Induced Minors of Graphs

Tuukka Korhonen

Dagstuhl Seminar 25041: Solving Problems on Graphs: From Structure to Algorithms

20 January 2025

_				
	449	COT!	202	on
	nna -	NO I	IIO III	en.

- 1. Induced subgraph
 - vertex deletions

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

In this talk, all graphs are simple! (no self loops or parallel edges)

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

In this talk, all graphs are simple! (no self loops or parallel edges)

(Contraction is defined so that it does not create self-loops or parallel edges)

Motivation

• Theory of induced minors \Leftrightarrow dense generalization of the theory of graph minors?

Motivation

• Theory of induced minors \Leftrightarrow dense generalization of the theory of graph minors?

Which results from Graph Minors generalize to Induced Minors?

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed class of graphs. There exists a finite set of graphs H, so that a graph G is in C if and only if G does not a graph from H as a minor.

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed class of graphs. There exists a finite set of graphs H, so that a graph G is in C if and only if G does not a graph from H as a minor.

Theorem (Thomas, 1985)

This is not true for induced minors. (The induced minor order contains an infinite antichain.)

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed class of graphs. There exists a finite set of graphs H, so that a graph G is in C if and only if G does not a graph from H as a minor.

Theorem (Thomas, 1985)

This is not true for induced minors. (The induced minor order contains an infinite antichain.)

(With planar graphs of pathwidth \leq 4 and fvs \leq 3)

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed class of graphs. There exists a finite set of graphs H, so that a graph G is in C if and only if G does not a graph from H as a minor.

Theorem (Thomas, 1985)

This is not true for induced minors. (The induced minor order contains an infinite antichain.)

(With planar graphs of pathwidth \leq 4 and fvs \leq 3)

Theorem (Kratochvíl, 1991)

The class of string graphs is induced-minor-closed, but has an infinite number of minimal obstructions.

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed class of graphs. There exists a finite set of graphs H, so that a graph G is in C if and only if G does not a graph from H as a minor.

Theorem (Thomas, 1985)

This is not true for induced minors. (The induced minor order contains an infinite antichain.)

(With planar graphs of pathwidth \leq 4 and fvs \leq 3)

Theorem (Kratochvíl, 1991)

The class of string graphs is induced-minor-closed, but has an infinite number of minimal obstructions.

Many special classes well-quasi-ordered by induced minors [Thomas, 1985], [Ding, 1998], [Lozin & Mayhill, 2011], [Fellows, Hermelin & Rosamond, 2012], [Lewchalermvongs, 2015], [Błasiok, Kamiński, Raymond & Trunck, 2019]

Theorem (Robertson & Seymour, 1984-2012)

There is an algorithm that tests if *H* is a minor of *G* in $f(H) \cdot |V(G)|^3$ time.

Theorem (Robertson & Seymour, 1984-2012)

There is an algorithm that tests if *H* is a minor of *G* in $f(H) \cdot |V(G)|^3$ time.

Theorem (Fellows, Kratochvíl, Middendorf & Pfeiffer, 1995)

There is a graph H so that testing if a given graph G contains H as an induced minor is NP-hard.

Theorem (Robertson & Seymour, 1984-2012)

There is an algorithm that tests if *H* is a minor of *G* in $f(H) \cdot |V(G)|^3$ time.

Theorem (Fellows, Kratochvíl, Middendorf & Pfeiffer, 1995)

There is a graph H so that testing if a given graph G contains H as an induced minor is NP-hard.

Theorem (K. & Lokshtanov, 2024)

There is a tree *T* so that testing if a given *n*-vertex graph *G* contains *T* as an induced minor is NP-hard. (And requires $2^{\Omega(n/\log^3 n)}$ time assuming the ETH.)

Theorem (Robertson & Seymour, 1984-2012)

There is an algorithm that tests if *H* is a minor of *G* in $f(H) \cdot |V(G)|^3$ time.

Theorem (Fellows, Kratochvíl, Middendorf & Pfeiffer, 1995)

There is a graph H so that testing if a given graph G contains H as an induced minor is NP-hard.

Theorem (K. & Lokshtanov, 2024)

There is a tree *T* so that testing if a given *n*-vertex graph *G* contains *T* as an induced minor is NP-hard. (And requires $2^{\Omega(n/\log^3 n)}$ time assuming the ETH.)

Polynomial-time algorithms for special cases [Fellows, Kratochvíl, Middendorf & Pfeiffer, 1995], [Fiala, Kamiński, Paulusma, 2012], [van 't Hof, Kamiński, Paulusma, Szeider, Thilikos, 2012], [Golovach, Kratsch, Paulusma, 2013], [Belmonte, Golovach, Heggernes, van 't Hof, Kamiński, Paulusma, 2014], [Dallard, Dumas, Hilaire, Milanič, Perez, Trotignon, 2024], [Dallard, Dumas, Hilaire, Perez, 2025]

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs

Example: C₄-minor-free graphs

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs
- Example: C_4 -minor-free graphs
 - Every biconnected component is a triangle

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs

Example: C_4 -minor-free graphs

• Every biconnected component is a triangle

Example: C₄-induced-minor-free graphs

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs

Example: C_4 -minor-free graphs

• Every biconnected component is a triangle

Example: C_4 -induced-minor-free graphs = chordal graphs

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs
- Example: C_4 -minor-free graphs
 - Every biconnected component is a triangle

Example: C_4 -induced-minor-free graphs = chordal graphs

Example: \dot{K}_5 -induced-minor-free graphs

• $\dot{K_5}$ is K_5 with every edge subdivided once

For a graph H, we can define graph classes by excluding H

- *H*-minor-free graphs
- H-induced-minor-free graphs
- Example: C_4 -minor-free graphs
 - Every biconnected component is a triangle
- Example: C_4 -induced-minor-free graphs = chordal graphs

- Example: \dot{K}_5 -induced-minor-free graphs
 - \mathbf{K}_5 is K_5 with every edge subdivided once
 - \Rightarrow Superclass of the string graphs

H-minor-free and H-induced-minor-free: Two important cases

1. H is planar

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
 - Are H-induced-minor-free graphs "tree-like"?

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
 - Are H-induced-minor-free graphs "tree-like"?
 - (quasi)Polynomial-time algorithms on H-induced-minor-free graphs?

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
 - Are H-induced-minor-free graphs "tree-like"?
 - (quasi)Polynomial-time algorithms on H-induced-minor-free graphs?
- 2. *H* is non-planar

H-minor-free and *H*-induced-minor-free: Two important cases

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
 - Are H-induced-minor-free graphs "tree-like"?
 - (quasi)Polynomial-time algorithms on H-induced-minor-free graphs?

2. H is non-planar

► H-minor-free ≈ planar-like (The Structure Theorem, [Robertson & Seymour, 2003])

- 1. *H* is planar
 - ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
 - Are H-induced-minor-free graphs "tree-like"?
 - (quasi)Polynomial-time algorithms on H-induced-minor-free graphs?
- 2. *H* is non-planar
 - ► H-minor-free ≈ planar-like (The Structure Theorem, [Robertson & Seymour, 2003])
 - Are H-induced-minor-free graphs similar to string graphs?

H-minor-free and *H*-induced-minor-free: Two important cases

1. *H* is planar

- ► H-minor-free ⇔ bounded treewidth (The Grid Minor Theorem, [Robertson & Seymour, 1986])
- Are H-induced-minor-free graphs "tree-like"?
- (quasi)Polynomial-time algorithms on H-induced-minor-free graphs?

2. H is non-planar

- ► H-minor-free ≈ planar-like (The Structure Theorem, [Robertson & Seymour, 2003])
- Are H-induced-minor-free graphs similar to string graphs?
- Subexponential-time algorithms/(quasi)Polynomial-time approximation schemes on H-induced-minor-free graphs?

Are *H*-induced-minor-free graphs for planar *H* "tree-like"?

Are *H*-induced-minor-free graphs for planar *H* "tree-like"?

Theorem (K., 2023)

If *G* excludes a planar graph *H* as an induced minor and has maximum degree Δ , then the treewidth of *G* is at most $\|H\|^{\mathcal{O}(1)} \cdot 2^{\Delta^5}$

Are *H*-induced-minor-free graphs for planar *H* "tree-like"?

Theorem (K., 2023)

If *G* excludes a planar graph *H* as an induced minor and has maximum degree Δ , then the treewidth of *G* is at most $||H||^{\mathcal{O}(1)} \cdot 2^{\Delta^5}$

Conjecture (Gartland & Lokshtanov, 2021-2023)

There is a function f, so that if G excludes a planar graph H as an induced minor, then G has a balanced separator dominated by f(||H||) vertices.

Are *H*-induced-minor-free graphs for planar *H* "tree-like"?

Theorem (K., 2023)

If *G* excludes a planar graph *H* as an induced minor and has maximum degree Δ , then the treewidth of *G* is at most $\|H\|^{\mathcal{O}(1)} \cdot 2^{\Delta^5}$

Conjecture (Gartland & Lokshtanov, 2021-2023)

There is a function f, so that if G excludes a planar graph H as an induced minor, then G has a balanced separator dominated by f(||H||) vertices.

Corollary of the conjecture

There is a function f, so that if G excludes a planar graph H as an induced minor and has maximum degree Δ , then the treewidth of G is at most $f(||H||) \cdot \Delta$

Are *H*-induced-minor-free graphs for planar *H* "tree-like"?

Theorem (K., 2023)

If *G* excludes a planar graph *H* as an induced minor and has maximum degree Δ , then the treewidth of *G* is at most $\|H\|^{\mathcal{O}(1)} \cdot 2^{\Delta^5}$

Conjecture (Gartland & Lokshtanov, 2021-2023)

There is a function f, so that if G excludes a planar graph H as an induced minor, then G has a balanced separator dominated by f(||H||) vertices.

Corollary of the conjecture

There is a function f, so that if G excludes a planar graph H as an induced minor and has maximum degree Δ , then the treewidth of G is at most $f(||H||) \cdot \Delta$

Note: Δ cannot be replaced by (much) stronger parameters! [Pohoata, 2014], [Sintiari & Trotignon, 2021], [Davies, 2022], [Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé, Wesolek, 2024], [Abrishami, Alecu, Chudnovsky, Hajebi, Spirkl, 2024]

Excluding a planar graph: Algorithms

Excluding a planar graph: Algorithms

Key problem: Maximum Independent Set

Open problem (Dallard, Milanič & Štorgel, Gartland & Lokshtanov, 2021) Is the Maximum Independent Set Problem (quasi)polynomial-time solvable on *H*-induced-minor-free graphs for every fixed planar *H*?

Open problem (Dallard, Milanič & Štorgel, Gartland & Lokshtanov, 2021) Is the Maximum Independent Set Problem (quasi)polynomial-time solvable on *H*-induced-minor-free graphs for every fixed planar *H*?

• Solved for: $H = P_k$ [Gartland & Lokshtanov, 2020], $H = C_k$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk & Rzążewski, 2021], $H = W_4$, $H = K_5^-$, and $H = K_{2,q}$ [Dallard, Milanič & Štorgel, 2021], $H = K_1 + tK_2$ and $H = tC_3 \uplus C_4$ [Bonnet, Duron, Geniet, Thomassé & Wesolek, 2023], $\mathcal{O}(1)$ -degree input graphs [K. 2023], $H = tC_3$ [Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomasse & Wesolek, 2024], $H = tC_\ell$ and $K_{1,k}$ -free [Ahn, Gollin, Huynh & Kwon, 2025]

Open problem (Dallard, Milanič & Štorgel, Gartland & Lokshtanov, 2021) Is the Maximum Independent Set Problem (quasi)polynomial-time solvable on *H*-induced-minor-free graphs for every fixed planar *H*?

- Solved for: $H = P_k$ [Gartland & Lokshtanov, 2020], $H = C_k$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk & Rzążewski, 2021], $H = W_4$, $H = K_5^-$, and $H = K_{2,q}$ [Dallard, Milanič & Štorgel, 2021], $H = K_1 + tK_2$ and $H = tC_3 \uplus C_4$ [Bonnet, Duron, Geniet, Thomassé & Wesolek, 2023], $\mathcal{O}(1)$ -degree input graphs [K. 2023], $H = tC_3$ [Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomasse & Wesolek, 2024], $H = tC_\ell$ and $K_{1,k}$ -free [Ahn, Gollin, Huynh & Kwon, 2025]
- Open even when H is a tree

Open problem (Dallard, Milanič & Štorgel, Gartland & Lokshtanov, 2021) Is the Maximum Independent Set Problem (quasi)polynomial-time solvable on *H*-induced-minor-free graphs for every fixed planar *H*?

- Solved for: $H = P_k$ [Gartland & Lokshtanov, 2020], $H = C_k$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk & Rzążewski, 2021], $H = W_4$, $H = K_5^-$, and $H = K_{2,q}$ [Dallard, Milanič & Štorgel, 2021], $H = K_1 + tK_2$ and $H = tC_3 \uplus C_4$ [Bonnet, Duron, Geniet, Thomassé & Wesolek, 2023], $\mathcal{O}(1)$ -degree input graphs [K. 2023], $H = tC_3$ [Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomasse & Wesolek, 2024], $H = tC_\ell$ and $K_{1,k}$ -free [Ahn, Gollin, Huynh & Kwon, 2025]
- Open even when H is a tree
- The Gartland-Lokshtanov structure conjecture would imply a Quasipolynomial-time approximation scheme.

```
Theorem (Alon, Seymour & Thomas, 1990)
```

H-minor-free graphs have balanced separators of size $||H||^{\mathcal{O}(1)} \cdot \sqrt{n}$

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{\mathcal{O}(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $\|H\|^{\mathcal{O}(1)} \cdot \sqrt{m} \cdot \log n$

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{\mathcal{O}(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $\|H\|^{\mathcal{O}(1)} \cdot \sqrt{m} \cdot \log n$

 $\Rightarrow 2^{\tilde{\mathcal{O}}_{H}(n^{2/3})}$ time algorithms for problems like Maximum Independent Set on *H*-induced-minor-free graphs

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $\|H\|^{\mathcal{O}(1)} \cdot \sqrt{m} \cdot \log n$

 $\Rightarrow 2^{\tilde{\mathcal{O}}_{H}(n^{2/3})}$ time algorithms for problems like Maximum Independent Set on *H*-induced-minor-free graphs

Open problem

Can Maximum Independent Set be solved in $2^{\tilde{\mathcal{O}}_{H}(n^{1/2})}$ time on *H*-induced-minor-free graphs?

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $\|H\|^{\mathcal{O}(1)} \cdot \sqrt{m} \cdot \log n$

 $\Rightarrow 2^{\tilde{\mathcal{O}}_{H}(n^{2/3})}$ time algorithms for problems like Maximum Independent Set on *H*-induced-minor-free graphs

Open problem

Can Maximum Independent Set be solved in $2^{\tilde{\mathcal{O}}_{H}(n^{1/2})}$ time on *H*-induced-minor-free graphs?

Open problem

Can we shave the log *n* factor in the separator theorem?

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{m} \cdot \log n$

 $\Rightarrow 2^{\tilde{\mathcal{O}}_{H}(n^{2/3})}$ time algorithms for problems like Maximum Independent Set on *H*-induced-minor-free graphs

Open problem

Can Maximum Independent Set be solved in $2^{\tilde{\mathcal{O}}_{H}(n^{1/2})}$ time on *H*-induced-minor-free graphs?

Open problem

Can we shave the log *n* factor in the separator theorem?

• Does the [Klein-Plotkin-Rao, 1993]-layering work on H-induced-minor-free graphs?

Theorem (Alon, Seymour & Thomas, 1990)

H-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{n}$

Theorem (K. & Lokshtanov, 2024)

H-induced-minor-free graphs have balanced separators of size $||H||^{O(1)} \cdot \sqrt{m} \cdot \log n$

 $\Rightarrow 2^{\tilde{\mathcal{O}}_{H}(n^{2/3})}$ time algorithms for problems like Maximum Independent Set on *H*-induced-minor-free graphs

Open problem

Can Maximum Independent Set be solved in $2^{\tilde{\mathcal{O}}_{H}(n^{1/2})}$ time on *H*-induced-minor-free graphs?

Open problem

Can we shave the log *n* factor in the separator theorem?

• Does the [Klein-Plotkin-Rao, 1993]-layering work on H-induced-minor-free graphs?

Claimed by [Lee, 2017] and [Bonnet, Hodor, K. & Masařík, 2023], but both have the same error

Excluding a non-planar graph: More open problems

Excluding a non-planar graph: More open problems

Open problem (Lokshtanov)

Disprove: For every H there exists H', so that H-induced-minor-free graphs are intersection graphs of connected subgraphs of H'-minor-free graphs.

Open problem (Lokshtanov)

Disprove: For every H there exists H', so that H-induced-minor-free graphs are intersection graphs of connected subgraphs of H'-minor-free graphs.

Open problem (K. & Lokshtanov, 2024)

Are there constants k and H so that Induced k-Disjoint Paths is NP-hard on H-induced-minor-free graphs?

Open problem (Lokshtanov)

Disprove: For every H there exists H', so that H-induced-minor-free graphs are intersection graphs of connected subgraphs of H'-minor-free graphs.

Open problem (K. & Lokshtanov, 2024)

Are there constants k and H so that Induced k-Disjoint Paths is NP-hard on H-induced-minor-free graphs?

• In other words, are dense models the only reason for hardness of *H*-induced-minor testing?

• Early negative results on extending the results of graph minors to induced minors

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*

Selected open problems:

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*
- Selected open problems:
 - 1. Treewidth of *H*-induced-minor-free graphs of maximum degree Δ when *H* is planar: Improve bounds towards $f(H) \cdot \Delta$

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*

Selected open problems:

- 1. Treewidth of *H*-induced-minor-free graphs of maximum degree Δ when *H* is planar: Improve bounds towards $f(H) \cdot \Delta$
- 2. Does [Klein-Plotkin-Rao, 1993]-layering work for H-induced-minor-free graphs?

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*
- Selected open problems:
 - 1. Treewidth of *H*-induced-minor-free graphs of maximum degree Δ when *H* is planar: Improve bounds towards $f(H) \cdot \Delta$
 - 2. Does [Klein-Plotkin-Rao, 1993]-layering work for H-induced-minor-free graphs?
 - 3. Are there constants *k* and *H* so that induced *k*-disjoint paths is NP-hard on *H*-induced-minor-free graphs?

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*
- Selected open problems:
 - 1. Treewidth of *H*-induced-minor-free graphs of maximum degree Δ when *H* is planar: Improve bounds towards $f(H) \cdot \Delta$
 - 2. Does [Klein-Plotkin-Rao, 1993]-layering work for H-induced-minor-free graphs?
 - 3. Are there constants *k* and *H* so that induced *k*-disjoint paths is NP-hard on *H*-induced-minor-free graphs?
 - Is there a 2^{Õ(n^{1/2})} time algorithm for Maximum Independent Set on string graphs when the intersection model is not given. (cf. [Marx, Pilipczuk, 2015])

- Early negative results on extending the results of graph minors to induced minors
- Recently, positive results and good open problems about structure and algorithms for *H*-induced-minor-free graphs, for both planar and non-planar *H*

Selected open problems:

- 1. Treewidth of *H*-induced-minor-free graphs of maximum degree Δ when *H* is planar: Improve bounds towards $f(H) \cdot \Delta$
- 2. Does [Klein-Plotkin-Rao, 1993]-layering work for H-induced-minor-free graphs?
- 3. Are there constants *k* and *H* so that induced *k*-disjoint paths is NP-hard on *H*-induced-minor-free graphs?
- Is there a 2^{Õ(n^{1/2})} time algorithm for Maximum Independent Set on string graphs when the intersection model is not given. (cf. [Marx, Pilipczuk, 2015])

Thanks!