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A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

e Holds also when X; = Xz, e.g. Xi = X2 = {e,f,i} and Y7 = {e, i}, Y = {e, f}.
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A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y2
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

e Holds also when X; = Xz, e.g. Xi = X2 = {e,f,i} and Y7 = {e, i}, Y = {e, f}.
@ Defined by [Thomas '90] (for k = oo), and [Carmesin, Diestel, Hamann, and Hundertmark '14]
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Reducing k-edge-connected components to k-lean tree decomposition

o Replace vertices by cliques of size k
o Create vertex for each edge and connect to the cliques corresponding to its endpoints

o= o=
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Reducing k-edge-connected components to k-lean tree decomposition

o Replace vertices by cliques of size k
o Create vertex for each edge and connect to the cliques corresponding to its endpoints
@ Resulting k-lean tree decomposition gives a k-Gomory-Hu tree

o= o=
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Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender '96])

Part 2: The improver algorithm
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Improver algorithm:
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Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k

@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k
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Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(|AN X|,|BN X|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:
e Can sparsify to m = O(kn) by [Nagamochi & Ibaraki '92]

Case 1: Matching M of size Q(n/poly(k)) = contract M, recurse, uncontract, and apply improver
algorithm
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Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:
e Can sparsify to m = O(kn) by [Nagamochi & Ibaraki '92]

Case 1: Matching M of size Q(n/poly(k)) = contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Q(n/poly(k)) = similar recursion in some other way...
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Part 2: The improver algorithm

Improver algorithm:
Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
o Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k

@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition
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There is an improver algorithm with running time KOk m, J
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Part 2: The improver algorithm

Improver algorithm:
Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
o Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma
There is an improver algorithm with running time KOk m, J

Idea:
@ Slowly improve the properties of the input decomposition (in 6 consecutive steps)
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The improver algorithm

The improver algorithm
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Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked
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Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked

Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree
decomposition of its primal graph.
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Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked

Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree
decomposition of its primal graph.

Lemma

A k-lean tree decomposition of an (s, k)-unbreakable graph can be computed in s m time.
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Focus

20(K) m-time algorithm for a problem with:

Input: Graph G and superbranch decomposition T of G s.t.
o T has adhesion size < 2k, and
o torsos of T are (2k, k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.
o T has adhesion size < k,
e torsos of T are (29, k)-unbreakable, and
o internal separations of T are doubly well-linked.
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Step 1: Downwards well-linkedness

Input: Graph G and superbranch decomposition T of G s.t.
@ T has adhesion size < 2k, and
@ torsos of T are (2k, k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°"W, k)-unbreakable in G, and
@ T is downwards well-linked.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 12/17



Step 2: Upwards k-well-linkedness

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°®, k)-unbreakable in G, and
@ T is downwards well-linked.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°), k)-unbreakable,
@ T is downwards well-linked, and
@ T is upwards k-well-linked.
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Step 3: Tangle k-unbreakability

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°, k)-unbreakable,
@ T is downwards well-linked, and
@ T is upwards k-well-linked.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ T is downwards well-linked,
@ T is upwards k-well-linked, and
@ torsos of T are k-tangle-unbreakable.
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Step 4: Small adhesions

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ T is downwards well-linked,
@ T is upwards k-well-linked, and
@ torsos of T are k-tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are k-tangle-unbreakable.
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Step 5: Unbreakable torsos

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are k-tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are (2°%, k)-unbreakable.
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Conclusion
o kOK*) m time algorithm for k-lean tree decomposition
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Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition
o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)

» k-vertex connectivity
» k-unbreakable tree decomposition...
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Conclusion
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» Kk-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations
Follow-up work:
o Dynamic treewidth in logarithmic time
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e poly(k)m time for k-edge-connected components?
e Simpler algorithm?
o Tutte-like decomposition in linear-time?
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Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition

o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)
» k-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations
Follow-up work:
o Dynamic treewidth in logarithmic time
Open problems/future work:
e poly(k)m time for k-edge-connected components?
e Simpler algorithm?
o Tutte-like decomposition in linear-time?

Thank you!
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