# Linear-Time Algorithms for *k*-Edge-Connected Components, *k*-Lean Tree Decompositions, and More

#### Tuukka Korhonen





**BWAG** '25

30 October 2025



**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

 $\textbf{Obs:} \ \ \text{This gives an equivalence relation among vertices} \Rightarrow \text{unique partition into components}$ 

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices  $\Rightarrow$  unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices  $\Rightarrow$  unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

#### Previous results:

•  $\mathcal{O}(m)$  for k=2 [Tarjan '72]

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

## Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k = 3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k = 3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k = 3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\bullet$   $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$  for k = 5 [Kosinas '24]

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\bullet$   $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$  for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$  polylog m for all k [Hariharan, Kavitha, Panigrahi '07]

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

## Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\bullet$   $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$  for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$  polylog m for all k [Hariharan, Kavitha, Panigrahi '07]
- $m^{1+o(1)}$  for all k [Abboud, Li, Panigrahi, Saranurak '23]

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

#### Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

#### Previous results:

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k = 3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\bullet$   $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$  for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$  polylog m for all k [Hariharan, Kavitha, Panigrahi '07]
- $m^{1+o(1)}$  for all k [Abboud, Li, Panigrahi, Saranurak '23]

#### For minimum cut:

**Def:** Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

**Obs:** This gives an equivalence relation among vertices  $\Rightarrow$  unique partition into components

## Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-edge-connected components

#### Previous results:

- $\mathcal{O}(m)$  for k=2 [Tarjan '72]
- $\mathcal{O}(m)$  for k=3 [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- $\bullet$   $\mathcal{O}(m)$  for k=4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- $\mathcal{O}(m)$  for k = 5 [Kosinas '24]
- $k^{\mathcal{O}(1)}m$  polylog m for all k [Hariharan, Kavitha, Panigrahi '07]
- $m^{1+o(1)}$  for all k [Abboud, Li, Panigrahi, Saranurak '23]

#### For minimum cut:

•  $\mathcal{O}(k^2 m \log m)$  [Gabow '91],  $\mathcal{O}(m \operatorname{polylog} m)$  [Karger '96]

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

Implies the first "parameterized linear-time" ( $f(k) \cdot m$  time) algorithms for many problems:

• k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ► Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{\mathcal{O}(k^2)}m$  time

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $\mathcal{O}(k^3 m \operatorname{polylog} m)$  [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{O(k^2)}m$  time
  - ► Previously  $\mathcal{O}(k^3 m \operatorname{polylog} m)$  [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in  $k^{O(k^2)}m$  time

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{\mathcal{O}(k^2)}m$  time
  - ► Previously  $\mathcal{O}(k^3 m \operatorname{polylog} m)$  [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k \cdot m^{1+o(1)}$  [Pettie, Saranurak, Yin '22]

Main technical result:

Theorem (This work)

There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

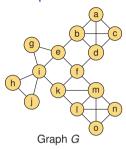
- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{\mathcal{O}(k^2)}m$  time
  - ightharpoonup Previously  $\mathcal{O}(k^3m \operatorname{polylog} m)$  [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ► Previously  $k \cdot m^{1+o(1)}$  [Pettie, Saranurak, Yin '22]
- k-Unbreakable tree decomposition in  $k^{\mathcal{O}(k^2)}m$  time (with optimal unbreakability parameters)

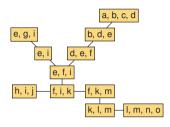
Main technical result:

#### Theorem (This work)

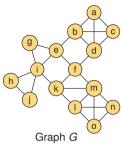
There is a  $k^{\mathcal{O}(k^2)}m$  time algorithm for computing a "k-lean tree decomposition" of a given graph.

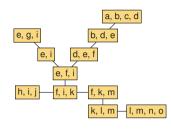
- k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k^{\mathcal{O}(1)}m$  polylog m [Hariharan, Kavitha, Panigrahi '07]
- k-Vertex connectivity in  $k^{\mathcal{O}(k^2)}m$  time
  - ► Previously  $\mathcal{O}(k^3 m \operatorname{polylog} m)$  [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity k-Gomory-Hu tree in  $k^{\mathcal{O}(k^2)}m$  time
  - ▶ Previously  $k \cdot m^{1+o(1)}$  [Pettie, Saranurak, Yin '22]
- k-Unbreakable tree decomposition in  $k^{\mathcal{O}(k^2)}m$  time (with optimal unbreakability parameters)
  - ightharpoonup Previously  $k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$  [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström '21]
  - ▶ and  $k^{\mathcal{O}(k)}m^{1+o(1)}$  [Anand, Lee, Li, Long, Saranurak '24] (suboptimal unbreakability parameters)





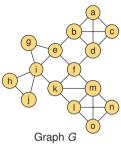
A 3-lean tree decomposition of G

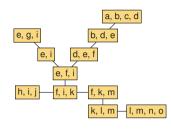




A 3-lean tree decomposition of G

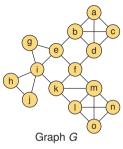
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree

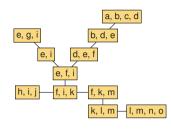




A 3-lean tree decomposition of G

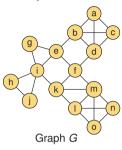
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- *k*-lean:

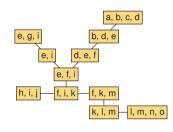




A 3-lean tree decomposition of G

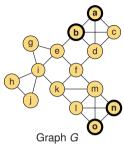
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k

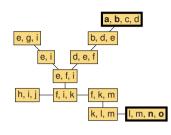




A 3-lean tree decomposition of G

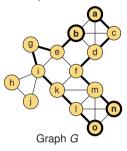
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

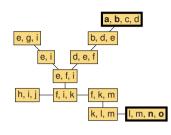




A 3-lean tree decomposition of G

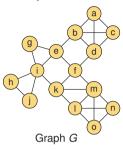
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

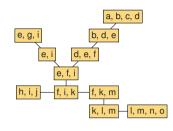




A 3-lean tree decomposition of G

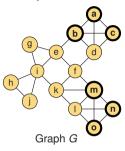
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

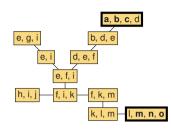




A 3-lean tree decomposition of G

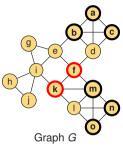
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

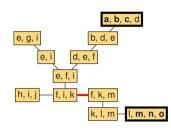




A 3-lean tree decomposition of G

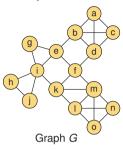
- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

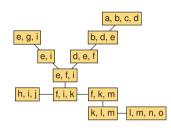




A 3-lean tree decomposition of G

- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

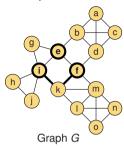


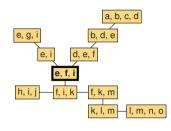


A 3-lean tree decomposition of G

- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$

#### k-Lean Tree Decompositions

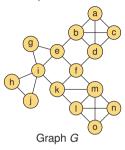


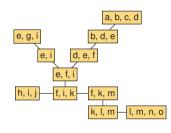


A 3-lean tree decomposition of G

- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$
  - Holds also when  $X_1 = X_2$ , e.g.  $X_1 = X_2 = \{e, f, i\}$  and  $Y_1 = \{e, i\}$ ,  $Y_2 = \{e, f\}$ .

#### k-Lean Tree Decompositions

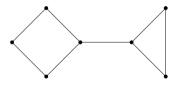




A 3-lean tree decomposition of G

- Tree decomposition:
  - 1. All vertices and edges are covered by bags
  - 2. For each vertex v, the bags containing v form a connected subtree
- k-lean:
  - 1. The adhesions (i.e. intersections of adjacent bags) have size < k
  - 2. For all pairs of bags  $X_1$ ,  $X_2$  and subsets  $Y_1 \subseteq X_1$ ,  $Y_2 \subseteq X_2$  with  $|Y_1| = |Y_2| \le k$ , the sets  $Y_1$  and  $Y_2$  can be linked by vertex-disjoint paths if and only if there is no  $(X_1, X_2)$ -adhesion of size  $< |Y_1| = |Y_2|$
  - Holds also when  $X_1 = X_2$ , e.g.  $X_1 = X_2 = \{e, f, i\}$  and  $Y_1 = \{e, i\}$ ,  $Y_2 = \{e, f\}$ .
- Defined by [Thomas '90] (for  $k = \infty$ ), and [Carmesin, Diestel, Hamann, and Hundertmark '14]

### Reducing *k*-edge-connected components to *k*-lean tree decomposition



### Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints



### Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints
- Resulting k-lean tree decomposition gives a k-Gomory-Hu tree



# The algorithm

# The algorithm

Part 1: Proof that an "improver algorithm" implies the algorithm

# The algorithm

Part 1: Proof that an "improver algorithm" implies the algorithm (Inspired by [Bodlaender '96])

# The algorithm

Part 1: Proof that an "improver algorithm" implies the algorithm (Inspired by [Bodlaender '96])

Part 2: The improver algorithm



# Part 1: Improver algorithm implies the algorithm Improver algorithm:

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

If there is improver algorithm with running time  $f(k) \cdot m$ , then there is an algorithm that in time  $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$  computes a k-lean tree decomposition.

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

If there is improver algorithm with running time  $f(k) \cdot m$ , then there is an algorithm that in time  $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$  computes a k-lean tree decomposition.

Proof idea:

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

If there is improver algorithm with running time  $f(k) \cdot m$ , then there is an algorithm that in time  $K^{\mathcal{O}(1)} \cdot f(k) \cdot m$  computes a k-lean tree decomposition.

#### Proof idea:

• Can sparsify to  $m = \mathcal{O}(kn)$  by [Nagamochi & Ibaraki '92]

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

If there is improver algorithm with running time  $f(k) \cdot m$ , then there is an algorithm that in time  $K^{\mathcal{O}(1)} \cdot f(k) \cdot m$  computes a k-lean tree decomposition.

#### Proof idea:

- Can sparsify to  $m = \mathcal{O}(kn)$  by [Nagamochi & Ibaraki '92]
- Case 1: Matching M of size  $\Omega(n/\text{poly}(k)) \Rightarrow \text{contract } M$ , recurse, uncontract, and apply improver algorithm

Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

If there is improver algorithm with running time  $f(k) \cdot m$ , then there is an algorithm that in time  $K^{\mathcal{O}(1)} \cdot f(k) \cdot m$  computes a k-lean tree decomposition.

#### Proof idea:

- Can sparsify to  $m = \mathcal{O}(kn)$  by [Nagamochi & Ibaraki '92]
- Case 1: Matching M of size  $\Omega(n/\text{poly}(k)) \Rightarrow \text{contract } M$ , recurse, uncontract, and apply improver algorithm
- Case 2: No matching of size  $\Omega(n/\text{poly}(k)) \Rightarrow \text{similar recursion in some other way...}$

### Part 2: The improver algorithm

#### Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

### Part 2: The improver algorithm

#### Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

There is an improver algorithm with running time  $k^{\mathcal{O}(k^2)}m$ .

### Part 2: The improver algorithm

#### Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:

- Adhesion < 2k: Any two adjacent bags  $X_u$  and  $X_v$  have  $|X_u \cap X_v| < 2k$
- (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order  $|A \cap B| < k$  with  $\min(|A \cap X|, |B \cap X|) \ge 2k$

Output: k-lean tree decomposition

#### Lemma

There is an improver algorithm with running time  $k^{\mathcal{O}(k^2)}m$ .

#### Idea:

• Slowly improve the properties of the input decomposition (in 6 consecutive steps)

### The improver algorithm

# The improver algorithm

#### Goal

Want to compute a superbranch decomposition T of G so that

- T has adhesion size < k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable, and
- internal separations of T are doubly well-linked

#### Goal

Want to compute a superbranch decomposition T of G so that

- T has adhesion size < k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable, and
- internal separations of T are doubly well-linked

#### Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree decomposition of its primal graph.

#### Goal

Want to compute a superbranch decomposition T of G so that

- T has adhesion size < k,
- torsos of T are  $(2^{O(k)}, k)$ -unbreakable, and
- internal separations of T are doubly well-linked

#### Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree decomposition of its primal graph.

#### Lemma

A k-lean tree decomposition of an (s, k)-unbreakable graph can be computed in  $s^{\mathcal{O}(k)}m$  time.

#### **Focus**

 $2^{\mathcal{O}(k^2)}$ *m*-time algorithm for a problem with:

**Input:** Graph G and superbranch decomposition T of G s.t.

- T has adhesion size < 2k, and
- torsos of T are (2k, k)-unbreakable in G.

- T has adhesion size < k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable, and
- internal separations of T are doubly well-linked.

### Step 1: Downwards well-linkedness

**Input:** Graph G and superbranch decomposition T of G s.t.

- T has adhesion size < 2k, and
- torsos of T are (2k, k)-unbreakable in G.

- T has adhesion size < 2k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable in G, and
- T is downwards well-linked.

### Step 2: Upwards k-well-linkedness

**Input:** Graph G and a superbranch decomposition T of G s.t.

- T has adhesion size < 2k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable in G, and
- T is downwards well-linked.

- T has adhesion size < 2k,
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable,
- T is downwards well-linked, and
- T is upwards k-well-linked.

### Step 3: Tangle k-unbreakability

**Input:** Graph *G* and a superbranch decomposition *T* of *G* s.t.

- T has adhesion size < 2k,</li>
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable,
- T is downwards well-linked, and
- *T* is upwards *k*-well-linked.

- T has adhesion size < 2k,
- T is downwards well-linked,
- T is upwards k-well-linked, and
- torsos of *T* are *k*-tangle-unbreakable.

### Step 4: Small adhesions

**Input:** Graph G and a superbranch decomposition T of G s.t.

- T has adhesion size < 2k,
- T is downwards well-linked,
- T is upwards k-well-linked, and
- torsos of *T* are *k*-tangle-unbreakable.

- T has adhesion size < k,
- internal separations of T are doubly well-linked, and
- torsos of *T* are *k*-tangle-unbreakable.

### Step 5: Unbreakable torsos

**Input:** Graph G and a superbranch decomposition T of G s.t.

- T has adhesion size < k,
- internal separations of T are doubly well-linked, and
- torsos of *T* are *k*-tangle-unbreakable.

- T has adhesion size < k,
- ullet internal separations of  ${\mathcal T}$  are doubly well-linked, and
- torsos of T are  $(2^{\mathcal{O}(k)}, k)$ -unbreakable.

•  $k^{\mathcal{O}(k^2)}m$  time algorithm for k-lean tree decomposition

- $k^{\mathcal{O}(k^2)}m$  time algorithm for k-lean tree decomposition
- Implies  $k^{\mathcal{O}(k^2)}m$  time algorithms for:
  - ► *k*-edge-connected components (long-standing open problem)
  - ► k-vertex connectivity
  - ▶ *k*-unbreakable tree decomposition...

- $k^{\mathcal{O}(k^2)}m$  time algorithm for k-lean tree decomposition
- Implies  $k^{O(k^2)}m$  time algorithms for:
  - ► *k*-edge-connected components (long-standing open problem)
  - k-vertex connectivity
  - ▶ *k*-unbreakable tree decomposition...

### Techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations

- $k^{\mathcal{O}(k^2)}m$  time algorithm for k-lean tree decomposition
- Implies  $k^{O(k^2)}m$  time algorithms for:
  - ► *k*-edge-connected components (long-standing open problem)
  - k-vertex connectivity
  - ▶ *k*-unbreakable tree decomposition...

#### Techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations

#### Follow-up work:

Dynamic treewidth in logarithmic time

- $k^{O(k^2)}m$  time algorithm for k-lean tree decomposition
- Implies  $k^{\mathcal{O}(k^2)}m$  time algorithms for:
  - ► *k*-edge-connected components (long-standing open problem)
  - k-vertex connectivity
  - ▶ *k*-unbreakable tree decomposition...

#### Techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations

#### Follow-up work:

Dynamic treewidth in logarithmic time

### Open problems/future work:

- poly(k)m time for k-edge-connected components?
- Simpler algorithm?
- Tutte-like decomposition in linear-time?

- $k^{\mathcal{O}(k^2)}m$  time algorithm for k-lean tree decomposition
- Implies  $k^{\mathcal{O}(k^2)}m$  time algorithms for:
  - ► *k*-edge-connected components (long-standing open problem)
  - k-vertex connectivity
  - ▶ *k*-unbreakable tree decomposition...

#### Techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations

### Follow-up work:

Dynamic treewidth in logarithmic time

### Open problems/future work:

- poly(k)m time for k-edge-connected components?
- Simpler algorithm?
- Tutte-like decomposition in linear-time?

## Thank you!