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Dynamic graph algorithms

Setting: Design a data structure that maintains a graph G and supports
the following operations:

1. Initialize(n): Create G as an empty n-vertex graph
2. Insert(u, v ): Insert edge between u and v
3. Delete(u, v ): Delete edge between u and v
4. Query: Ask something about the graph G

Question
Can we support the operations faster than by re-computing from scratch every
time?

Example: Connectivity (Query: Are s and t in the same component?)
1. Naive: O(m) worst-case time per operation

2. Union-find: O(α(n)) worst-case time, but deletions not allowed [Tarjan’75]

3. Link/cut tree: O(log n) amortized time when G is a forest [Sleator&Tarjan’81]

4. [Henzinger&King’99]: O(log3 n) amortized time
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A tree decomposition of G
Width = 2

1. Every vertex should be in a bag

2. Every edge should be in a bag

3. Bags containing a vertex should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Bertele & Brioschi’72, Halin’76]
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Dynamic treewidth

Question
Can we maintain a bounded-width tree decomposition of a bounded treewidth
graph in the dynamic setting?

Also, we would like to maintain any “finite-state” dynamic programming
scheme on the tree decomposition

(dynamic Courcelle’s theorem)

Previous results:

“Naive”: Ok (n) worst-case time per operation [Bodlaender’96]
[Bodlaender’93]: O(log n) worst-case time for treewidth-2 graphs
[Cohen,Sairam,Tamassia,Vitter’93]: O(log n) worst-case time for
treewidth-3, no edge deletions allowed
[Dvořák,Kupec,Tůma’14]: Od (1) worst-case time for treedepth-d
[Majewski,Pilipczuk,Sokołowski’23]: O`(log n) amortized time for feedback
vertex number `
[Goranci,Saranurak,Tan’21]: no(1) amortized time no(1)-approximate tree
decomposition. Not suitable for dynamic programming.
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Our result

Summary of previous results
No non-trivial algorithms for maintaining tree decompositions of width f (k) for fully
dynamic graphs of treewidth k > 3.

Theorem (This work)
There is a data structure that is initialized with an integer k and an empty n-vertex
graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge
additions and deletions in amortized update timeOk (2

√
log n log log n), under the

promise that the treewidth of G never exceeds k .

Moreover

the data structure can maintain the run of any tree automaton with evaluation time
Ok (1) within the same running time

the data structure persists even when the treewidth of G exceeds k , in that case
returning a marker “Treewidth too large” instead of maintaining the automaton
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Example application

Corollary

Let H be fixed planar graph. There is a dynamic algorithm withOH(2
√
log n log log n)

amortized update time for maintaining whether G contains H as a minor.

Proof:

By the Grid Minor Theorem [Robertson&Seymour’85], there exists k so that every
graph of treewidth > k contains H as a minor

Use dynamic treewidth data structure with this k and a tree automaton that tests
for H as a minor by dynamic programming
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The algorithm

The algorithm
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General plan

Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender&Hagerup’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in time Ok (d)

Edge addition: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in time Ok (d)
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What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition
on these bags

u

u
u v

+u

+v

+v

+u, v
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Refinement operation

Refinement operation is given a prefix Tpref of the tree decomposition that contains
all bags of width > 6k + 5

Re-arranges the prefix into new prefix of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized amount of bags changed and the amortized complexity of the
operation is Ok (|Tpref|)

Builds on the improvement operation of [K & Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma
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What can go wrong?

Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√
log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function
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Potential function

Potential function of form φ(T ) =
∑

t∈V (T ) k10·|Bt | · height(t)

Inserting edge increases potential by Ok (d2) = 2Ok (
√
log n log log n)

How does refinement change potential?
Let A ⊆ V (T ) be the set of appendices of Tpref

φ(T ′) ≤ φ(T )− φ(Tpref) +Ok (|Tpref| · log n) +
∑

t∈AOk (height(t) · log n)

Width-reduction increases potential by Ok (d2 log n) = 2Ok (
√
log n log log n)
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Let A ⊆ V (T ) be the set of appendices of Tpref

φ(T ′) ≤ φ(T )− φ(Tpref) +Ok (|Tpref| · log n) +
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Depth-reduction scheme

Idea: If depth too large, can decrease potential “for free”

Lemma

If depth > 2Ok (
√
log n log log n), then exists prefix Tpref so that

φ(T ′) < φ(T )− Ω(φ(Tpref)).

⇒We can decrease potential in time propotional to the decrease

⇒ Amortized time complexity bounded by the potential

⇒ Can keep depth at most 2Ok (
√
log n log log n) with amortized time

complexity 2Ok (
√
log n log log n)
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Conclusion

Ok(2
√
log n log log n) amortized update time for maintaining a tree

decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Open problems and directions:

I Improve to Ok (poly log n)

F Conjecture: Can be improved to Ok (log n)

I Dynamic version of Baker’s technique: dynamic approximation
scheme for DOMINATING SET on planar graphs?

I Dynamic k -DISJOINT PATHS on planar graphs?
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Thank you!

Thank you!
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