Induced-Minor-Free Graphs: Separator Theorem, Subexponential Algorithms, and Improved Hardness of Recognition

Tuukka Korhonen

UNIVERSITY OF BERGEN

based on joint work [SODA'24] with Daniel Lokshtanov from UCSB

University of Warsaw algorithms seminar

8 December 2023

1. Induced subgraph

- 1. Induced subgraph
 - vertex deletions

- vertex deletions
- edge contractions

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

- 1. Induced subgraph
 - vertex deletions
- 2. Induced minor
 - vertex deletions
 - edge contractions
- 3. Minor
 - vertex deletions
 - edge contractions
 - edge deletions

In this talk, all graphs are simple!

Graph classses defined by containment

- For a graph H, can define graph classes by excluding H
 - H-minor-free graphs
 - H-induced-minor-free graphs

Graph classses defined by containment

- For a graph H, can define graph classes by excluding H
 - H-minor-free graphs
 - H-induced-minor-free graphs
- Example: C₄-minor-free graphs

- Every biconnected component is a triangle
- $\bullet\,$ Chordal and treewidth ≤ 2

How about C₄-induced-minor-free graphs?

How about C₄-induced-minor-free graphs?

• Complete graph contains only complete graphs as induced minors

How about C₄-induced-minor-free graphs?

- Complete graph contains only complete graphs as induced minors
- \Rightarrow C₄-induced-minor-free graphs have unbounded treewidth

How about C₄-induced-minor-free graphs?

- Complete graph contains only complete graphs as induced minors
- \Rightarrow C₄-induced-minor-free graphs have unbounded treewidth
 - C_4 -induced-minor-free graphs \Leftrightarrow chordal graphs

• Lot of recent work on H-induced-minor-free graphs for planar H

- Lot of recent work on H-induced-minor-free graphs for planar H
- (In my opinion) the main open problem:

Open problem (Dallard, Milanic, Storgel '21)

Is max independent set (quasi)polynomial time on *H*-induced-minor-free graphs for every planar *H*?

- Lot of recent work on H-induced-minor-free graphs for planar H
- (In my opinion) the main open problem:

Open problem (Dallard, Milanic, Storgel '21)

Is max independent set (quasi)polynomial time on *H*-induced-minor-free graphs for every planar *H*?

Solved for:

- $H = P_k$ [Gartland and Lokshtanov FOCS'20]
- $H = C_k$ [Gartland, Lokshtanov, Pilipczuk, Pilipczuk, Rzazewski STOC'21]
- $H = W_4$, $H = K_5^-$, and $H = K_{2,q}$ [Dallard, Milanic, Storgel '21]
- *H* = *tC*₃ [Bonamy, Bonnet, Depres, Esperet, Geniet, Hilaire, Thomasse, Wesolek SODA'23]
- $H = K_1 + tK_2$ and $H = tC_3 \uplus C_4$ [Bonnet, Duron, Geniet, Thomasse, Wesolek ESA'23]
- Bounded-degree input graphs [K. JCTB'23]

• Consider the class of H-induced-minor-free graphs for non-planar H

Consider the class of *H*-induced-minor-free graphs for **non-planar** *H* ⇒ Contains all planar graphs ⇒ Independent set NP-hard

Consider the class of *H*-induced-minor-free graphs for **non-planar** *H* ⇒ Contains all planar graphs ⇒ Independent set NP-hard

Examples:

• Consider the class of H-induced-minor-free graphs for non-planar H

 \Rightarrow Contains all planar graphs \Rightarrow Independent set NP-hard

Examples:

• String graphs (intersection graphs of connected subgraphs of planar graphs)

• Consider the class of H-induced-minor-free graphs for non-planar H

 \Rightarrow Contains all planar graphs \Rightarrow Independent set NP-hard

Examples:

- String graphs (intersection graphs of connected subgraphs of planar graphs)
- Intersection graphs of connected subgraphs of minor-free graphs

• Consider the class of H-induced-minor-free graphs for non-planar H

 \Rightarrow Contains all planar graphs \Rightarrow Independent set NP-hard

Examples:

- String graphs (intersection graphs of connected subgraphs of planar graphs)
- Intersection graphs of connected subgraphs of minor-free graphs

Open problem (Lokshtanov)

Does this capture all H-induced-minor-free graphs?

Theorem (Alon, Seymour, Thomas STOC'90)

H-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{n}$.

Theorem (Alon, Seymour, Thomas STOC'90)

H-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{n}$.

- \Rightarrow minor-free graphs have treewidth $\mathcal{O}(\sqrt{n})$
- $\Rightarrow 2^{\mathcal{O}(\sqrt{n})}$ time algorithms

Theorem (Alon, Seymour, Thomas STOC'90)

H-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{n}$.

- \Rightarrow minor-free graphs have treewidth $\mathcal{O}(\sqrt{n})$
- $\Rightarrow 2^{\mathcal{O}(\sqrt{n})}$ time algorithms

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{m}$.

Theorem (Alon, Seymour, Thomas STOC'90)

H-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{n}$.

- \Rightarrow minor-free graphs have treewidth $\mathcal{O}(\sqrt{n})$
- $\Rightarrow 2^{\mathcal{O}(\sqrt{n})}$ time algorithms

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{m}$.

• Generalizes separator theorems on string graphs: $\mathcal{O}(m^{3/4}\sqrt{\log m})$ by [Fox and Pach'10], $\mathcal{O}(\sqrt{m}\log m)$ by [Matousek '14], $\mathcal{O}(\sqrt{m})$ by [Lee'17]

Theorem (Alon, Seymour, Thomas STOC'90)

H-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{n}$.

- \Rightarrow minor-free graphs have treewidth $\mathcal{O}(\sqrt{n})$
- $\Rightarrow 2^{\mathcal{O}(\sqrt{n})}$ time algorithms

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{m}$.

- Generalizes separator theorems on string graphs: $\mathcal{O}(m^{3/4}\sqrt{\log m})$ by [Fox and Pach'10], $\mathcal{O}(\sqrt{m}\log m)$ by [Matousek '14], $\mathcal{O}(\sqrt{m})$ by [Lee'17]
- The theorem of [Lee'17] works also on intersection graphs of connected subgraphs of minor-free graphs

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

1. Branch while exists a vertex of degree $\geq n^{1/3}$

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{\mathcal{O}(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

General framework:

 Suppose in problem Π, the task is to decide if there exists X ⊆ V(G) so that G[X] is degenerate and satisfy some property

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

- Suppose in problem Π, the task is to decide if there exists X ⊆ V(G) so that G[X] is degenerate and satisfy some property
- Suppose Π can be solved in time k^{O(k)}n^{O(1)} time on graphs of treewidth k

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

- Suppose in problem Π, the task is to decide if there exists X ⊆ V(G) so that G[X] is degenerate and satisfy some property
- Suppose Π can be solved in time k^{O(k)}n^{O(1)} time on graphs of treewidth k
- Then Π can be solved in time $n^{\mathcal{O}(n^{2/3})}$ on any graph class with $\mathcal{O}(\sqrt{m})$ -separator-theorem

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size $|H|^{O(1)} \cdot \sqrt{m}$.

First application: Independent set in time $n^{\mathcal{O}(n^{2/3})}$

- 1. Branch while exists a vertex of degree $\geq n^{1/3}$
- 2. After that, $m \le n^{4/3} \Rightarrow$ treewidth $\mathcal{O}(n^{2/3})$

- Suppose in problem Π, the task is to decide if there exists X ⊆ V(G) so that G[X] is degenerate and satisfy some property
- Suppose Π can be solved in time k^{O(k)}n^{O(1)} time on graphs of treewidth k
- Then Π can be solved in time $n^{\mathcal{O}(n^{2/3})}$ on any graph class with $\mathcal{O}(\sqrt{m})$ -separator-theorem
- Independent set, feedback vertex set, \mathcal{F} -minor-deletion...

Theorem (Leighton-Rao)

Either a balanced separator of size $O(t \log n)$, or concurrent flow of congestion $O(\frac{n^2}{t})$.

Theorem (Leighton-Rao)

Either a balanced separator of size $O(t \log n)$, or concurrent flow of congestion $O(\frac{n^2}{t})$.

- Concurrent flow: One unit of flow between every pair of vertices
- Congestion: Upper bound on total flow going through a single vertex

Theorem (Leighton-Rao)

Either a balanced separator of size $O(t \log n)$, or concurrent flow of congestion $O(\frac{n^2}{t})$.

- Concurrent flow: One unit of flow between every pair of vertices
- Congestion: Upper bound on total flow going through a single vertex

Theorem (Klein-Plotkin-Rao, Lee'17)

When *H*-induced-minor-free, either a balanced separator of size $|H|^{\mathcal{O}(1)} \cdot t$, or concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$.

Theorem (Leighton-Rao)

Either a balanced separator of size $O(t \log n)$, or concurrent flow of congestion $O(\frac{n^2}{t})$.

- Concurrent flow: One unit of flow between every pair of vertices
- Congestion: Upper bound on total flow going through a single vertex

Theorem (Klein-Plotkin-Rao, Lee'17)

When *H*-induced-minor-free, either a balanced separator of size $|H|^{\mathcal{O}(1)} \cdot t$, or concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$.

Set $t = |H|^4 \cdot \sqrt{m}$: If separator, we are done.

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

• Idea: Try to embed *H* by sampling random endpoints and random paths from the flow between them

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

- Idea: Try to embed *H* by sampling random endpoints and random paths from the flow between them
- Consider two independent edges. They collide at a given vertex or edge with probability:

$$\frac{1}{t^2} \le \frac{1}{|H|^4 \cdot m}$$

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

- Idea: Try to embed *H* by sampling random endpoints and random paths from the flow between them
- Consider two independent edges. They collide at a given vertex or edge with probability:

$$\frac{1}{t^2} \le \frac{1}{|H|^4 \cdot m}$$

• \Rightarrow They collide on any vertex or edge with probability $\frac{1}{|H|^4}$

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

- Idea: Try to embed *H* by sampling random endpoints and random paths from the flow between them
- Consider two independent edges. They collide at a given vertex or edge with probability:

$$\frac{1}{t^2} \le \frac{1}{|H|^4 \cdot m}$$

- \Rightarrow They collide on any vertex or edge with probability $\frac{1}{|H|^4}$
- Issue: No control over non-indepedent edges

Have: Concurrent flow of congestion $\mathcal{O}(\frac{n^2}{t})$ for $t = |H|^4 \cdot \sqrt{m}$.

- Idea: Try to embed *H* by sampling random endpoints and random paths from the flow between them
- Consider two independent edges. They collide at a given vertex or edge with probability:

$$\frac{1}{t^2} \le \frac{1}{|H|^4 \cdot m}$$

- \Rightarrow They collide on any vertex or edge with probability $\frac{1}{|H|^4}$
- Issue: No control over non-indepedent edges
- Solution: Subdivide *H* three times, get a bad model of subdivided graph, reroute to a good model of *H*

Part 2: Induced minor containment

Part 2: Induced minor containment

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph *H*, so that *H*-induced-minor-containment is NP-hard.

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

• Our framework gives $n^{\mathcal{O}_H(n^{2/3})}$ time algorithm for *H*-induced-minor containment when minimal models of *H* are degenerate

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

- Our framework gives $n^{\mathcal{O}_H(n^{2/3})}$ time algorithm for *H*-induced-minor containment when minimal models of *H* are degenerate
- For example, when every edge of H is incident to a degree-2 vertex

Part 2: Induced minor containment

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

- Our framework gives $n^{\mathcal{O}_H(n^{2/3})}$ time algorithm for *H*-induced-minor containment when minimal models of *H* are degenerate
- For example, when every edge of H is incident to a degree-2 vertex

Theorem (This work)

There exists a fixed graph *H*, so that assuming ETH, there is no $2^{o(n/\log^3 n)}$ time algorithm for *H*-induced-minor-containment.

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

- Our framework gives $n^{\mathcal{O}_H(n^{2/3})}$ time algorithm for *H*-induced-minor containment when minimal models of *H* are degenerate
- For example, when every edge of H is incident to a degree-2 vertex

Theorem (This work)

There exists a fixed graph *H*, so that assuming ETH, there is no $2^{o(n/\log^3 n)}$ time algorithm for *H*-induced-minor-containment.

• Furthermore, H is a tree and the proof also gives NP-hardness

Theorem (Fellows, Kratochvil, Middendorf, & Pfeiffer '95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

- Our framework gives $n^{\mathcal{O}_H(n^{2/3})}$ time algorithm for *H*-induced-minor containment when minimal models of *H* are degenerate
- For example, when every edge of H is incident to a degree-2 vertex

Theorem (This work)

There exists a fixed graph *H*, so that assuming ETH, there is no $2^{o(n/\log^3 n)}$ time algorithm for *H*-induced-minor-containment.

- Furthermore, H is a tree and the proof also gives NP-hardness
- Solves two open problems of [Fellows, Kratochvil, Middendorf, & Pfeiffer '95], who asked the existence of such *H* that is (1) planar (2) tree

 Main intermediate problem: Multicolored 6-disjoint induced paths, with special structure:

- Main intermediate problem: Multicolored 6-disjoint induced paths, with special structure:
- Each path goes in its own set V_i
- Edges between V_i and V_j only if |i j| = 1
- Pathwidth of $G[V_i \cup V_j]$ bounded

- Main intermediate problem: Multicolored 6-disjoint induced paths, with special structure:
- Each path goes in its own set V_i
- Edges between V_i and V_j only if |i j| = 1
- Pathwidth of $G[V_i \cup V_j]$ bounded

Step 1: $2^{o(n/\log^3 n)}$ ETH hardness via specific almost-expander construction

- Main intermediate problem: Multicolored 6-disjoint induced paths, with special structure:
- Each path goes in its own set V_i
- Edges between V_i and V_j only if |i j| = 1
- Pathwidth of $G[V_i \cup V_j]$ bounded

Step 1: $2^{o(n/\log^3 n)}$ ETH hardness via specific almost-expander construction

Step 2: Reduction to rooted induced minors, and then by using pathwidth to induced minors

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

- 1. $\mathcal{O}(\sqrt{m})$ -separator theorem
- 2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

Open problems:

1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

- 1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?
- 2. Are all *H*-induced-minor-free graphs intersection graphs of connected subgraphs of *H*'-minor-free graphs?

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

- 1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?
- 2. Are all *H*-induced-minor-free graphs intersection graphs of connected subgraphs of *H*'-minor-free graphs?
- 3. Complexity of *H*-induced-minor-containment when minimal models of *H* are sparse? NP-hard? quasipolynomial?

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

- 1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?
- 2. Are all *H*-induced-minor-free graphs intersection graphs of connected subgraphs of *H*'-minor-free graphs?
- 3. Complexity of *H*-induced-minor-containment when minimal models of *H* are sparse? NP-hard? quasipolynomial?
- 4. Related: Complexity of *k*-disjoint induced paths on *H*-induced-minor-free graphs?

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

- 1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?
- 2. Are all *H*-induced-minor-free graphs intersection graphs of connected subgraphs of *H*'-minor-free graphs?
- 3. Complexity of *H*-induced-minor-containment when minimal models of *H* are sparse? NP-hard? quasipolynomial?
- 4. Related: Complexity of *k*-disjoint induced paths on *H*-induced-minor-free graphs? (on unit disk graphs?)

1. $\mathcal{O}(\sqrt{m})$ -separator theorem

2. $2^{o(n/\log^3 n)}$ hardness of *H*-induced-minor-containment for fixed tree *H*

Open problems:

- 1. Complexity of independent set on *H*-induced-minor-free: quasipolynomial when *H* is planar? $2^{\mathcal{O}(\sqrt{n} \text{ polylog } n)}$ when *H* is non-planar?
- 2. Are all *H*-induced-minor-free graphs intersection graphs of connected subgraphs of *H*'-minor-free graphs?
- 3. Complexity of *H*-induced-minor-containment when minimal models of *H* are sparse? NP-hard? quasipolynomial?
- 4. Related: Complexity of *k*-disjoint induced paths on *H*-induced-minor-free graphs? (on unit disk graphs?)

Thanks!