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Frameworks

Framework is a pair (G,M), where

I G = (V ,E) is an undirected graph

I M = (V , I) is a matroid

[Lovász ’77]

Matroid is a pair (V , I), where V is the ground set, and I is a
family of independent sets X ⊆ V satisfying

1. ∅ ∈ I
2. if X ∈ I and X ′ ⊆ X then X ′ ∈ I
3. if X ,Y ∈ I and |X | > |Y |, then ∃x ∈ X \ Y s.t. Y ∪ {x} ∈ I
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a b c d e f g1 1 1 0 0 1 0
1 1 0 0 1 1 1
0 0 0 1 1 0 0



Example: Linear matroid defined by a matrix A
I V corresponds to the columns of A
I X ⊆ V is independent if the columns X of A are linearly independent

This work: M is either given by an independence oracle or represented by a matrix
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Independent Stable Set problem

Input:

I Framework (G,M)

I Integer k

Output: Set X ⊆ V of size |X | = k that is

I an independent set in M

I a stable set in G (independent set)

Example: k = 3
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Independent Stable Set: Special cases

Partition matroid

I Rainbow stable set/independent transversal
[Aharoni et al. ’23, Kim et al. ’22, ...]

I Rainbow matching [Drisko ’98, Itai Rodeh,
Tanimoto ’78, ...]

Transversal matroid

I Bipartite matching with separation
[Manurangsi, Segal-Halevi, Suksompong ’23]
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Hardness of Independent Stable Set

NP-hard even when G is a path and M is a transversal matroid [Manurangsi, Segal-Halevi,
Suksompong ’23]

Directly from stable set: No f (k) · no(k) time algorithm assuming ETH, even when M is uniform
matroid

Theorem (This work)

When M is given by independence oracle, no f (k) · no(k) time algorithm (unconditionally)

, even on
bipartite graphs
chordal graphs
claw-free graphs
AT-free graphs
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Algorithms on sparse graphs

Setting:
M given by independence oracle
parameterization by solution size k and degeneracy d

Theorem (This work)

O((d + 1)k · n) time algorithm

Theorem (This work)

Kernel of size kO(d) with running time nO(d)

(the kernel only deletes vertices)

Theorem (This work)

No polynomial kernel parameterized by k + d , unless NP ⊆ coNP/poly
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FPT algorithm parameterized by k ,d

Theorem (This work)

O((d + 1)k · n) time algorithm

Proof:

Step 1: Remove vertices v s.t. {v} not independent

Lemma

For every vertex v , exists an optimal solution that intersects N[v ]

Step 2: Pick a vertex v with degree ≤ d and branch

Fomin, Golovach, Korhonen, Saurabh Stability in Graphs with Matroid Constraints 7 / 9



FPT algorithm parameterized by k ,d

Theorem (This work)

O((d + 1)k · n) time algorithm

Proof:

Step 1: Remove vertices v s.t. {v} not independent

Lemma

For every vertex v , exists an optimal solution that intersects N[v ]

Step 2: Pick a vertex v with degree ≤ d and branch

Fomin, Golovach, Korhonen, Saurabh Stability in Graphs with Matroid Constraints 7 / 9



FPT algorithm parameterized by k ,d

Theorem (This work)

O((d + 1)k · n) time algorithm

Proof:

Step 1: Remove vertices v s.t. {v} not independent

Lemma

For every vertex v , exists an optimal solution that intersects N[v ]

Step 2: Pick a vertex v with degree ≤ d and branch

Fomin, Golovach, Korhonen, Saurabh Stability in Graphs with Matroid Constraints 7 / 9



FPT algorithm parameterized by k ,d

Theorem (This work)

O((d + 1)k · n) time algorithm

Proof:

Step 1: Remove vertices v s.t. {v} not independent

Lemma

For every vertex v , exists an optimal solution that intersects N[v ]

Step 2: Pick a vertex v with degree ≤ d and branch

Fomin, Golovach, Korhonen, Saurabh Stability in Graphs with Matroid Constraints 7 / 9



poly(k) kernel on trees

Assume M truncated to rank k

Step 1: k2∆ size kernel, where ∆ is max degree

Greedily pick k∆ disjoint maximal independent sets

Discard all other vertices

Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices
not discarded

Step 2: Reducing the degree
Let v be a vertex of degree > k2

Pick k disjoint maximal independent sets in N(v), and discard other vertices in N(v)

⇒ k4 size kernel
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Conclusion

Independent Stable Set problem: Given a framework (G,M), find a set X ⊆ V that is
independent in M and stable in G

NP-hard already when G is a path

This work:
I FPT algorithm and kernel on bounded-degeneracy graphs
I Unconditional f (k) · no(k) lower bounds when M given by oracle

Future directions:
I FPT algorithms for linear matroids?
I Weighted stable set?
I (Induced) subgraph isomorphism on frameworks?

Thank you!
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Linear matroids

Recall: No f (k) · no(k) algorithm on chordal graphs when M given by independence oracle

Theorem (This work)

There is a 2O(k)nO(1) time algorithm for Independent Stable Set when G is chordal and M is a
linear matroid given by its representation.

(but no polynomial kernel, unless NP ⊆ coNP/poly)

Idea:
Dynamic programming over tree decomposition with representative sets

In contrast, Independent Stable Set is W[1]-hard when G is bipartite and M is linear
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