
Linear-Time Algorithms for k -Edge-Connected Components, k -Lean Tree
Decompositions, and More

Tuukka Korhonen

BWAG ’25

30 October 2025

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 1 / 17

k -Edge-Connected Components

Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges

Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices

⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:

O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]

O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])

O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]

O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]

For minimum cut:
O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Edge-Connected Components
Def: Vertices u and v are k -edge-connected if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylogm for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:

O(k2m logm) [Gabow ’91], O(m polylogm) [Karger ’96]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 2 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time

▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time

▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time

▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)

▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) · m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
▶ Previously kO(1)m polylogm [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
▶ Previously O(k3m polylogm) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
▶ Previously k · m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
▶ Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
▶ and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 3 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k

2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|

• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.
Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

k -Lean Tree Decompositions
a

b c

de

f

g

h
i

j
k

l

m

n

o
Graph G

a, b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

e, i

f, i, kh, i, j f, k, m

k, l, m l, m, n, o

A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags X1, X2 and subsets Y1 ⊆ X1, Y2 ⊆ X2 with |Y1| = |Y2| ≤ k , the sets Y1 and Y2

can be linked by vertex-disjoint paths if and only if there is no (X1,X2)-adhesion of size < |Y1| = |Y2|
• Holds also when X1 = X2, e.g. X1 = X2 = {e, f , i} and Y1 = {e, i}, Y2 = {e, f}.

Defined by [Thomas ’90] (for k = ∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 4 / 17

Reducing k -edge-connected components to k -lean tree decomposition

Replace vertices by cliques of size k
Create vertex for each edge and connect to the cliques corresponding to its endpoints
Resulting k -lean tree decomposition gives a k -Gomory-Hu tree

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 5 / 17

Reducing k -edge-connected components to k -lean tree decomposition

Replace vertices by cliques of size k
Create vertex for each edge and connect to the cliques corresponding to its endpoints

Resulting k -lean tree decomposition gives a k -Gomory-Hu tree

⇒

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 5 / 17

Reducing k -edge-connected components to k -lean tree decomposition

Replace vertices by cliques of size k
Create vertex for each edge and connect to the cliques corresponding to its endpoints
Resulting k -lean tree decomposition gives a k -Gomory-Hu tree

⇒

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 5 / 17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender ’96])

Part 2: The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 6 / 17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm

(Inspired by [Bodlaender ’96])

Part 2: The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 6 / 17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender ’96])

Part 2: The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 6 / 17

The algorithm

The algorithm

Part 1: Proof that an “improver algorithm” implies the algorithm (Inspired by [Bodlaender ’96])

Part 2: The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 6 / 17

Part 1: Improver algorithm implies the algorithm

Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:

Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :
Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 1: Improver algorithm implies the algorithm
Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) · m, then there is an algorithm that in time
kO(1) · f (k) · m computes a k -lean tree decomposition.

Proof idea:

Can sparsify to m = O(kn) by [Nagamochi & Ibaraki ’92]

Case 1: Matching M of size Ω(n/poly(k)) ⇒ contract M, recurse, uncontract, and apply improver
algorithm

Case 2: No matching of size Ω(n/poly(k)) ⇒ similar recursion in some other way...
Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 7 / 17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

There is an improver algorithm with running time kO(k2)m.

Idea:
Slowly improve the properties of the input decomposition (in 6 consecutive steps)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 8 / 17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

There is an improver algorithm with running time kO(k2)m.

Idea:
Slowly improve the properties of the input decomposition (in 6 consecutive steps)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 8 / 17

Part 2: The improver algorithm

Improver algorithm:
Input: (2k , k)-unbreakable tree decomposition with adhesion < 2k :

Adhesion < 2k : Any two adjacent bags Xu and Xv have |Xu ∩ Xv | < 2k
(2k , k)-unbreakable: For each bag X , no separation (A,B) of G of order |A ∩ B| < k with
min(|A ∩ X |, |B ∩ X |) ≥ 2k

Output: k -lean tree decomposition

Lemma

There is an improver algorithm with running time kO(k2)m.

Idea:
Slowly improve the properties of the input decomposition (in 6 consecutive steps)

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 8 / 17

The improver algorithm

The improver algorithm

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 9 / 17

Goal

Want to compute a superbranch decomposition T of G so that
T has adhesion size < k ,
torsos of T are (2O(k), k)-unbreakable, and
internal separations of T are doubly well-linked

Lemma
Such T can be turned into a k -lean tree decomposition by replacing each torso by a k -lean tree
decomposition of its primal graph.

Lemma

A k -lean tree decomposition of an (s, k)-unbreakable graph can be computed in sO(k)m time.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 10 / 17

Goal

Want to compute a superbranch decomposition T of G so that
T has adhesion size < k ,
torsos of T are (2O(k), k)-unbreakable, and
internal separations of T are doubly well-linked

Lemma
Such T can be turned into a k -lean tree decomposition by replacing each torso by a k -lean tree
decomposition of its primal graph.

Lemma

A k -lean tree decomposition of an (s, k)-unbreakable graph can be computed in sO(k)m time.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 10 / 17

Goal

Want to compute a superbranch decomposition T of G so that
T has adhesion size < k ,
torsos of T are (2O(k), k)-unbreakable, and
internal separations of T are doubly well-linked

Lemma
Such T can be turned into a k -lean tree decomposition by replacing each torso by a k -lean tree
decomposition of its primal graph.

Lemma

A k -lean tree decomposition of an (s, k)-unbreakable graph can be computed in sO(k)m time.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 10 / 17

Focus

2O(k2)m-time algorithm for a problem with:

Input: Graph G and superbranch decomposition T of G s.t.
T has adhesion size < 2k , and
torsos of T are (2k , k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.
T has adhesion size < k ,
torsos of T are (2O(k), k)-unbreakable, and
internal separations of T are doubly well-linked.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 11 / 17

Step 1: Downwards well-linkedness

Input: Graph G and superbranch decomposition T of G s.t.

T has adhesion size < 2k , and

torsos of T are (2k , k)-unbreakable in G.

Output: Superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

torsos of T are (2O(k), k)-unbreakable in G, and

T is downwards well-linked.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 12 / 17

Step 2: Upwards k -well-linkedness

Input: Graph G and a superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

torsos of T are (2O(k), k)-unbreakable in G, and

T is downwards well-linked.

Output: Superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

torsos of T are (2O(k), k)-unbreakable,

T is downwards well-linked, and

T is upwards k -well-linked.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 13 / 17

Step 3: Tangle k -unbreakability

Input: Graph G and a superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

torsos of T are (2O(k), k)-unbreakable,

T is downwards well-linked, and

T is upwards k -well-linked.

Output: Superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

T is downwards well-linked,

T is upwards k -well-linked, and

torsos of T are k -tangle-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 14 / 17

Step 4: Small adhesions

Input: Graph G and a superbranch decomposition T of G s.t.

T has adhesion size < 2k ,

T is downwards well-linked,

T is upwards k -well-linked, and

torsos of T are k -tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.

T has adhesion size < k ,

internal separations of T are doubly well-linked, and

torsos of T are k -tangle-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 15 / 17

Step 5: Unbreakable torsos

Input: Graph G and a superbranch decomposition T of G s.t.

T has adhesion size < k ,

internal separations of T are doubly well-linked, and

torsos of T are k -tangle-unbreakable.

Output: Superbranch decomposition T of G s.t.

T has adhesion size < k ,

internal separations of T are doubly well-linked, and

torsos of T are (2O(k), k)-unbreakable.

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 16 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!

Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

Conclusion
kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
▶ k -edge-connected components (long-standing open problem)
▶ k -vertex connectivity
▶ k -unbreakable tree decomposition...

Techniques:
Recursive matching contraction compression (inspired by [Bodlaender’93])
Decomposition by doubly well-linked separations

Follow-up work:
Dynamic treewidth in logarithmic time

Open problems/future work:
poly(k)m time for k -edge-connected components?
Simpler algorithm?
Tutte-like decomposition in linear-time?

Thank you!
Tuukka Korhonen Linear-Time Algorithms for k -Edge Connected Components and More 17 / 17

