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Two-Sets Cut-Uncut

Input: Undirected graph and two sets of vertices S and T .
Output: Smallest number of edges to delete so that S is separated from T ,

but vertices in S, (resp. in T ), stay in the same component.

TWO-SETS CUT-UNCUT

Equivalently, a smallest S-T cut that is a minimal cut
Possible that no solution exists!
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Previous works

The decision version: Two-Disjoint Connected Subgraphs
I NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira ’12]

I NP-hard on general graphs even when |S| = 2 [van’t Hof, Paulusma,
Woeginger ’09]

I Faster than 2n exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk,
Wojtaszczyk ’14], [Telle & Villanger ’13]

Parameterized by solution size k : 2O(k2 log k)nO(1) time (in very general
setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk ’16]

Polynomial-time algorithms on planar graphs:

I When |S| = 1 and |T | = 2 [Duan & Xu ’14]

I When |S| = 1 [Bezáková & Langley ’14]
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I NP-hard on general graphs even when |S| = 2 [van’t Hof, Paulusma,
Woeginger ’09]

I Faster than 2n exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk,
Wojtaszczyk ’14], [Telle & Villanger ’13]

Parameterized by solution size k : 2O(k2 log k)nO(1) time (in very general
setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk ’16]

Polynomial-time algorithms on planar graphs:

I When |S| = 1 and |T | = 2 [Duan & Xu ’14]

I When |S| = 1 [Bezáková & Langley ’14]
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Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:

Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}
Previous works on planar graphs:

Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]

Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:
Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:

Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}
Previous works on planar graphs:

Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u}

and with S = {s, u},T = {t , v}
Previous works on planar graphs:

Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u}

and with S = {s, u},T = {t , v}
Previous works on planar graphs:

Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:
Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:
Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:

Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:
Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]

Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Special case: Network Diversion

Input: Undirected graph, vertices s and t , edge uv .
Output: Smallest number of edges to delete so that uv becomes an s-t-bridge.

NETWORK DIVERSION

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T | = 2:
Try with S = {s, v},T = {t , u} and with S = {s, u},T = {t , v}

Previous works on planar graphs:
Polytime when s and t on the same face [Cullenbine, Wood, Newman ’13]
Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu ’14]

s

t

u

v

Tuukka Korhonen Two-sets cut-uncut on planar graphs 4 / 14



Our results

Theorem

Two-Sets Cut-Uncut can be solved on planar graphs in 2|S|+|T |nO(1) time by
randomized algorithm.

Implies polynomial-time algorithm for Network Diversion on planar graphs

Implies FPT algorithms for Generalized Network Diversion and Location
Constrained Shortest Path

Theorem

Two-Sets Cut-Uncut can be solved on plane graphs in 4r+O(
√

r)nO(1) time,
where r is the minimum number of faces to cover S ∪ T .
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The algorithm

The algorithm
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Minimal cuts in planar graphs

A minimal cut corresponds to a cycle in the dual graph

Plan: Phrase the problem as a problem about finding a cycle in the dual

How to understand if u and v are on the same side of the cut?

I Pick any u-v -path and count the parity of how many times it is cut

Reduction to shortest cycle under |S|+ |T | − 1 parity constraints
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Shortest paths in group-labeled graphs

Input: Undirected graph whose edges are labeled by elements of the
Boolean group (Zd

2 ,+), two vertices s and t , and an element c ∈ Zd
2 .

Output: Shortest s-t-path whose edge labels sum up to c.

BOOLEAN GROUP-LABELED SHORTEST PATH

Reduction from Two-Sets Cut-Uncut to Boolean Group-Labeled Shortest Path with
d = |S|+ |T | − 1

Theorem

There is a 2dnO(1) time randomized algorithm for Boolean Group-Labeled Shortest
Path.

Generalizes the result of [Derigs’85] for d = 1

Generalizes the result of [Björklund, Husfeldt, Taslaman ’12] for finding a shortest
cycle through T specified vertices in time 2|T |nO(1)
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The algorithm

The Algorithm for Boolean Group-Labeled Shortest Path
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Solving problems by Schwartz–Zippel

Plan:

For integer `, define a multivariate polynomial P` of degree ` over the field
GF(2dlog `e+2) so that:

1. if no solutions of length ≤ ` exists, then P` identically zero

2. if a solution of length ` exists, then P` non-zero

3. the value of P` can be evaluated in time 2dnO(1)

⇒ By applying the Schwartz–Zippel lemma, the shortest solution can be
found in randomized time 2dnO(1)
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⇒ By applying the Schwartz–Zippel lemma, the shortest solution can be
found in randomized time 2dnO(1)
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The polynomial

An s-t-walk of length ` is a sequence (s = v0, v1, v2, . . . , v` = t) that is like
a path, but vertices can repeat

An s-t-walk (v0, v1, v2, . . . , v`) of length ` is feasible if its edge labels sum
up to the element c ∈ Zd

2

LetW` be the set of feasible s-t-walks of length `

We have a variable x(uv) for every edge uv ∈ E(G)

P` =
∑

(v0,v1,...,v`)∈W`

∏`
i=1 x(vi−1vi) (over GF(2dlog `e+2)
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The polynomial

P` =
∑

(v0,v1,...,v`)∈W`

∏`
i=1 x(vi−1vi) (over GF(2dlog `e+2)

Can evaluate in 2dnO(1) time by dynamic programming over walks

Non-zero if a solution of length ` exists, because a solution gives
monomial corresponding to exactly one walk

Remains to show that if no solutions of length ≤ ` exists, then each
monomial appears an even number of times
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Cancellation of monomials

Goal: Define a function φ : W` →W` so that for all W ∈ W`

1. φ(W ) has the same multiset of edges as W

2. φ(W ) 6= W

3. φ(φ(W )) = W

Think W as a string of vertices

Find the first repeating vertex and reverse between its first and last
occurrence
Sometimes reversal does not work because of palindromes, but fixable

I Here we use that the group is (Zd
2 ,+)
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Conclusion

2|S|+|T |nO(1) time algorithm for Two-Sets Cut-Uncut on planar graphs

The case of |S| = |T | = 2 solves the open problem of Network Diversion
on planar graphs

Implementable in practice

Open problems:

I Network Diversion in general graphs: Polynomial-time or
NP-complete?

I Three-Sets Cut-Uncut on planar graphs: Open even for three sets of
sizes 2,1,1
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Thank you!

Thank you!
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