Linear-Time Algorithms for *k*-Edge-Connected Components, *k*-Lean Tree Decompositions, and More

Tuukka Korhonen

ARCO

22 November 2024

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (u, v) -cut with $\lt k$ edges

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (u, v) -cut with $\lt k$ edges **Obs:** This gives an equivalence relation among vertices

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (u, v) -cut with $\lt k$ edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (u, v) -cut with $\lt k$ edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (u, v) -cut with $\lt k$ edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

Previous results:

 \odot *O(m)* for $k = 2$ [Tarjan '72]

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- \odot *O(m)* for $k = 5$ [Kosinas '24]

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- \odot *O(m)* for $k = 5$ [Kosinas '24]
- *k* ^O(1)*m* polylog *m* for all *k* [Hariharan, Kavitha, Panigrahi '07]

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- \odot *O(m)* for $k = 5$ [Kosinas '24]
- *k* ^O(1)*m* polylog *m* for all *k* [Hariharan, Kavitha, Panigrahi '07]
- *m*1+*o*(1) for all *k* [Abboud, Li, Panigrahi, Saranurak '23]

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

Previous results:

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- \odot *O(m)* for $k = 5$ [Kosinas '24]
- *k* ^O(1)*m* polylog *m* for all *k* [Hariharan, Kavitha, Panigrahi '07]
- *m*1+*o*(1) for all *k* [Abboud, Li, Panigrahi, Saranurak '23]

For minimum cut:

Def: Vertices *u* and *v* in the same *k*-edge-connected component if no (*u*, *v*)-cut with < *k* edges **Obs:** This gives an equivalence relation among vertices ⇒ unique partition into components

Theorem (This work)

There is a *k* O(*k* 2)*m* time algorithm for *k*-edge-connected components

Previous results:

- \odot *O(m)* for $k = 2$ [Tarjan '72]
- \circ $\mathcal{O}(m)$ for $k = 3$ [Galil & Italiano '91] (using [Hopcroft & Tarjan '73])
- O(*m*) for *k* = 4 [Nadara, Radecki, Smulewicz, Sokolowski'21, Georgiadis, Italiano, Kosinas'21]
- \odot *O(m)* for $k = 5$ [Kosinas '24]
- *k* ^O(1)*m* polylog *m* for all *k* [Hariharan, Kavitha, Panigrahi '07]
- *m*1+*o*(1) for all *k* [Abboud, Li, Panigrahi, Saranurak '23]

For minimum cut:

O(*k* ²*m* log *m*) [Gabow '91], O(*m* polylog *m*) [Karger '96]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

Implies the first "parameterized linear-time" $(f(k) \cdot m)$ time) algorithms for many problems:

k-Gomory-Hu tree in *k* O(*k* 2)*m* time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time
	- ► Previously $\mathcal{O}(k^3m$ polylog *m*) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time
	- ► Previously $\mathcal{O}(k^3m$ polylog *m*) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity *k*-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}$ *m* time

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time
	- ► Previously $\mathcal{O}(k^3m$ polylog *m*) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity *k*-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}$ *m* time
	- ► Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time
	- ► Previously $\mathcal{O}(k^3m$ polylog *m*) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity *k*-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}$ *m* time
	- ► Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]
- *k*-Unbreakable tree decomposition in $k^{\mathcal{O}(k^2)}$ *m* time (with optimal unbreakability parameters)

Main technical result:

Theorem (This work)

There is a $k^{\mathcal{O}(k^2)}$ *m* time algorithm for computing a "*k*-lean tree decomposition" of a given graph.

- *k*-Gomory-Hu tree in *k* O(*k* 2)*m* time
	- ► Previously $k^{\mathcal{O}(1)}$ *m* polylog *m* [Hariharan, Kavitha, Panigrahi '07]
- *k*-Vertex connectivity in *k* O(*k* 2)*m* time
	- ► Previously $\mathcal{O}(k^3m$ polylog *m*) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai '20]
- Element connectivity *k*-Gomory-Hu tree in $k^{\mathcal{O}(k^2)}$ *m* time
	- ► Previously $k \cdot m^{1+o(1)}$ [Pettie, Saranurak, Yin '22]
- *k*-Unbreakable tree decomposition in $k^{\mathcal{O}(k^2)}$ *m* time (with optimal unbreakability parameters)
	- ► Previously $k^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström '21]
	- **and** $k^{\mathcal{O}(k)}m^{1+o(1)}$ **[Anand, Lee, Li, Long, Saranurak '24] (suboptimal unbreakability parameters)**

A 3-lean tree decomposition of *G*

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

k-lean:

1. The adhesions (i.e. intersections of adjacent bags) have size < *k*

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree

- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$
- Holds also when $B_1 = B_2$, e.g. $B_1 = B_2 = \{e, f, i\}$ and $X_1 = \{e, i\}, X_2 = \{e, f\}$.

A 3-lean tree decomposition of *G*

- Tree decomposition:
	- 1. All vertices and edges are covered by bags
	- 2. For each vertex *v*, the bags containing *v* form a connected subtree
- *k*-lean:
	- 1. The adhesions (i.e. intersections of adjacent bags) have size < *k*
	- 2. For all pairs of bags B_1 , B_2 and subsets $X_1 \subseteq B_1$, $X_2 \subseteq B_2$ with $|X_1| = |X_2| \le k$, the sets X_1 and X_2 can be linked by vertex-disjoint paths if and only if there is no (B_1, B_2) -adhesion of size $\langle |X_1| = |X_2|$
	- Holds also when $B_1 = B_2$, e.g. $B_1 = B_2 = \{e, f, i\}$ and $X_1 = \{e, i\}, X_2 = \{e, f\}.$
- \bullet Defined by [Thomas '90] (for $k = \infty$), and [Carmesin, Diestel, Hamann, and Hundertmark '14]

Reducing *k*-edge-connected components to *k*-lean tree decomposition

Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints

Reducing *k*-edge-connected components to *k*-lean tree decomposition

- Replace vertices by cliques of size *k*
- Create vertex for each edge and connect to the cliques corresponding to its endpoints
- Resulting *k*-lean tree decomposition gives a *k*-Gomory-Hu tree

 $k^{\mathcal{O}(k^2)}$ *m* time algorithm for *k*-lean tree decomposition

 $k^{\mathcal{O}(k^2)}$ *m* time algorithm for *k*-lean tree decomposition

- Implies $k^{\mathcal{O}(k^2)}$ *m* time algorithms for:
	- \triangleright *k*-edge-connected components (long-standing open problem)
	- \blacktriangleright *k*-vertex connectivity
	- \triangleright *k*-unbreakable tree decomposition
	- \triangleright *k*-Gomory-Hu tree (for both edge- and element-connectivity)

 $k^{\mathcal{O}(k^2)}$ *m* time algorithm for *k*-lean tree decomposition

- Implies $k^{\mathcal{O}(k^2)}$ *m* time algorithms for:
	- \triangleright *k*-edge-connected components (long-standing open problem)
	- \blacktriangleright *k*-vertex connectivity
	- \triangleright *k*-unbreakable tree decomposition
	- \triangleright *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations (Inspired by [Graph Minors X., Robertson & Seymour '91])

 $k^{\mathcal{O}(k^2)}$ *m* time algorithm for *k*-lean tree decomposition

- Implies $k^{\mathcal{O}(k^2)}$ *m* time algorithms for:
	- \triangleright *k*-edge-connected components (long-standing open problem)
	- \blacktriangleright *k*-vertex connectivity
	- \triangleright *k*-unbreakable tree decomposition
	- \triangleright *k*-Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

- Recursive matching contraction compression (inspired by [Bodlaender'93])
- Decomposition by doubly well-linked separations (Inspired by [Graph Minors X., Robertson & Seymour '91])

Thank you!

The algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm

The algorithm

Part 1: Proof that "improver algorithm" implies the algorithm (Inspired by [Bodlaender '93])

Part 2: The improver algorithm (Inspired by [Graph Minors X., Robertson & Seymour '91])

Part 1: Improver algorithm implies the algorithm

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a *k*-lean tree decomposition.

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a *k*-lean tree decomposition.

Proof idea:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a *k*-lean tree decomposition.

Proof idea:

• Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a *k*-lean tree decomposition.

Proof idea:

• Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]

Case 1: Matching *M* of size Ω(*n*) ⇒ contract *M*, recurse, uncontract, and apply improver algorithm

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

If there is improver algorithm with running time $f(k) \cdot m$, then there is an algorithm that in time $k^{\mathcal{O}(1)} \cdot f(k) \cdot m$ computes a *k*-lean tree decomposition.

Proof idea:

• Can always assume $m = \mathcal{O}(kn)$ by [Nagamochi, Ibaraki '92]

Case 1: Matching *M* of size Ω(*n*) ⇒ contract *M*, recurse, uncontract, and apply improver algorithm

Case 2: No matching of size $\Omega(n) \Rightarrow$ manage to recurse in some other way...

Improver algorithm:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Improver algorithm:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}$ *m*.

Improver algorithm:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}$ *m*.

Proof idea:

Improver algorithm:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}$ *m*.

Proof idea:

• Slowly improve the properties of the input tree decomposition (in 6 consecutive steps)

Improver algorithm:

Input: A "weakly-*k*-lean" tree decomposition:

- Adhesion size < 2*k*
- Any two subsets $X_1, X_2 \subseteq B$ of a bag *B* of size $|X_1|, |X_2| \geq 2k$ can be linked by *k* vertex-disjoint paths

Output: *k*-lean tree decomposition

Lemma

There is an improver algorithm with running time $k^{\mathcal{O}(k^2)}$ *m*.

Proof idea:

- Slowly improve the properties of the input tree decomposition (in 6 consecutive steps)
- Key tool: Decomposition by doubly well-linked separations