Linear-Time Algorithms for k-Edge-Connected Components, k-Lean Tree
Decompositions, and More

Tuukka Korhonen

UNIVERSITY OF
COPENHAGEN

BWAG '25

30 October 2025

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

k-Edge-Connected Components

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
e O(m) for k = 5 [Kosinas "24]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
e O(m) for k = 5 [Kosinas "24]
o kKM mpolylog m for all k [Hariharan, Kavitha, Panigrahi ’07]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)

There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
e O(m) for k = 5 [Kosinas "24]
o kKM mpolylog m for all k [Hariharan, Kavitha, Panigrahi ’07]
o m' o) for all k [Abboud, Li, Panigrahi, Saranurak '23]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)
There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
e O(m) for k = 5 [Kosinas "24]
o kKM mpolylog m for all k [Hariharan, Kavitha, Panigrahi ’07]
o m' o) for all k [Abboud, Li, Panigrahi, Saranurak '23]
For minimum cut:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Edge-Connected Components
Def: Vertices u and v are k-edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices = unique partition into components

Theorem (This work)
There is a k©(**) m time algorithm for k-edge-connected components J

Previous results:
e O(m) for k = 2 [Tarjan '72]
e O(m) for k = 3 [Gallil & ltaliano '91] (using [Hopcroft & Tarjan '73])
e O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
e O(m) for k = 5 [Kosinas "24]
o kKM mpolylog m for all k [Hariharan, Kavitha, Panigrahi ’07]
o m' o) for all k [Abboud, Li, Panigrahi, Saranurak '23]
For minimum cut:
e O(k?mlog m) [Gabow '91], O(m polylog m) [Karger '96]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 2/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)
There is a kKO“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time
» Previously O(k3m polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time
» Previously O(k3m polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

o Element connectivity k-Gomory-Hu tree in kO m time

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time
» Previously O(k3m polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

o Element connectivity k-Gomory-Hu tree in kO m time
» Previously k - m'+°(") [Pettie, Saranurak, Yin '22]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time
» Previously O(ksm polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

e Element connectivity k-Gomory-Hu tree in kO m time
» Previously k - m'+°(") [Pettie, Saranurak, Yin '22]

@ k-Unbreakable tree decomposition in kO m time (with optimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a k2“) m time algorithm for computing a “k-lean tree decomposition” of a given graph. J

Implies the first “parameterized linear-time” (f(k) - m time) algorithms for many problems:

o k-Gomory-Hu tree in k() m time
» Previously k°(")m polylog m [Hariharan, Kavitha, Panigrahi '07]

@ k-Vertex connectivity in KOk m time
» Previously O(ksm polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

e Element connectivity k-Gomory-Hu tree in kO m time
» Previously k - m'+°(") [Pettie, Saranurak, Yin '22]

@ k-Unbreakable tree decomposition in kO m time (with optimal unbreakability parameters)

» Previously k€()n®() [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlstrém '21]
» and k9K m'+o()) [Anand, Lee, Li, Long, Saranurak '24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 3/17

k-Lean Tree Decompositions

klm]-{imno

A 3-lean tree decomposition of G

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y2
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X> and subsets Y; C Xi, Y> C X, with | Y7| = |Y2| < k, the sets Y; and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xi, Xz)-adhesion of size < |Y1| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X> and subsets Y; C Xi, Y> C X, with | Y7| = |Y2| < k, the sets Y; and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xi, Xz)-adhesion of size < |Y1| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y2
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X> and subsets Y; C Xi, Y> C X, with | Y7| = |Y2| < k, the sets Y and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xi, Xz)-adhesion of size < |Y1| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X> and subsets Y; C Xi, Y> C X, with | Y7| = |Y2| < k, the sets Y; and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xi, Xz)-adhesion of size < |Y1| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y2
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y>
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

e Holds also when X; = Xz, e.g. Xi = X2 = {e,f,i} and Y7 = {e, i}, Y = {e, f}.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

k-Lean Tree Decompositions

A 3-lean tree decomposition of G
@ Tree decomposition:

1. All vertices and edges are covered by bags

2. For each vertex v, the bags containing v form a connected subtree
@ k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags Xi, Xz and subsets Y; C Xj, Y2 C X, with | Yy| = |Y2| < k, the sets Yy and Y2
can be linked by vertex-disjoint paths if and only if there is no (Xj, Xz)-adhesion of size < |Y;| = | Yz|

e Holds also when X; = Xz, e.g. Xi = X2 = {e,f,i} and Y7 = {e, i}, Y = {e, f}.
@ Defined by [Thomas '90] (for k = oo), and [Carmesin, Diestel, Hamann, and Hundertmark '14]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 4/17

Reducing k-edge-connected components to k-lean tree decomposition

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Reducing k-edge-connected components to k-lean tree decomposition

o Replace vertices by cliques of size k
o Create vertex for each edge and connect to the cliques corresponding to its endpoints

o= o=

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 5/17

Reducing k-edge-connected components to k-lean tree decomposition

o Replace vertices by cliques of size k
o Create vertex for each edge and connect to the cliques corresponding to its endpoints
@ Resulting k-lean tree decomposition gives a k-Gomory-Hu tree

o= o=

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 5/17

The algorithm

The algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 6/17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender '96])

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 6/17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender '96])

Part 2: The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 6/17

Part 1: Improver algorithm implies the algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k

@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k

@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:
e Can sparsify to m = O(kn) by [Nagamochi & Ibaraki '92]

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(|AN X|,|BN X|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:
e Can sparsify to m = O(kn) by [Nagamochi & Ibaraki '92]

Case 1: Matching M of size Q(n/poly(k)) = contract M, recurse, uncontract, and apply improver
algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 7117

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
e Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X|) > 2k

Output: k-lean tree decomposition

Lemma

If there is improver algorithm with running time (k) - m, then there is an algorithm that in time
k() (k) - m computes a k-lean tree decomposition.

Proof idea:
e Can sparsify to m = O(kn) by [Nagamochi & Ibaraki '92]

Case 1: Matching M of size Q(n/poly(k)) = contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Q(n/poly(k)) = similar recursion in some other way...
7/17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
o Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k

@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 8/17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
o Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma
There is an improver algorithm with running time KOk m, J

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 8/17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k, k)-unbreakable tree decomposition with adhesion < 2k:
o Adhesion < 2k: Any two adjacent bags X, and X, have | X, N X,| < 2k
@ (2k, k)-unbreakable: For each bag X, no separation (A, B) of G of order |An B| < k with
min(JAN X|,|BN X]|) > 2k

Output: k-lean tree decomposition

Lemma
There is an improver algorithm with running time KOk m, J

Idea:
@ Slowly improve the properties of the input decomposition (in 6 consecutive steps)

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 8/17

The improver algorithm

The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked

Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree
decomposition of its primal graph.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 10/17

Goal

Want to compute a superbranch decomposition T of G so that
o T has adhesion size < k,
e torsos of T are (2°(), k)-unbreakable, and
e internal separations of T are doubly well-linked

Lemma

Such T can be turned into a k-lean tree decomposition by replacing each torso by a k-lean tree
decomposition of its primal graph.

Lemma

A k-lean tree decomposition of an (s, k)-unbreakable graph can be computed in s m time.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 10/17

Focus

20(K) m-time algorithm for a problem with:

Input: Graph G and superbranch decomposition T of G s.t.
o T has adhesion size < 2k, and
o torsos of T are (2k, k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.
o T has adhesion size < k,
e torsos of T are (29, k)-unbreakable, and
o internal separations of T are doubly well-linked.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 11/17

Step 1: Downwards well-linkedness

Input: Graph G and superbranch decomposition T of G s.t.
@ T has adhesion size < 2k, and
@ torsos of T are (2k, k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°"W, k)-unbreakable in G, and
@ T is downwards well-linked.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 12/17

Step 2: Upwards k-well-linkedness

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°®, k)-unbreakable in G, and
@ T is downwards well-linked.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°), k)-unbreakable,
@ T is downwards well-linked, and
@ T is upwards k-well-linked.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 13/17

Step 3: Tangle k-unbreakability

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ torsos of T are (2°, k)-unbreakable,
@ T is downwards well-linked, and
@ T is upwards k-well-linked.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ T is downwards well-linked,
@ T is upwards k-well-linked, and
@ torsos of T are k-tangle-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 14/17

Step 4: Small adhesions

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < 2k,
@ T is downwards well-linked,
@ T is upwards k-well-linked, and
@ torsos of T are k-tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are k-tangle-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 15/17

Step 5: Unbreakable torsos

Input: Graph G and a superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are k-tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.
@ T has adhesion size < k,
@ internal separations of T are doubly well-linked, and
@ torsos of T are (2°%, k)-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 16/17

Conclusion
o kOK*) m time algorithm for k-lean tree decomposition

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition
o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)

» k-vertex connectivity
» k-unbreakable tree decomposition...

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 17/17

Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition
o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)
» k-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 17/17

Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition
o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)
» Kk-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations
Follow-up work:
o Dynamic treewidth in logarithmic time

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More

17/17

Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition

o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)
» k-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations
Follow-up work:
o Dynamic treewidth in logarithmic time
Open problems/future work:
e poly(k)m time for k-edge-connected components?
e Simpler algorithm?
o Tutte-like decomposition in linear-time?

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 17/17

Conclusion
o kO(k%) m time algorithm for k-lean tree decomposition

o Implies kO m time algorithms for:
» k-edge-connected components (long-standing open problem)
» k-vertex connectivity
» k-unbreakable tree decomposition...
Techniques:
@ Recursive matching contraction compression (inspired by [Bodlaender’93])
o Decomposition by doubly well-linked separations
Follow-up work:
o Dynamic treewidth in logarithmic time
Open problems/future work:
e poly(k)m time for k-edge-connected components?
e Simpler algorithm?
o Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k-Edge Connected Components and More 17/17

