Stability in Graphs with Matroid Constraints

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh

UNIVERSITY OF BERGEN

SWAT 2024

12 June 2024

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

[Lovász '77]

• Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$ satisfying
 - 1. $\emptyset \in \mathcal{I}$
 - **2**. if $X \in \mathcal{I}$ and $X' \subseteq X$ then $X' \in \mathcal{I}$
 - 3. if $X, Y \in \mathcal{I}$ and |X| > |Y|, then $\exists x \in X \setminus Y$ s.t. $Y \cup \{x\} \in \mathcal{I}$

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

[Lovász '77]

- Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$ satisfying
 - 1. $\emptyset \in \mathcal{I}$
 - **2**. if $X \in \mathcal{I}$ and $X' \subseteq X$ then $X' \in \mathcal{I}$
 - 3. if $X, Y \in \mathcal{I}$ and |X| > |Y|, then $\exists x \in X \setminus Y$ s.t. $Y \cup \{x\} \in \mathcal{I}$

• Example: Linear matroid defined by a matrix A

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$ satisfying
 - 1. $\emptyset \in \mathcal{I}$
 - 2. if $X \in \mathcal{I}$ and $X' \subseteq X$ then $X' \in \mathcal{I}$
 - 3. if $X, Y \in \mathcal{I}$ and |X| > |Y|, then $\exists x \in X \setminus Y$ s.t. $Y \cup \{x\} \in \mathcal{I}$
- Example: Linear matroid defined by a matrix A
 - V corresponds to the columns of A

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$ satisfying
 - 1. $\emptyset \in \mathcal{I}$
 - 2. if $X \in \mathcal{I}$ and $X' \subseteq X$ then $X' \in \mathcal{I}$
 - 3. if $X, Y \in \mathcal{I}$ and |X| > |Y|, then $\exists x \in X \setminus Y$ s.t. $Y \cup \{x\} \in \mathcal{I}$
- Example: Linear matroid defined by a matrix A
 - V corresponds to the columns of A
 - $X \subseteq V$ is independent if the columns X of A are linearly independent

- Framework is a pair (G, M), where
 - G = (V, E) is an undirected graph
 - $M = (V, \mathcal{I})$ is a matroid

- Matroid is a pair (*V*, \mathcal{I}), where *V* is the ground set, and \mathcal{I} is a family of *independent sets* $X \subseteq V$ satisfying
 - 1. $\emptyset \in \mathcal{I}$
 - **2**. if $X \in \mathcal{I}$ and $X' \subseteq X$ then $X' \in \mathcal{I}$
 - 3. if $X, Y \in \mathcal{I}$ and |X| > |Y|, then $\exists x \in X \setminus Y$ s.t. $Y \cup \{x\} \in \mathcal{I}$
- Example: Linear matroid defined by a matrix A
 - V corresponds to the columns of A
 - $X \subseteq V$ is independent if the columns X of A are linearly independent
- This work: *M* is either given by an independence oracle or represented by a matrix

• Input:

► Framework (G, M)

а	b	С	d	е	f	g
[1	1	1	0	0	1	0]
1	1	0	0	1	1	1
0	0	0	1	1	0	0

• Input:

- Framework (G, M)
- ► Integer k

F1 1 1 0 0	1	01
		01
1 1 0 0 1	1	1
0 0 0 1 1	0	0

- Input:
 - ► Framework (*G*, *M*)
 - ► Integer k
- Output: Set $X \subseteq V$ of size |X| = k that is
 - ▶ an independent set in M
 - a stable set in *G* (independent set)

- Input:
 - ► Framework (*G*, *M*)
 - ► Integer k
- Output: Set $X \subseteq V$ of size |X| = k that is
 - ▶ an independent set in M
 - ► a stable set in *G* (independent set)
- Example: *k* = 3

- Input:
 - ► Framework (*G*, *M*)
 - ► Integer k
- Output: Set $X \subseteq V$ of size |X| = k that is
 - ▶ an independent set in M
 - ► a stable set in *G* (independent set)
- Example: *k* = 3

- Input:
 - ► Framework (*G*, *M*)
 - ► Integer k
- Output: Set $X \subseteq V$ of size |X| = k that is
 - ▶ an independent set in M
 - a stable set in *G* (independent set)
- Example: *k* = 3

- Input:
 - ► Framework (*G*, *M*)
 - ► Integer k
- Output: Set $X \subseteq V$ of size |X| = k that is
 - ▶ an independent set in M
 - ► a stable set in *G* (independent set)
- Example: *k* = 3

Partition matroid

- Partition matroid
 - Rainbow stable set/independent transversal [Aharoni et al. '23, Kim et al. '22, ...]

а	$\boldsymbol{\nu}$		u	C	'	9
[1	1	1	0	0	1	0]
1	1	0	0	1	1	1
0	0	0	1	1	0	0

- Partition matroid
 - Rainbow stable set/independent transversal [Aharoni et al. '23, Kim et al. '22, ...]
 - Rainbow matching [Drisko '98, Itai Rodeh, Tanimoto '78, ...]

- Partition matroid
 - Rainbow stable set/independent transversal [Aharoni et al. '23, Kim et al. '22, ...]
 - Rainbow matching [Drisko '98, Itai Rodeh, Tanimoto '78, ...]
- Transversal matroid
 - Bipartite matching with separation [Manurangsi, Segal-Halevi, Suksompong '23]

• NP-hard even when *G* is a path and *M* is a transversal matroid [Manurangsi, Segal-Halevi, Suksompong '23]

- NP-hard even when *G* is a path and *M* is a transversal matroid [Manurangsi, Segal-Halevi, Suksompong '23]
- Directly from stable set: No f(k) · n^{o(k)} time algorithm assuming ETH, even when M is uniform matroid

- NP-hard even when *G* is a path and *M* is a transversal matroid [Manurangsi, Segal-Halevi, Suksompong '23]
- Directly from stable set: No f(k) · n^{o(k)} time algorithm assuming ETH, even when M is uniform matroid

Theorem (This work)

When *M* is given by independence oracle, no $f(k) \cdot n^{o(k)}$ time algorithm (unconditionally)

- NP-hard even when *G* is a path and *M* is a transversal matroid [Manurangsi, Segal-Halevi, Suksompong '23]
- Directly from stable set: No f(k) · n^{o(k)} time algorithm assuming ETH, even when M is uniform matroid

Theorem (This work)

When *M* is given by independence oracle, no $f(k) \cdot n^{o(k)}$ time algorithm (unconditionally), even on

- bipartite graphs
- chordal graphs
- claw-free graphs
- AT-free graphs

Setting:

- *M* given by independence oracle
- parameterization by solution size k and degeneracy d

Setting:

- M given by independence oracle
- parameterization by solution size k and degeneracy d

Theorem (This work) $O((d+1)^k \cdot n)$ time algorithm

Setting:

- M given by independence oracle
- parameterization by solution size k and degeneracy d

Theorem (This work) $\mathcal{O}((d+1)^k \cdot n)$ time algorithm

Theorem (This work) Kernel of size $k^{\mathcal{O}(d)}$ with running time $n^{\mathcal{O}(d)}$

Setting:

- M given by independence oracle
- parameterization by solution size k and degeneracy d

Theorem (This work) $\mathcal{O}((d+1)^k \cdot n)$ time algorithm

Theorem (This work) Kernel of size $k^{\mathcal{O}(d)}$ with running time $n^{\mathcal{O}(d)}$

(the kernel only deletes vertices)

Setting:

- M given by independence oracle
- parameterization by solution size k and degeneracy d

Theorem (This work) $\mathcal{O}((d+1)^k \cdot n)$ time algorithm

Theorem (This work)

```
Kernel of size k^{\mathcal{O}(d)} with running time n^{\mathcal{O}(d)}
```

(the kernel only deletes vertices)

Theorem (This work)

No polynomial kernel parameterized by k + d, unless NP \subseteq coNP/poly

```
Theorem (This work)
\mathcal{O}((d+1)^k \cdot n) time algorithm
```

Proof:

```
Theorem (This work)

\mathcal{O}((d+1)^k \cdot n) time algorithm
```

Proof:

Step 1: Remove vertices v s.t. {v} not independent

```
Theorem (This work)
```

```
\mathcal{O}((d+1)^k \cdot n) time algorithm
```

Proof:

```
Step 1: Remove vertices v s.t. {v} not independent
```

Lemma

For every vertex v, exists an optimal solution that intersects N[v]

```
Theorem (This work)
```

```
\mathcal{O}((d+1)^k \cdot n) time algorithm
```

Proof:

Step 1: Remove vertices v s.t. {v} not independent

Lemma

For every vertex v, exists an optimal solution that intersects N[v]

Step 2: Pick a vertex *v* with degree $\leq d$ and branch

Assume *M* truncated to rank *k*

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

Assume *M* truncated to rank *k*

- Step 1: $k^2 \Delta$ size kernel, where Δ is max degree
 - Greedily pick $k\Delta$ disjoint maximal independent sets

Assume *M* truncated to rank *k*

- Step 1: $k^2 \Delta$ size kernel, where Δ is max degree
 - Greedily pick $k\Delta$ disjoint maximal independent sets
 - Discard all other vertices

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

- Greedily pick $k\Delta$ disjoint maximal independent sets
- Discard all other vertices
- Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices not discarded

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

- Greedily pick $k\Delta$ disjoint maximal independent sets
- Discard all other vertices
- Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices not discarded

Step 2: Reducing the degree

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

- Greedily pick $k\Delta$ disjoint maximal independent sets
- Discard all other vertices
- Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices not discarded

Step 2: Reducing the degree

• Let v be a vertex of degree $> k^2$

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

- Greedily pick $k\Delta$ disjoint maximal independent sets
- Discard all other vertices
- Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices not discarded
- Step 2: Reducing the degree
 - Let v be a vertex of degree $> k^2$
 - Pick k disjoint maximal independent sets in N(v), and discard other vertices in N(v)

Assume *M* truncated to rank *k*

Step 1: $k^2 \Delta$ size kernel, where Δ is max degree

- Greedily pick $k\Delta$ disjoint maximal independent sets
- Discard all other vertices
- Any discarded vertex in an independent set can be exchanged to at least k∆ different vertices not discarded

Step 2: Reducing the degree

- Let v be a vertex of degree $> k^2$
- Pick k disjoint maximal independent sets in N(v), and discard other vertices in N(v)

 $\Rightarrow k^4$ size kernel

 Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is
 independent in M and stable in G
- NP-hard already when G is a path

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is
 independent in M and stable in G
- NP-hard already when G is a path
- This work:

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is
 independent in M and stable in G
- NP-hard already when *G* is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when *G* is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when G is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle
- Future directions:

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when G is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle
- Future directions:
 - FPT algorithms for linear matroids?

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when *G* is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle
- Future directions:
 - FPT algorithms for linear matroids?
 - Weighted stable set?

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when *G* is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle
- Future directions:
 - FPT algorithms for linear matroids?
 - Weighted stable set?
 - Induced) subgraph isomorphism on frameworks?

- Independent Stable Set problem: Given a framework (G, M), find a set X ⊆ V that is independent in M and stable in G
- NP-hard already when *G* is a path
- This work:
 - FPT algorithm and kernel on bounded-degeneracy graphs
 - Unconditional $f(k) \cdot n^{o(k)}$ lower bounds when *M* given by oracle
- Future directions:
 - FPT algorithms for linear matroids?
 - Weighted stable set?
 - Induced) subgraph isomorphism on frameworks?

Thank you!

Linear matroids

Recall: No $f(k) \cdot n^{o(k)}$ algorithm on chordal graphs when *M* given by independence oracle

Theorem (This work)

There is a $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time algorithm for Independent Stable Set when *G* is chordal and *M* is a linear matroid given by its representation.

(but no polynomial kernel, unless NP \subseteq coNP/poly)

ldea:

• Dynamic programming over tree decomposition with representative sets

In contrast, Independent Stable Set is W[1]-hard when G is bipartite and M is linear