Tutorial: New algorithms for computing treewidth

Tuukka Korhonen

UNIVERSITY OF BERGEN

STWOR

30 September 2023

• Measures how close a graph is to a tree

- Measures how close a graph is to a tree
 - Trees have treewidth 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - ► K_n has treewidth n − 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The $n \times n$ -grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

[Robertson & Seymour '84, Arnborg & Proskurowski '89, Bertele & Brioschi '72, Halin '76]

Computing treewidth

Theorem (Robertson & Seymour, Graph minors XIII, '86)

There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Robertson & Seymour, Graph minors XIII, '86) There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93) There is a $2^{\mathcal{O}(k^3)}n$ time algorithm for treewidth.

Theorem (Robertson & Seymour, Graph minors XIII, '86) There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93) There is a $2^{\mathcal{O}(k^3)}n$ time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Robertson & Seymour, Graph minors XIII, '86) There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93) There is a $2^{\mathcal{O}(k^3)}n$ time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '13)

There is a $2^{\mathcal{O}(k)}n$ time 5-approximation for treewidth.

Theorem (Robertson & Seymour, Graph minors XIII, '86) There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93) There is a $2^{\mathcal{O}(k^3)}n$ time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '13)

There is a $2^{\mathcal{O}(k)}n$ time 5-approximation for treewidth.

Builds on both [Robertson-Seymour'86] and [Bodlaender'93]

Theorem (Robertson & Seymour, Graph minors XIII, '86) There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93) There is a $2^{O(k^3)}n$ time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '13)

There is a $2^{\mathcal{O}(k)}n$ time 5-approximation for treewidth.

Builds on both [Robertson-Seymour'86] and [Bodlaender'93]

Many more: [ACP'87,MT'91,Lagergren'96,Reed'92,Amir'10,FHL'08,FTV'15,FLS'18,BF'21,BF'22]

Theorem (K. '21) There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [BDDFLP '13]

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [BDDFLP '13]

• Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40k}$ to 2^{11k}

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40k}$ to 2^{11k}

Theorem (K. & Lokshtanov '23)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40k}$ to 2^{11k}

Theorem (K. & Lokshtanov '23)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

Compare to: $2^{\mathcal{O}(k^3)}n$ time algorithm of [Bodlaender'93]

• In [K.'21], [K.&Lokshtanov'23] new method for treewidth: Local improvement

- In [K.'21], [K.&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller

- In [K.'21], [K.&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

- In [K.'21], [K.&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully dynamic graph of treewidth $\leq k$ with amortized update time $f(k) \cdot n^{o(1)}$.

- In [K.'21], [K.&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokołowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully dynamic graph of treewidth $\leq k$ with amortized update time $f(k) \cdot n^{o(1)}$.

(first non-trivial algorithm in this setting for $k \ge 3$)

Plan:

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

Plan:

- 1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)
- 2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk & Marek Sokołowski)

Local improvement for FPT exact treewidth

Local improvement for FPT exact treewidth

(joint work with Daniel Lokshtanov)

We have a tree decomposition T whose largest bag is W

We have a tree decomposition T whose largest bag is W

Goal:

We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W| while not increasing the width of T, or

We have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is optimal

We have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an optimal tree decomposition

We have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of T, or
- 2. conclude that T is optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an optimal tree decomposition

(by [Bodlaender'93] we can assume to start with a decomposition of width $\mathcal{O}(\mathsf{tw}(G))$)

Let W be a largest bag of T

Let W be a largest bag of TWant to find:

Let W be a largest bag of TWant to find:

• a set X with
$$W \subseteq X \subseteq V(G)$$
, and

Let W be a largest bag of TWant to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

• a tree decomposition of torso(X) of width $\leq |W| - 2$

Let W be a largest bag of TWant to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Tuukka Korhonen

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Let W be a largest bag of TWant to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

- Make neighborhoods of components of $G \setminus X$ into cliques
- Delete $V(G) \setminus X$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

• If T is not optimal, then such X exists by taking X = V(G)

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of TWant to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

Let W be a largest bag of TWant to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

• Find a tree decomposition of *G* whose internal bags have size < |*W*| and cover *W*, but leaf bags can be arbitrarily large

Let W be a largest bag of T Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Improving *T*:

Let W be a largest bag of T Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition \mathcal{T}_X of torso(X) of width $\leq |W| 2$

Improving *T*:

Let W be a largest bag of T Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Improving *T*:

Let W be a largest bag of T Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Improving *T*:

Constructing $(T \cap N[C_i])^{N(C_i)}$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Constructing $(T \cap N[C_i])^{N(C_i)}$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Constructing $(T \cap N[C_i])^{N(C_i)}$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

What if $|B^{i}| > |B|$?

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

What if $|B^i| > |B|$? Then $(N(C_i) \setminus B^{N(C_i)}) \cup (B \setminus C)$ is a separator between $N(C_i)$ and W of size $< |N(C_i)|$

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

What if $|B^i| > |B|$? Then $(N(C_i) \setminus B^{N(C_i)}) \cup (B \setminus C)$ is a separator between $N(C_i)$ and W of size $< |N(C_i)|$

 \Rightarrow Create new X by "pushing" $N(C_i)$ forward

Goal: For each component C_i of $G \setminus X$, construct a tree decomposition of $G[N[C_i]]$ so that $N(C_i)$ is in the root

Replace each bag *B* by: $B^i = (B \cap N[C_i]) \cup B^{N(C_i)}$

What if $|B^i| > |B|$? Then $(N(C_i) \setminus B^{N(C_i)}) \cup (B \setminus C)$ is a separator between $N(C_i)$ and W of size $< |N(C_i)|$

 $\Rightarrow \text{Create new } X \text{ by "pushing" } N(C_i) \text{ forward}$ Decreases |X|

• By repeatedly applying the pushing argument, we achieve:

- By repeatedly applying the pushing argument, we achieve:
- The copy B^i of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag B

- By repeatedly applying the pushing argument, we achieve:
- The copy B^i of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag B
 - \sim n^4 in the running time comes from here

- By repeatedly applying the pushing argument, we achieve:
- The copy B^i of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag B
 - \sim n^4 in the running time comes from here
- Proof idea generalization of proofs of existence of lean tree decompositions [Thomas '90, Bellenbaum & Diestel '02]

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

SUBSET TREEWIDTH

```
Input: Graph G, integer k, set of vertices W \subseteq V(G) with |W| = k + 2
```

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

 $2^{\mathcal{O}(k^2)}n^2$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth

Techniques:

Techniques:

1. Branching on important separators [Marx'06]

Techniques:

1. Branching on important separators [Marx'06] (poly space!)

Techniques:

- 1. Branching on important separators [Marx'06] (poly space!)
- 2. Lot of Bellenbaum-Diestel type "pulling arguments" to re-arrange tree decompositions

Techniques:

- 1. Branching on important separators [Marx'06] (poly space!)
- 2. Lot of Bellenbaum-Diestel type "pulling arguments" to re-arrange tree decompositions

joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk & Marek Sokołowski

Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{o(1)}$

• Edge insertion:

Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{o(1)}$

• Edge insertion: Add endpoints to all bags on the path from their subtrees to the root

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width!

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size $O(\text{depth}) = n^{o(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size $O(\text{depth}) = n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot |T|$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size $O(\text{depth}) = n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot |T|$
- Re-arranges given subtree into depth $O(\log n)$ and width $\leq 6k + 5$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size $O(\text{depth}) = n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot |T|$
- Re-arranges given subtree into depth $\mathcal{O}(\log n)$ and width $\leq 6k + 5$
- Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup '98], and the "dealternation lemma" [Bojańczyk & Pilipczuk '22]

New method for FPT algorithms for treewidth: Local improvement

New method for FPT algorithms for treewidth: Local improvement

• Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

• Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
- Dynamic treewidth in amortized $f(k) \cdot \text{polylog}(n)$ time?

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)}n$ time
- Generalized in [K. & Lokshtanov '23] for exact in $2^{\mathcal{O}(k^2)}n^4$ time and $(1 + \varepsilon)$ -approximation in $k^{\mathcal{O}(k/\varepsilon)}n^4$ time
- Used in [K., Majewski, Nadara, Pilipczuk & Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ time?
- Dynamic treewidth in amortized f(k) · polylog(n) time?

Thank you!