: $\mathcal{O}(m)$ worst-case time per operation

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $\mathcal{O}(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81]

- Setting: Design a data structure that maintains a graph G and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete (u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph *G*

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $\mathcal{O}(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81]
- 4. [Henzinger&King'99]: $\mathcal{O}(\log^3 n)$ amortized time

Graph G

Graph G

A tree decomposition of G

Graph G

A tree decomposition of G

1. Every vertex should be in a bag

Graph G

A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag

Graph G

A tree decomposition of G

3/14

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree

Graph G

A tree decomposition of G

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1

Graph G

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1

Graph G

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

Graph *G* Treewidth 2

A tree decomposition of GWidth = 2

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

Graph *G*Treewidth 2

A tree decomposition of GWidth = 2

- Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. Bags containing a vertex should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour'84, Bertele & Brioschi'72, Halin'76]

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Previous results:

• "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $\mathcal{O}(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: O(log n) worst-case time for treewidth-3, no edge deletions allowed

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $\mathcal{O}(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: O(log n) worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $\mathcal{O}(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: O(log n) worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d
- [Majewski,Pilipczuk,Sokołowski'23]: $\mathcal{O}_{\ell}(\log n)$ amortized time for feedback vertex number ℓ

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

 Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $\mathcal{O}(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: O(log n) worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d
- [Majewski,Pilipczuk,Sokołowski'23]: $\mathcal{O}_{\ell}(\log n)$ amortized time for feedback vertex number ℓ
- [Goranci,Saranurak,Tan'21]: $n^{o(1)}$ amortized time $n^{o(1)}$ -approximate tree decomposition. Not suitable for dynamic programming.

Our result

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Our result

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer k and an empty n-vertex graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$, under the promise that the treewidth of G never exceeds k.

Our result

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer k and an empty n-vertex graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$, under the promise that the treewidth of G never exceeds k.

Moreover

Our result

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer k and an empty n-vertex graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_{k}(2^{\sqrt{\log n}\log\log n})$, under the promise that the treewidth of G never exceeds k.

Moreover

• the data structure can maintain the run of any tree automaton with evaluation time $\mathcal{O}_k(1)$ within the same running time

Our result

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer k and an empty n-vertex graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$, under the promise that the treewidth of G never exceeds k.

Moreover

- the data structure can maintain the run of any tree automaton with evaluation time $\mathcal{O}_k(1)$ within the same running time
- the data structure persists even when the treewidth of *G* exceeds *k*, in that case returning a marker "Treewidth too large" instead of maintaining the automaton

Corollary

Let H be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n}\log\log\log n})$ amortized update time for maintaining whether G contains H as a minor.

Corollary

Let H be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n}\log\log\log n})$ amortized update time for maintaining whether G contains H as a minor.

Proof:

Corollary

Let H be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether G contains H as a minor.

Proof:

 By the Grid Minor Theorem [Robertson&Seymour'85], there exists k so that every graph of treewidth > k contains H as a minor

Corollary

Let H be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether G contains H as a minor.

Proof:

- By the Grid Minor Theorem [Robertson&Seymour'85], there exists k so that every graph of treewidth > k contains H as a minor
- Use dynamic treewidth data structure with this k and a tree automaton that tests for H as a minor by dynamic programming

6/14

The algorithm

The algorithm

• Goal: Maintain a rooted binary tree decomposition of width 6k+5 and depth $d=2^{\mathcal{O}_k(\sqrt{\log n\log\log n})}$

Tuukka Korhonen Dynamic Treewidth 8/14

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2
- Maintain also dynamic programming tables directed towards the root

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$
- Edge addition: Add u and v to all bags on the path from their subtrees to the root, and re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth $\mathcal{O}(\log n)$ and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$
- Edge addition: Add u and v to all bags on the path from their subtrees to the root, and re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

• The width can become more than 6k + 5 on the green bags!

- The width can become more than 6k + 5 on the green bags!
- Solution: a Refinement operation to re-compute the tree decomposition on these bags

• Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5

- Refinement operation is given a *prefix* $T_{\rm pref}$ of the tree decomposition that contains all bags of width > 6k+5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq \mathcal{O}(\log n)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq \mathcal{O}(\log n)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq \mathcal{O}(\log n)$
- Changes also other parts of the decomposition, but only improves the width, and the amortized amount of bags changed and the amortized complexity of the operation is $\mathcal{O}_k(|T_{\mathrm{pref}}|)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq \mathcal{O}(\log n)$
- Changes also other parts of the decomposition, but only improves the width, and the amortized amount of bags changed and the amortized complexity of the operation is $\mathcal{O}_k(|T_{\mathrm{pref}}|)$
- Builds on the improvement operation of [K & Lokshtanov'23], also uses the dealternation lemma of [Bojańczyk&Pilipczuk'22] and Bodlaender-Hagerup-lemma

11/14

• Refinement operation can increase the depth by $\mathcal{O}(\log n)$

- Refinement operation can increase the depth by $\mathcal{O}(\log n)$
- Once depth becomes more than $2^{O_k(\sqrt{\log n \log \log n})}$, need to reduce it

- Refinement operation can increase the depth by $O(\log n)$
- Once depth becomes more than $2^{O_k(\sqrt{\log n \log \log n})}$, need to reduce it
- Solution: A depth-reduction scheme by using the refinement operation and a potential function

• Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \mathsf{height}(t)$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$ Inserting edge increases potential by $\mathcal{O}_k(\mathcal{O}^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$ Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \mathsf{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \mathsf{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

Tuukka Korhonen Dynamic Treewidth 12/14

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

Tuukka Korhonen Dynamic Treewidth 12/14

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(\mathcal{O}^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Inserting edge increases potential by $\mathcal{O}_k(d^2) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

How does refinement change potential?

• Let $A \subseteq V(T)$ be the set of *appendices* of T_{pref}

$$\phi(T') \le \phi(T) - \phi(T_{\text{pref}}) + \mathcal{O}_k(|T_{\text{pref}}| \cdot \log n) + \sum_{t \in A} \mathcal{O}_k(\text{height}(t) \cdot \log n)$$

• Width-reduction increases potential by $\mathcal{O}_k(d^2 \log n) = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

• Idea: If depth too large, can decrease potential "for free"

• Idea: If depth too large, can decrease potential "for free"

Lemma

If depth $> 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

• Idea: If depth too large, can decrease potential "for free"

Lemma

If depth $> 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

⇒ We can decrease potential in time propotional to the decrease

Idea: If depth too large, can decrease potential "for free"

Lemma

If depth $> 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

- ⇒ We can decrease potential in time propotional to the decrease
- ⇒ Amortized time complexity bounded by the potential

• Idea: If depth too large, can decrease potential "for free"

Lemma

If depth $> 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

- ⇒ We can decrease potential in time propotional to the decrease
- ⇒ Amortized time complexity bounded by the potential
- \Rightarrow Can keep depth at most $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$ with amortized time complexity $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

• $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth $\leq k$

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - ▶ Improve to $\mathcal{O}_k(\text{poly log } n)$

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - ▶ Improve to $\mathcal{O}_k(\text{poly log } n)$
 - ★ Conjecture: Can be improved to $\mathcal{O}_k(\log n)$

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - ▶ Improve to $\mathcal{O}_k(\text{poly log } n)$
 - * Conjecture: Can be improved to $\mathcal{O}_k(\log n)$
 - ► Dynamic version of Baker's technique: dynamic approximation scheme for DOMINATING SET on planar graphs?

- $\mathcal{O}_k(2^{\sqrt{\log n}\log\log n})$ amortized update time for maintaining a tree decomposition of width at most 6k+5 of dynamic graph of treewidth $\leq k$
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - ▶ Improve to $\mathcal{O}_k(\text{poly log } n)$
 - ★ Conjecture: Can be improved to $\mathcal{O}_k(\log n)$
 - ► Dynamic version of Baker's technique: dynamic approximation scheme for DOMINATING SET on planar graphs?
 - ► Dynamic k-DISJOINT PATHS on planar graphs?

Thank you!

Thank you!