Linear-Time Algorithms for *k*-Edge-Connected Components, *k*-Lean Tree Decompositions, and More

Tuukka Korhonen

10 October 2024

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices \Rightarrow unique partition into components

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Previous work:

• $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]
- $\mathcal{O}(m)$ for k = 3 [Galil & Italiano '91]

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]
- $\mathcal{O}(m)$ for k = 3 [Galil & Italiano '91]
- \circ $\mathcal{O}(m)$ for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]
- $\mathcal{O}(m)$ for k = 3 [Galil & Italiano '91]
- \bullet $\mathcal{O}(m)$ for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

- $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91]
- \bullet $\mathcal{O}(m)$ for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$ polylog m for all k [Hariharan, Kavitha, Panigrahi '07]

Def: Vertices u and v in the same k-edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is $k^{\mathcal{O}(k^2)}m$ time algorithm for k-edge-connected components

Previous work:

- $\mathcal{O}(m)$ for k = 2 [Hopcroft & Tarjan '73]
- $\mathcal{O}(m)$ for k=3 [Galil & Italiano '91]
- \bullet $\mathcal{O}(m)$ for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$ for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$ polylog m for all k [Hariharan, Kavitha, Panigrahi '07]

For minimum cut:

• $\mathcal{O}(k^2 m \log m)$ [Gabow '91], $\mathcal{O}(m \operatorname{polylog} m)$ [Karger '96]

Tree decomposition (T, bag) of a graph G with

Tree decomposition (T, bag) of a graph G with

Adhesion size < k

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Let $t_1, t_2 \in V(T)$ and $X_1 \subseteq bag(t_1), X_2 \subseteq bag(t_2)$ with $|X_1| = |X_2| \le k$, then:

• Unless there is t_1 - t_2 -adhesion of size $<|X_1|$, there are $|X_1|$ vertex-disjoint paths linking X_1 to X_2

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Let $t_1, t_2 \in V(T)$ and $X_1 \subseteq bag(t_1), X_2 \subseteq bag(t_2)$ with $|X_1| = |X_2| \le k$, then:

• Unless there is t_1 - t_2 -adhesion of size $<|X_1|$, there are $|X_1|$ vertex-disjoint paths linking X_1 to X_2

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a k-lean tree decomposition

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Let $t_1, t_2 \in V(T)$ and $X_1 \subseteq bag(t_1), X_2 \subseteq bag(t_2)$ with $|X_1| = |X_2| \le k$, then:

• Unless there is t_1 - t_2 -adhesion of size $<|X_1|$, there are $|X_1|$ vertex-disjoint paths linking X_1 to X_2

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a k-lean tree decomposition

Obs: k-lean tree decomposition is (i, i)-unbreakable for all $i \le k$

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Let $t_1, t_2 \in V(T)$ and $X_1 \subseteq bag(t_1)$, $X_2 \subseteq bag(t_2)$ with $|X_1| = |X_2| \le k$, then:

• Unless there is t_1 - t_2 -adhesion of size $<|X_1|$, there are $|X_1|$ vertex-disjoint paths linking X_1 to X_2

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a k-lean tree decomposition

Obs: k-lean tree decomposition is (i, i)-unbreakable for all $i \le k$

⇒ Linear-time FPT algorithm for unbreakable decomposition with optimal unbreakability parameters

Tree decomposition (T, bag) of a graph G with

- Adhesion size < k
- Menger-like property:

Let $t_1, t_2 \in V(T)$ and $X_1 \subseteq bag(t_1)$, $X_2 \subseteq bag(t_2)$ with $|X_1| = |X_2| \le k$, then:

• Unless there is t_1 - t_2 -adhesion of size $<|X_1|$, there are $|X_1|$ vertex-disjoint paths linking X_1 to X_2

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}m$ time algorithm for computing a k-lean tree decomposition

Obs: k-lean tree decomposition is (i, i)-unbreakable for all $i \le k$

- ⇒ Linear-time FPT algorithm for unbreakable decomposition with optimal unbreakability parameters
- Improves upon [Anand, Lee, Li, Long, Saranurak '25], but with worse f(k) in the running time

Reducing *k*-edge-connected components to *k*-lean tree decomposition

Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints

Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints
- Resulting *k*-lean tree decomposition gives *k*-Gomory-Hu tree

The algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm (Inspired by [Graph Minors X., Robertson & Seymour '91])

Improver algorithm:

Improver algorithm:

Input: Tree decomposition with

- Adhesion size < 2k
- \bullet (2k, k)-unbreakable bags

Improver algorithm:

Input: Tree decomposition with

- Adhesion size < 2k
- (2k, k)-unbreakable bags

Output: k-lean tree decomposition

Improver algorithm:

Input: Tree decomposition with

- Adhesion size < 2k
- \bullet (2k, k)-unbreakable bags

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Generalized Bodlaender's compression

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Generalized Bodlaender's compression

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof: Recursive algorithm by using the improver algorithm:

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

Proof: Recursive algorithm by using the improver algorithm:

• Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M
 - "Uncontract" the k-lean tree decomposition of G/M to get a tree decomposition of G with adhesion size < 2k and (2k, k)-unbreakable bags

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M
 - "Uncontract" the k-lean tree decomposition of G/M to get a tree decomposition of G with adhesion size < 2k and (2k, k)-unbreakable bags
 - Apply the improver algorithm and return

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M
 - "Uncontract" the k-lean tree decomposition of G/M to get a tree decomposition of G with adhesion size < 2k and (2k, k)-unbreakable bags
 - Apply the improver algorithm and return
- Case 2: $|M| < n/k^6$

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M
 - "Uncontract" the k-lean tree decomposition of G/M to get a tree decomposition of G with adhesion size < 2k and (2k, k)-unbreakable bags
 - Apply the improver algorithm and return
- Case 2: $|M| < n/k^6$
 - ▶ Find a set X of |X| = n/4 I_k -simplicial vertices with degree $\leq 4k$

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a k-lean tree decomposition.

- Run the sparsifier of [Nagamochi, Ibaraki '92] to ensure $m \le kn$
- Let M be a maximal matching
- Case 1: $|M| \ge n/k^6$
 - Call the algorithm recursively on G/M
 - "Uncontract" the k-lean tree decomposition of G/M to get a tree decomposition of G with adhesion size < 2k and (2k, k)-unbreakable bags
 - Apply the improver algorithm and return
- Case 2: $|M| < n/k^6$
 - ▶ Find a set X of $|X| = n/4 I_k$ -simplicial vertices with degree $\leq 4k$
 - ▶ Eliminate X, call the algorithm recursively, add X back, resulting in (k, k)-unbreakable tree decomposition with adhesion size < k, apply the improver algorithm, and return

Part 2: The improver algorithm

Part 2: The improver algorithm

Part 2: The improver algorithm

Part 2: The improver algorithm

Input: Tree decomposition with

- Adhesion size < 2k
- \bullet (2k, k)-unbreakable bags

Output: k-lean tree decomposition

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B]

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B] Set $X \subseteq V(G)$ is **well-linked** in G if for all separations (A, B) of G, it holds that $|(X \cap A) \cup (A \cap B)| \ge |A \cap B|$ or $|(X \cap B) \cup (A \cap B)| \ge |A \cap B|$.

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B] Set $X \subseteq V(G)$ is **well-linked** in G if for all separations (A, B) of G, it holds that $|(X \cap A) \cup (A \cap B)| \ge |A \cap B|$ or $|(X \cap B) \cup (A \cap B)| \ge |A \cap B|$.

Lemma (Informal)

If (A, B) is a doubly well-linked separation with $|A \cap B| < k$, can greedily decompose along (A, B)

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B] Set $X \subseteq V(G)$ is **well-linked** in G if for all separations (A, B) of G, it holds that $|(X \cap A) \cup (A \cap B)| \ge |A \cap B|$ or $|(X \cap B) \cup (A \cap B)| \ge |A \cap B|$.

Lemma (Informal)

If (A, B) is a doubly well-linked separation with $|A \cap B| < k$, can greedily decompose along (A, B)

• All separations between subsets of A or B can be uncrossed with (A, B)

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B] Set $X \subseteq V(G)$ is **well-linked** in G if for all separations (A, B) of G, it holds that $|(X \cap A) \cup (A \cap B)| \ge |A \cap B|$ or $|(X \cap B) \cup (A \cap B)| \ge |A \cap B|$.

Lemma (Informal)

If (A, B) is a doubly well-linked separation with $|A \cap B| < k$, can greedily decompose along (A, B)

- All separations between subsets of A or B can be uncrossed with (A, B)
- If (C, D) is doubly well-linked separation in $G \triangleleft (A, B)$, then the corresponding separation of G is doubly well-linked in G

• Suppose we have a separation (A, B) of size $|A \cap B| < k$. Can we decompose along (A, B)?

Def: Separation (A, B) is **doubly well-linked** if the set $A \cap B$ is well-linked in both G[A] and in G[B] Set $X \subseteq V(G)$ is **well-linked** in G if for all separations (A, B) of G, it holds that $|(X \cap A) \cup (A \cap B)| \ge |A \cap B|$ or $|(X \cap B) \cup (A \cap B)| \ge |A \cap B|$.

Lemma (Informal)

If (A, B) is a doubly well-linked separation with $|A \cap B| < k$, can greedily decompose along (A, B)

- All separations between subsets of A or B can be uncrossed with (A, B)
- If (C, D) is doubly well-linked separation in $G \triangleleft (A, B)$, then the corresponding separation of G is doubly well-linked in G

Lemma

If there exists separation (A, B) with $|A \cap B| < k$ and $|A|, |B| \ge s \cdot 2^k$, then exists doubly well-linked separation (A', B') with $|A' \cap B'| < k$ and $|A|, |B| \ge s$.

Issue: These properties of doubly well-linked separations are morally true, but fail subtly

Solution: Different definitions

Solution: Different definitions

Graphs ⇒ hypergraphs

Solution: Different definitions

- Graphs ⇒ hypergraphs
- Separations $(A, B) \Rightarrow$ separations (A, \overline{A}) , where $A \subseteq E(G)$ and $\overline{A} = E(G) \setminus A$

Solution: Different definitions

- Graphs ⇒ hypergraphs
- Separations $(A, B) \Rightarrow$ separations (A, \overline{A}) , where $A \subseteq E(G)$ and $\overline{A} = E(G) \setminus A$
- Tree decompositions ⇒ superbranch decompositions

The real goal:

The real goal:

Compute a superbranch decomposition, where

- Separations corresponding to adhesions have size < k
- Separations corresponding to adhesions are doubly well-linked
- Each torso is $(2^{\mathcal{O}(k)}, k)$ -unbreakable

The real goal:

Compute a superbranch decomposition, where

- Separations corresponding to adhesions have size < k
- Separations corresponding to adhesions are doubly well-linked
- Each torso is $(2^{\mathcal{O}(k)}, k)$ -unbreakable

Then,

The real goal:

Compute a superbranch decomposition, where

- Separations corresponding to adhesions have size < k
- Separations corresponding to adhesions are doubly well-linked
- Each torso is $(2^{\mathcal{O}(k)}, k)$ -unbreakable

Then,

• Compute *k*-lean tree decomposition of each torso (of the primal graph)

The real goal:

Compute a superbranch decomposition, where

- ullet Separations corresponding to adhesions have size < k
- Separations corresponding to adhesions are doubly well-linked
- Each torso is $(2^{\mathcal{O}(k)}, k)$ -unbreakable

Then,

- Compute *k*-lean tree decomposition of each torso (of the primal graph)
- Combine along the decomposition to get *k*-lean tree decomposition of the graph

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

Refining a decomposition:

1. Downwards well-linked

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

- Downwards well-linked
- 2. Upwards k-well-linked

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

- Downwards well-linked
- 2. Upwards k-well-linked
- 3. k-tangle-unbreakable torsos

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

- Downwards well-linked
- 2. Upwards k-well-linked
- 3. *k*-tangle-unbreakable torsos
- 4. Small adhesions

Input: Superbranch decomposition with

- Adhesions of size < 2k
- (2k, k)-unbreakable bags

Goal: Superbranch decomposition with

- Doubly well-linked adhesions of size < k
- $(2^{\mathcal{O}(k)}, k)$ -unbreakable torsos

- Downwards well-linked
- 2. Upwards k-well-linked
- 3. k-tangle-unbreakable torsos
- 4. Small adhesions
- 5. From k-tangle-unbreakability to $(2^{\mathcal{O}(k)}, k)$ -unbreakability

• $k^{O(k^2)}m$ time algorithm for k-lean tree decomposition

- $k^{O(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time
- ⇒ Application: *k*-edge-connected components in linear-time (long-standing open problem)

- $k^{O(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time
- ⇒ Application: *k*-edge-connected components in linear-time (long-standing open problem)

Main techniques:

- $k^{\mathcal{O}(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time
- ⇒ Application: *k*-edge-connected components in linear-time (long-standing open problem)

Main techniques:

Generalized Bodlaender's compression scheme

- $k^{O(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time
- ⇒ Application: k-edge-connected components in linear-time (long-standing open problem)

Main techniques:

- Generalized Bodlaender's compression scheme
- Decomposition by doubly well-linked separations

- $k^{O(k^2)}m$ time algorithm for k-lean tree decomposition
- ⇒ Application: Unbreakable decomposition in linear FPT time
- ⇒ Application: k-edge-connected components in linear-time (long-standing open problem)

Main techniques:

- Generalized Bodlaender's compression scheme
- Decomposition by doubly well-linked separations

Thank you!