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k -Edge-Connected Components

Def: Vertices u and v in the same k -edge-connected component if no (u, v)-cut with < k edges
Obs: This gives an equivalence relation among vertices⇒ unique partition into components

Theorem (This work)

There is a kO(k2)m time algorithm for k -edge-connected components

Previous results:
O(m) for k = 2 [Tarjan ’72]
O(m) for k = 3 [Galil & Italiano ’91] (using [Hopcroft & Tarjan ’73])
O(m) for k = 4 [Nadara, Radecki, Smulewicz, Sokolowski’21, Georgiadis, Italiano, Kosinas’21]
O(m) for k = 5 [Kosinas ’24]

kO(1)m polylog m for all k [Hariharan, Kavitha, Panigrahi ’07]

m1+o(1) for all k [Abboud, Li, Panigrahi, Saranurak ’23]
For minimum cut:
O(k2m log m) [Gabow ’91], O(m polylog m) [Karger ’96]
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k -Lean Tree Decompositions and More
Main technical result:

Theorem (This work)

There is a kO(k2)m time algorithm for computing a “k -lean tree decomposition” of a given graph.

Implies the first “parameterized linear-time” (f (k) ·m time) algorithms for many problems:

k -Gomory-Hu tree in kO(k2)m time
I Previously kO(1)m polylog m [Hariharan, Kavitha, Panigrahi ’07]

k -Vertex connectivity in kO(k2)m time
I Previously O(k3m polylog m) [Forster, Nanongkai, Yang, Saranurak, Yingchareonthawornchai ’20]

Element connectivity k -Gomory-Hu tree in kO(k2)m time
I Previously k ·m1+o(1) [Pettie, Saranurak, Yin ’22]

k -Unbreakable tree decomposition in kO(k2)m time (with optimal unbreakability parameters)
I Previously kO(k)nO(1) [Cygan, Komosa, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh, Wahlström ’21]
I and kO(k)m1+o(1) [Anand, Lee, Li, Long, Saranurak ’24] (suboptimal unbreakability parameters)
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A 3-lean tree decomposition of G

Tree decomposition:
1. All vertices and edges are covered by bags
2. For each vertex v , the bags containing v form a connected subtree

k -lean:
1. The adhesions (i.e. intersections of adjacent bags) have size < k
2. For all pairs of bags B1, B2 and subsets X1 ⊆ B1, X2 ⊆ B2 with |X1| = |X2| ≤ k , the sets X1 and X2

can be linked by vertex-disjoint paths if and only if there is no (B1,B2)-adhesion of size < |X1| = |X2|
• Holds also when B1 = B2, e.g. B1 = B2 = {e, f , i} and X1 = {e, i}, X2 = {e, f}.

Defined by [Thomas ’90] (for k =∞), and [Carmesin, Diestel, Hamann, and Hundertmark ’14]
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Reducing k -edge-connected components to k -lean tree decomposition

Replace vertices by cliques of size k
Create vertex for each edge and connect to the cliques corresponding to its endpoints
Resulting k -lean tree decomposition gives a k -Gomory-Hu tree
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Conclusion

kO(k2)m time algorithm for k -lean tree decomposition

Implies kO(k2)m time algorithms for:
I k -edge-connected components (long-standing open problem)
I k -vertex connectivity
I k -unbreakable tree decomposition
I k -Gomory-Hu tree (for both edge- and element-connectivity)

Main techniques:

Recursive matching contraction compression (inspired by [Bodlaender’93])

Decomposition by doubly well-linked separations (Inspired by [Graph Minors X., Robertson &
Seymour ’91])

Thank you!
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The algorithm

The algorithm

Part 1: Proof that “improver algorithm” implies the algorithm (Inspired by [Bodlaender ’93])

Part 2: The improver algorithm (Inspired by [Graph Minors X., Robertson & Seymour ’91])
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Part 1: Improver algorithm implies the algorithm

Improver algorithm:
Input: A “weakly-k -lean” tree decomposition:

Adhesion size < 2k
Any two subsets X1,X2 ⊆ B of a bag B of size |X1|, |X2| ≥ 2k can be linked by k vertex-disjoint
paths

Output: k -lean tree decomposition

Lemma

If there is improver algorithm with running time f (k) ·m, then there is an algorithm that in time
kO(1) · f (k) ·m computes a k -lean tree decomposition.

Proof idea:

Can always assume m = O(kn) by [Nagamochi, Ibaraki ’92]

Case 1: Matching M of size Ω(n)⇒ contract M, recurse, uncontract, and apply improver algorithm
Case 2: No matching of size Ω(n)⇒ manage to recurse in some other way...
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Case 1: Matching M of size Ω(n)⇒ contract M, recurse, uncontract, and apply improver algorithm
Case 2: No matching of size Ω(n)⇒ manage to recurse in some other way...
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Part 2: The improver algorithm
Improver algorithm:
Input: A “weakly-k -lean” tree decomposition:

Adhesion size < 2k
Any two subsets X1,X2 ⊆ B of a bag B of size |X1|, |X2| ≥ 2k can be linked by k vertex-disjoint
paths

Output: k -lean tree decomposition

Lemma

There is an improver algorithm with running time kO(k2)m.

Proof idea:
Slowly improve the properties of the input tree decomposition (in 6 consecutive steps)
Key tool: Decomposition by doubly well-linked separations
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