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k -edge-connected components

Def: Vertices u and v in the same k -edge-connected component if no u-v cut with < k edges

Obs: This gives equivalence relation among vertices⇒ unique partition into components

Theorem (This work)

There is kO(k2)m time algorithm for k -edge-connected components

Previous work:
O(m) for k = 2 [Hopcroft & Tarjan ’73]
O(m) for k = 3 [Galil & Italiano ’91]
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]
For minimum cut:
O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]
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k -lean tree decompositions
Tree decomposition (T ,bag) of a graph G with

Adhesion size < k

Menger-like property:

Let t1, t2 ∈ V (T ) and X1 ⊆ bag(t1), X2 ⊆ bag(t2) with |X1| = |X2| ≤ k , then:

Unless there is t1-t2-adhesion of size < |X1|, there are |X1| vertex-disjoint paths linking X1 to X2

Theorem (This work)

There is a kO(k2)m time algorithm for computing a k -lean tree decomposition

Obs: k -lean tree decomposition is (i , i)-unbreakable for all i ≤ k

⇒ Linear-time FPT algorithm for unbreakable decomposition with optimal unbreakability
parameters

Improves upon [Anand, Lee, Li, Long, Saranurak ’25], but with worse f (k) in the running time
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Reducing k -edge-connected components to k -lean tree decomposition

Replace vertices by cliques of size k
Create vertex for each edge and connect to the cliques corresponding to its endpoints
Resulting k -lean tree decomposition gives k -Gomory-Hu tree
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The algorithm

The algorithm

Part 1: Proof that “improver algorithm” implies the algorithm (Inspired by [Bodlaender ’93])

Part 2: The improver algorithm (Inspired by [Graph Minors X., Robertson & Seymour ’91])
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Part 1: Improver algorithm implies the algorithm

Improver algorithm:

Input: Tree decomposition with
Adhesion size < 2k
(2k , k)-unbreakable bags

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) ·m, then there is an algorithm that in time
kO(1) · f (k) ·m computes a k -lean tree decomposition.
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Generalized Bodlaender’s compression

Lemma

If there is improver algorithm with running time f (k) ·m, then there is an algorithm that in time
kO(1) · f (k) ·m computes a k -lean tree decomposition.

Proof: Recursive algorithm by using the improver algorithm:

Run the sparsifier of [Nagamochi, Ibaraki ’92] to ensure m ≤ kn
Let M be a maximal matching
Case 1: |M| ≥ n/k6

I Call the algorithm recursively on G/M
I “Uncontract” the k -lean tree decomposition of G/M to get a tree decomposition of G with

adhesion size < 2k and (2k , k)-unbreakable bags
I Apply the improver algorithm and return

Case 2: |M| < n/k6

I Find a set X of |X | = n/4 Ik -simplicial vertices with degree ≤ 4k
I Eliminate X , call the algorithm recursively, add X back, resulting in (k , k)-unbreakable tree

decomposition with adhesion size < k , apply the improver algorithm, and return
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Part 2: The improver algorithm

Part 2: The improver algorithm

Input: Tree decomposition with
Adhesion size < 2k
(2k , k)-unbreakable bags

Output: k -lean tree decomposition
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Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Doubly well-linked separations
Suppose we have a separation (A,B) of size |A ∩ B| < k . Can we decompose along (A,B)?

Def: Separation (A,B) is doubly well-linked if the set A∩B is well-linked in both G[A] and in G[B]

Set X ⊆ V (G) is well-linked in G if for all separations (A,B) of G, it holds that
|(X ∩ A) ∪ (A ∩ B)| ≥ |A ∩ B| or |(X ∩ B) ∪ (A ∩ B)| ≥ |A ∩ B|.

Lemma (Informal)

If (A,B) is a doubly well-linked separation with |A ∩ B| < k , can greedily decompose along (A,B)

All separations between subsets of A or B can be uncrossed with (A,B)

If (C,D) is doubly well-linked separation in G / (A,B), then the corresponding separation of G
is doubly well-linked in G

Lemma

If there exists separation (A,B) with |A ∩ B| < k and |A|, |B| ≥ s · 2k , then exists doubly well-linked
separation (A′,B′) with |A′ ∩ B′| < k and |A|, |B| ≥ s.

Tuukka Korhonen k -Lean Tree Decompositions in Linear-Time 9 / 14



Issue

Issue: These properties of doubly well-linked separations are morally true, but fail subtly
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Hypergraphs and Robertson-Seymour style separations

Solution: Different definitions

Graphs⇒ hypergraphs

Separations (A,B)⇒ separations (A,A), where A ⊆ E(G) and A = E(G) \ A

Tree decompositions⇒ superbranch decompositions
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The real goal

The real goal:

Compute a superbranch decomposition, where
Separations corresponding to adhesions have size < k
Separations corresponding to adhesions are doubly well-linked
Each torso is (2O(k), k)-unbreakable

Then,
Compute k -lean tree decomposition of each torso (of the primal graph)
Combine along the decomposition to get k -lean tree decomposition of the graph
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Steps

Input: Superbranch decomposition with

Adhesions of size < 2k
(2k , k)-unbreakable bags

Goal: Superbranch decomposition with

Doubly well-linked adhesions of size < k
(2O(k), k)-unbreakable torsos

Refining a decomposition:

1. Downwards well-linked
2. Upwards k -well-linked
3. k -tangle-unbreakable torsos
4. Small adhesions
5. From k -tangle-unbreakability to (2O(k), k)-unbreakability
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Conclusion

kO(k2)m time algorithm for k -lean tree decomposition

⇒ Application: Unbreakable decomposition in linear FPT time

⇒ Application: k -edge-connected components in linear-time (long-standing open problem)

Main techniques:

Generalized Bodlaender’s compression scheme

Decomposition by doubly well-linked separations

Thank you!
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