Two-sets cut-uncut on planar graphs

Tuukka Korhonen

UNIVERSITY OF BERGEN

based on joint work with Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach

University of Warsaw Algorithms Seminar

19 May 2023

Two-Sets Cut-Uncut

Input: Undirected graph and two sets of vertices *S* and *T*.

Output: Smallest number of edges to delete so that S is separated from T, but vertices in S, (resp. in T), stay in the same component.

Two-Sets Cut-Uncut

Input: Undirected graph and two sets of vertices *S* and *T*.

Output: Smallest number of edges to delete so that S is separated from T, but vertices in S, (resp. in T), stay in the same component.

TWO-SETS CUT-UNCUT

Input: Undirected graph and two sets of vertices *S* and *T*.

Output: Smallest number of edges to delete so that S is separated from T, but vertices in S, (resp. in T), stay in the same component.

• Equivalently, a smallest S-T cut that is a minimal cut

TWO-SETS CUT-UNCUT

Input: Undirected graph and two sets of vertices *S* and *T*.

Output: Smallest number of edges to delete so that S is separated from T, but vertices in S, (resp. in T), stay in the same component.

- Equivalently, a smallest S-T cut that is a minimal cut
- Possible that no solution exists!

• The decision version: Two-Disjoint Connected Subgraphs

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]
 - Faster than 2ⁿ exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk '14], [Telle & Villanger '13]

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]
 - ► Faster than 2ⁿ exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk '14], [Telle & Villanger '13]
- Parameterized by solution size k: 2^{O(k² log k)} n^{O(1)} time (in very general setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk '16]

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]
 - ► Faster than 2ⁿ exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk '14], [Telle & Villanger '13]
- Parameterized by solution size k: 2^{O(k² log k)} n^{O(1)} time (in very general setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk '16]
- Polynomial-time algorithms on planar graphs:

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]
 - ► Faster than 2ⁿ exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk '14], [Telle & Villanger '13]
- Parameterized by solution size k: 2^{O(k² log k)} n^{O(1)} time (in very general setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk '16]
- Polynomial-time algorithms on planar graphs:
 - ▶ When |S| = 1 and |T| = 2 [Duan & Xu '14]

- The decision version: Two-Disjoint Connected Subgraphs
 - NP-hard on planar graphs [Gray, Kammer, Löffler, Silveira '12]
 - ► NP-hard on general graphs even when |S| = 2 [van't Hof, Paulusma, Woeginger '09]
 - Faster than 2ⁿ exponential-time algorithms [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk '14], [Telle & Villanger '13]
- Parameterized by solution size k: 2^{O(k² log k)} n^{O(1)} time (in very general setting) [Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk '16]
- Polynomial-time algorithms on planar graphs:
 - ▶ When |S| = 1 and |T| = 2 [Duan & Xu '14]
 - When |S| = 1 [Bezáková & Langley '14]

- NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with $S = \{s, v\}, T = \{t, u\}$

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with $S = \{s, v\}, T = \{t, u\}$

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with $S = \{s, v\}, T = \{t, u\}$ and with $S = \{s, u\}, T = \{t, v\}$

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with $S = \{s, v\}, T = \{t, u\}$ and with $S = \{s, u\}, T = \{t, v\}$

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with
$$S = \{s, v\}, T = \{t, u\}$$
 and with $S = \{s, u\}, T = \{t, v\}$

Previous works on planar graphs:

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with
$$S = \{s, v\}, T = \{t, u\}$$
 and with $S = \{s, u\}, T = \{t, v\}$

Previous works on planar graphs:

• Polytime when s and t on the same face [Cullenbine, Wood, Newman '13]

NETWORK DIVERSION

Input: Undirected graph, vertices *s* and *t*, edge *uv*.

Output: Smallest number of edges to delete so that *uv* becomes an *s*-*t*-bridge.

Reduction to Two-Sets Cut-Uncut with |S| = 2 and |T| = 2:

• Try with $S = \{s, v\}, T = \{t, u\}$ and with $S = \{s, u\}, T = \{t, v\}$

Previous works on planar graphs:

- Polytime when s and t on the same face [Cullenbine, Wood, Newman '13]
- Incorrect claim of polytime on planar graphs [Duan, Jafarian, Al-Shaer, Xu '14]

Theorem

Two-Sets Cut-Uncut can be solved on planar graphs in $2^{|S|+|T|} n^{O(1)}$ time by randomized algorithm.

Theorem

Two-Sets Cut-Uncut can be solved on planar graphs in $2^{|S|+|T|} n^{O(1)}$ time by randomized algorithm.

• Implies polynomial-time algorithm for Network Diversion on planar graphs

Theorem

Two-Sets Cut-Uncut can be solved on planar graphs in $2^{|S|+|T|} n^{O(1)}$ time by randomized algorithm.

- Implies polynomial-time algorithm for Network Diversion on planar graphs
- Implies FPT algorithms for Generalized Network Diversion and Location Constrained Shortest Path

Theorem

Two-Sets Cut-Uncut can be solved on planar graphs in $2^{|S|+|T|} n^{O(1)}$ time by randomized algorithm.

- Implies polynomial-time algorithm for Network Diversion on planar graphs
- Implies FPT algorithms for Generalized Network Diversion and Location Constrained Shortest Path

Theorem

Two-Sets Cut-Uncut can be solved on plane graphs in $4^{r+\mathcal{O}(\sqrt{r})} n^{\mathcal{O}(1)}$ time, where *r* is the minimum number of faces to cover $S \cup T$.

The algorithm

The algorithm

• A minimal cut corresponds to a cycle in the dual graph

- A minimal cut corresponds to a cycle in the dual graph
- Plan: Phrase the problem as a problem about finding a cycle in the dual

- A minimal cut corresponds to a cycle in the dual graph
- Plan: Phrase the problem as a problem about finding a cycle in the dual
- How to understand if u and v are on the same side of the cut?

- A minimal cut corresponds to a cycle in the dual graph
- Plan: Phrase the problem as a problem about finding a cycle in the dual
- How to understand if u and v are on the same side of the cut?
 - ▶ Pick any *u*-*v*-path and count the parity of how many times it is cut

- A minimal cut corresponds to a cycle in the dual graph
- Plan: Phrase the problem as a problem about finding a cycle in the dual
- How to understand if u and v are on the same side of the cut?
 - Pick any u-v-path and count the parity of how many times it is cut
- Reduction to shortest cycle under |S| + |T| 1 parity constraints

Minimal cuts in planar graphs

- A minimal cut corresponds to a cycle in the dual graph
- Plan: Phrase the problem as a problem about finding a cycle in the dual
- How to understand if u and v are on the same side of the cut?
 - Pick any u-v-path and count the parity of how many times it is cut
- Reduction to shortest cycle under |S| + |T| 1 parity constraints

Input: Undirected graph whose edges are labeled by elements of the Boolean group $(\mathbb{Z}_2^d, +)$, two vertices *s* and *t*, and an element $c \in \mathbb{Z}_2^d$.

Output: Shortest *s*-*t*-path whose edge labels sum up to *c*.

BOOLEAN GROUP-LABELED	SHORTEST	Ратн
-----------------------	----------	------

- *Input:* Undirected graph whose edges are labeled by elements of the Boolean group $(\mathbb{Z}_2^d, +)$, two vertices *s* and *t*, and an element $c \in \mathbb{Z}_2^d$. *Output:* Shortest *s*-*t*-path whose edge labels sum up to *c*.
- Reduction from Two-Sets Cut-Uncut to Boolean Group-Labeled Shortest Path with d = |S| + |T| 1

Input: Undirected graph whose edges are labeled by elements of the Boolean group $(\mathbb{Z}_2^d, +)$, two vertices *s* and *t*, and an element $c \in \mathbb{Z}_2^d$. *Output:* Shortest *s*-*t*-path whose edge labels sum up to *c*.

• Reduction from Two-Sets Cut-Uncut to Boolean Group-Labeled Shortest Path with d = |S| + |T| - 1

Theorem

There is a $2^d n^{O(1)}$ time randomized algorithm for Boolean Group-Labeled Shortest Path.

Input: Undirected graph whose edges are labeled by elements of the Boolean group $(\mathbb{Z}_2^d, +)$, two vertices *s* and *t*, and an element $c \in \mathbb{Z}_2^d$. *Output:* Shortest *s*-*t*-path whose edge labels sum up to *c*.

• Reduction from Two-Sets Cut-Uncut to Boolean Group-Labeled Shortest Path with d = |S| + |T| - 1

Theorem

There is a $2^d n^{O(1)}$ time randomized algorithm for Boolean Group-Labeled Shortest Path.

• Generalizes the result of [Derigs'85] for d = 1

Input: Undirected graph whose edges are labeled by elements of the Boolean group $(\mathbb{Z}_2^d, +)$, two vertices *s* and *t*, and an element $c \in \mathbb{Z}_2^d$. *Output:* Shortest *s*-*t*-path whose edge labels sum up to *c*.

• Reduction from Two-Sets Cut-Uncut to Boolean Group-Labeled Shortest Path with d = |S| + |T| - 1

Theorem

There is a $2^d n^{O(1)}$ time randomized algorithm for Boolean Group-Labeled Shortest Path.

- Generalizes the result of [Derigs'85] for d = 1
- Generalizes the result of [Björklund, Husfeldt, Taslaman '12] for finding a shortest cycle through *T* specified vertices in time 2^{|T|}n^{O(1)}

The algorithm

The Algorithm for Boolean Group-Labeled Shortest Path

Plan:

Plan:

For integer ℓ , define a multivariate polynomial P_{ℓ} of degree ℓ over the field $GF(2^{\lceil \log \ell \rceil + 2})$ so that:

Plan:

For integer ℓ , define a multivariate polynomial P_{ℓ} of degree ℓ over the field $GF(2^{\lceil \log \ell \rceil + 2})$ so that:

1. if no solutions of length $\leq \ell$ exists, then P_{ℓ} identically zero

Plan:

For integer ℓ , define a multivariate polynomial P_{ℓ} of degree ℓ over the field $GF(2^{\lceil \log \ell \rceil + 2})$ so that:

- 1. if no solutions of length $\leq \ell$ exists, then P_{ℓ} identically zero
- 2. if a solution of length ℓ exists, then P_{ℓ} non-zero

Plan:

For integer ℓ , define a multivariate polynomial P_{ℓ} of degree ℓ over the field $GF(2^{\lceil \log \ell \rceil + 2})$ so that:

- 1. if no solutions of length $\leq \ell$ exists, then P_{ℓ} identically zero
- 2. if a solution of length ℓ exists, then P_{ℓ} non-zero
- 3. the value of P_{ℓ} can be evaluated in time $2^d n^{\mathcal{O}(1)}$

Plan:

For integer ℓ , define a multivariate polynomial P_{ℓ} of degree ℓ over the field $GF(2^{\lceil \log \ell \rceil + 2})$ so that:

- 1. if no solutions of length $\leq \ell$ exists, then P_{ℓ} identically zero
- 2. if a solution of length ℓ exists, then P_{ℓ} non-zero
- 3. the value of P_{ℓ} can be evaluated in time $2^{d} n^{\mathcal{O}(1)}$

 \Rightarrow By applying the Schwartz–Zippel lemma, the shortest solution can be found in randomized time $2^d n^{\mathcal{O}(1)}$

An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat

- An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat
- An s-t-walk (v₀, v₁, v₂,..., v_ℓ) of length ℓ is feasible if its edge labels sum up to the element c ∈ Z^d₂

- An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat
- An *s*-*t*-walk (v₀, v₁, v₂,..., v_ℓ) of length ℓ is feasible if its edge labels sum up to the element c ∈ Z^d₂
- Let \mathcal{W}_{ℓ} be the set of feasible *s*-*t*-walks of length ℓ

- An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat
- An s-t-walk (v₀, v₁, v₂,..., v_ℓ) of length ℓ is feasible if its edge labels sum up to the element c ∈ Z^d₂
- Let \mathcal{W}_{ℓ} be the set of feasible *s*-*t*-walks of length ℓ
- We have a variable $\mathbf{x}(uv)$ for every edge $uv \in E(G)$

- An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat
- An s-t-walk (v₀, v₁, v₂,..., v_ℓ) of length ℓ is feasible if its edge labels sum up to the element c ∈ Z^d₂
- Let \mathcal{W}_{ℓ} be the set of feasible *s*-*t*-walks of length ℓ
- We have a variable $\mathbf{x}(uv)$ for every edge $uv \in E(G)$

•
$$P_{\ell} = \sum_{(v_0, v_1, ..., v_{\ell}) \in \mathcal{W}_{\ell}} \prod_{i=1}^{\ell} \mathbf{x}(v_{i-1}v_i)$$

- An *s*-*t*-walk of length ℓ is a sequence (*s* = *v*₀, *v*₁, *v*₂, ..., *v*_ℓ = *t*) that is like a path, but vertices can repeat
- An s-t-walk (v₀, v₁, v₂,..., v_ℓ) of length ℓ is feasible if its edge labels sum up to the element c ∈ Z^d₂
- Let \mathcal{W}_{ℓ} be the set of feasible *s*-*t*-walks of length ℓ
- We have a variable $\mathbf{x}(uv)$ for every edge $uv \in E(G)$

•
$$extsf{P}_\ell = \sum_{(extsf{v}_0, extsf{v}_1, ..., extsf{v}_\ell) \in \mathcal{W}_\ell} \prod_{i=1}^\ell \mathbf{X}(extsf{v}_{i-1} extsf{v}_i)$$
 (over GF(2 ^{$\lceil \log \ell \rceil + 2$})

•
$$P_\ell = \sum_{(v_0, v_1, ..., v_\ell) \in \mathcal{W}_\ell} \prod_{i=1}^\ell X(v_{i-1}v_i)$$
 (over GF(2 ^{$\lceil \log \ell \rceil + 2$})

•
$$P_\ell = \sum_{(v_0, v_1, ..., v_\ell) \in \mathcal{W}_\ell} \prod_{i=1}^\ell \mathbf{X}(v_{i-1}v_i)$$
 (over GF(2 ^{$\log \ell$]+2})

• Can evaluate in $2^d n^{O(1)}$ time by dynamic programming over walks

•
$$P_\ell = \sum_{(v_0, v_1, \dots, v_\ell) \in \mathcal{W}_\ell} \prod_{i=1}^\ell \mathbf{X}(v_{i-1}v_i)$$
 (over GF(2 ^{$\lceil \log \ell \rceil + 2$})

- Can evaluate in $2^d n^{O(1)}$ time by dynamic programming over walks
- Non-zero if a solution of length l exists, because a solution gives monomial corresponding to exactly one walk

•
$$P_\ell = \sum_{(v_0, v_1, ..., v_\ell) \in \mathcal{W}_\ell} \prod_{i=1}^\ell \mathbf{X}(v_{i-1}v_i)$$
 (over GF(2 ^{$\lceil \log \ell \rceil + 2$})

- Can evaluate in $2^d n^{O(1)}$ time by dynamic programming over walks
- Non-zero if a solution of length l exists, because a solution gives monomial corresponding to exactly one walk
- Remains to show that if no solutions of length $\leq \ell$ exists, then each monomial appears an even number of times

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

1. $\phi(W)$ has the same multiset of edges as W

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

1. $\phi(W)$ has the same multiset of edges as W

2. $\phi(W) \neq W$

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- **2**. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
 - Think W as a string of vertices

sabcdbcefbt

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence

sabcdbcefbt

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think W as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence

$sabcdbcefbt \Rightarrow sabfecbdcbt$

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

s<u>abcba</u>dbebhefget

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

Goal: Define a function $\phi \colon \mathcal{W}_{\ell} \to \mathcal{W}_{\ell}$ so that for all $W \in \mathcal{W}_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

sabcbadbebh<u>efge</u>t
Cancellation of monomials

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think *W* as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable

$sabcbadbebhefget \Rightarrow sabcbadbebhegfet$

Cancellation of monomials

Goal: Define a function $\phi \colon W_{\ell} \to W_{\ell}$ so that for all $W \in W_{\ell}$

- 1. $\phi(W)$ has the same multiset of edges as W
- 2. $\phi(W) \neq W$
- **3**. $\phi(\phi(W)) = W$
- Think W as a string of vertices
- Find the first repeating vertex and reverse between its first and last occurrence
- Sometimes reversal does not work because of palindromes, but fixable
 - Here we use that the group is $(\mathbb{Z}_2^d, +)$

$sabcbadbebhefget \Rightarrow sabcbadbebhegfet$

• $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs

- $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs
- The case of |S| = |T| = 2 solves the open problem of Network Diversion on planar graphs

- $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs
- The case of |S| = |T| = 2 solves the open problem of Network Diversion on planar graphs
- Implementable in practice

- $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs
- The case of |S| = |T| = 2 solves the open problem of Network Diversion on planar graphs
- Implementable in practice
- Open problems:

- $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs
- The case of |S| = |T| = 2 solves the open problem of Network Diversion on planar graphs
- Implementable in practice
- Open problems:
 - Network Diversion in general graphs: Polynomial-time or NP-complete?

- $2^{|S|+|T|} n^{O(1)}$ time algorithm for Two-Sets Cut-Uncut on planar graphs
- The case of |S| = |T| = 2 solves the open problem of Network Diversion on planar graphs
- Implementable in practice
- Open problems:
 - Network Diversion in general graphs: Polynomial-time or NP-complete?
 - Three-Sets Cut-Uncut on planar graphs: Open even for three sets of sizes 2, 1, 1

Thank you!

Thank you!