
Tutorial: New algorithms for computing treewidth

Tuukka Korhonen

STWOR

30 September 2023

Tuukka Korhonen New algorithms for computing treewidth 1 / 20

Treewidth

Measures how close a graph is to a tree

I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1

I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2

I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n

I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag

2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag

3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Treewidth

Measures how close a graph is to a tree
I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Width 2

Tuukka Korhonen New algorithms for computing treewidth 2 / 20

Computing treewidth

Computing treewidth

Tuukka Korhonen New algorithms for computing treewidth 3 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIII, ’86)

There is a 2O(k)n2 time 4-approximation algorithm for treewidth.

Theorem (Bodlaender ’93)

There is a 2O(k3)n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks ’91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2O(k)n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir’10,FHL’08,FTV’15,FLS’18,BF’21,BF’22]

Tuukka Korhonen New algorithms for computing treewidth 4 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation for treewidth

Compare to: 2O(k)n time 5-approximation of [BDDFLP ’13]

Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Improves the 2O(k) from ≈ 240k to 211k

Theorem (K. & Lokshtanov ’23)

There is a 2O(k2)n4 time algorithm for treewidth.

Compare to: 2O(k3)n time algorithm of [Bodlaender’93]

Tuukka Korhonen New algorithms for computing treewidth 5 / 20

New method: Local improvement

In [K.’21],[K.&Lokshtanov’23] new method for treewidth: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski ’23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth ≤ k with amortized update time f (k) · no(1).

(first non-trivial algorithm in this setting for k ≥ 3)

Tuukka Korhonen New algorithms for computing treewidth 6 / 20

New method: Local improvement

In [K.’21],[K.&Lokshtanov’23] new method for treewidth: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski ’23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth ≤ k with amortized update time f (k) · no(1).

(first non-trivial algorithm in this setting for k ≥ 3)

Tuukka Korhonen New algorithms for computing treewidth 6 / 20

New method: Local improvement

In [K.’21],[K.&Lokshtanov’23] new method for treewidth: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski ’23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth ≤ k with amortized update time f (k) · no(1).

(first non-trivial algorithm in this setting for k ≥ 3)

Tuukka Korhonen New algorithms for computing treewidth 6 / 20

New method: Local improvement

In [K.’21],[K.&Lokshtanov’23] new method for treewidth: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski ’23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth ≤ k with amortized update time f (k) · no(1).

(first non-trivial algorithm in this setting for k ≥ 3)

Tuukka Korhonen New algorithms for computing treewidth 6 / 20

New method: Local improvement

In [K.’21],[K.&Lokshtanov’23] new method for treewidth: Local improvement

Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski ’23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth ≤ k with amortized update time f (k) · no(1).

(first non-trivial algorithm in this setting for k ≥ 3)

Tuukka Korhonen New algorithms for computing treewidth 6 / 20

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech
Nadara, Michał Pilipczuk & Marek Sokołowski)

Tuukka Korhonen New algorithms for computing treewidth 7 / 20

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech
Nadara, Michał Pilipczuk & Marek Sokołowski)

Tuukka Korhonen New algorithms for computing treewidth 7 / 20

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech
Nadara, Michał Pilipczuk & Marek Sokołowski)

Tuukka Korhonen New algorithms for computing treewidth 7 / 20

Local improvement for FPT exact treewidth

Local improvement for FPT exact treewidth

(joint work with Daniel Lokshtanov)

Tuukka Korhonen New algorithms for computing treewidth 8 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the width of T , or

2. conclude that T is optimal

Repeat for O(tw(G) · n) iterations to get an optimal tree decomposition

(by [Bodlaender’93] we can assume to start with a decomposition of width O(tw(G)))

W

T
Tuukka Korhonen New algorithms for computing treewidth 9 / 20

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and

a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G \ X into cliques

Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

torso(X)

X

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen New algorithms for computing treewidth 10 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 11 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size < |W | and cover W ,
but leaf bags can be arbitrarily large

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 12 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size < |W | and cover W ,
but leaf bags can be arbitrarily large

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen New algorithms for computing treewidth 12 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

Tuukka Korhonen New algorithms for computing treewidth 13 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

W

T
Tuukka Korhonen New algorithms for computing treewidth 13 / 20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

T
Tuukka Korhonen New algorithms for computing treewidth 13 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Have:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

T
Tuukka Korhonen New algorithms for computing treewidth 13 / 20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Have:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T
Tuukka Korhonen New algorithms for computing treewidth 13 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Ci

N(Ci)

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Ci

N(Ci)

B

BN(Ci)

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Ci

N(Ci)

Bi

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?

Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Ci

N(Ci)

Bi

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|

⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

Ci

B

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward

Decreases |X |

T

W

C ′
i

B

N(C ′
i)

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Constructing (T ∩ N[Ci])
N(Ci)

Goal: For each component Ci of G \ X , construct
a tree decomposition of G[N[Ci]] so that N(Ci) is
in the root

Replace each bag B by:
B i = (B ∩ N[Ci]) ∪ BN(Ci)

What if |B i | > |B|?
Then (N(Ci)\BN(Ci))∪(B\C) is a separator
between N(Ci) and W of size < |N(Ci)|
⇒ Create new X by “pushing” N(Ci) forward
Decreases |X |

T

W

C ′
i

B

N(C ′
i)

Tuukka Korhonen New algorithms for computing treewidth 14 / 20

Result

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

By repeatedly applying the pushing argument, we achieve:

The copy B i of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag B

I n4 in the running time comes from here

Proof idea generalization of proofs of existence of lean tree decompositions [Thomas ’90,
Bellenbaum & Diestel ’02]

Tuukka Korhonen New algorithms for computing treewidth 15 / 20

Result

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

By repeatedly applying the pushing argument, we achieve:

The copy B i of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag B

I n4 in the running time comes from here

Proof idea generalization of proofs of existence of lean tree decompositions [Thomas ’90,
Bellenbaum & Diestel ’02]

Tuukka Korhonen New algorithms for computing treewidth 15 / 20

Result

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

By repeatedly applying the pushing argument, we achieve:

The copy B i of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag B

I n4 in the running time comes from here

Proof idea generalization of proofs of existence of lean tree decompositions [Thomas ’90,
Bellenbaum & Diestel ’02]

Tuukka Korhonen New algorithms for computing treewidth 15 / 20

Result

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

By repeatedly applying the pushing argument, we achieve:

The copy B i of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag B

I n4 in the running time comes from here

Proof idea generalization of proofs of existence of lean tree decompositions [Thomas ’90,
Bellenbaum & Diestel ’02]

Tuukka Korhonen New algorithms for computing treewidth 15 / 20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k or that the
treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an f (k) · nO(1) time
algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen New algorithms for computing treewidth 16 / 20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k or that the
treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an f (k) · nO(1) time
algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen New algorithms for computing treewidth 16 / 20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k or that the
treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an f (k) · nO(1) time
algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen New algorithms for computing treewidth 16 / 20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k or that the
treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an f (k) · nO(1) time
algorithm for treewidth with the same function f .

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen New algorithms for computing treewidth 16 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06]

(poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New algorithms for computing treewidth 17 / 20

Local improvement in dynamic treewidth

Local improvement in dynamic treewidth

joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk & Marek Sokołowski

Tuukka Korhonen New algorithms for computing treewidth 18 / 20

Local improvement in dynamic treewidth

Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion:

Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

u

u
u v

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root

Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width!

But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |

Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

→

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5

Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

→

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth no(1)

Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
Increases width! But only in a subtree of size O(depth) = no(1)

Refinement operation: Rebuild a subtree T in amortized time f (k) · |T |
Re-arranges given subtree into depth O(log n) and width ≤ 6k + 5
Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup ’98],
and the “dealternation lemma” [Bojańczyk & Pilipczuk ’22]

→

Tuukka Korhonen New algorithms for computing treewidth 19 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!

Tuukka Korhonen New algorithms for computing treewidth 20 / 20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Introduced in [K. ’21] for 2-approximation in 2O(k)n time

Generalized in [K. & Lokshtanov ’23] for exact in 2O(k2)n4 time and (1 + ε)-approximation in
kO(k/ε)n4 time

Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski ’23] for fully dynamic treewidth in
f (k) · no(1) amortized update time

Open problems:

Prove 2Ω(k) lower bound for treewidth under ETH (2Ω(
√

k) known)

Treewidth 1.9-approximation in 2O(k)nO(1) time?

Dynamic treewidth in amortized f (k) · polylog(n) time?

Thank you!
Tuukka Korhonen New algorithms for computing treewidth 20 / 20

