Tutorial: New algorithms for computing treewidth

Tuukka Korhonen

30 September 2023

Treewidth

- Measures how close a graph is to a tree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

Width 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Width 2

Computing treewidth

Computing treewidth

Computing treewidth: Classical results

Computing treewidth: Classical results
Theorem (Robertson \& Seymour, Graph minors XIII, '86)
There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Computing treewidth: Classical results

Theorem (Robertson \& Seymour, Graph minors XIII, '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a $2^{\mathcal{O}\left(k^{3}\right) n \text { time algorithm for treewidth. } . \text {. }{ }^{\text {. }} \text {. }}$

Computing treewidth: Classical results

Theorem (Robertson \& Seymour, Graph minors XIII, '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a $2^{\mathcal{O}\left(k^{3}\right) n \text { time algorithm for treewidth. } \text {. }{ }^{\text {. }} \text {. }}$
Using dynamic programming of [Bodlaender \& Kloks '91]

Computing treewidth: Classical results
Theorem (Robertson \& Seymour, Graph minors XIII, '86)
There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a $2^{\mathcal{O}\left(k^{3}\right) n \text { time algorithm for treewidth. } \text {. }{ }^{\text {. }} \text {. }}$
Using dynamic programming of [Bodlaender \& Kloks '91]
Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '13)
There is a $2^{\mathcal{O}(k)} n$ time 5 -approximation for treewidth.

Computing treewidth: Classical results
Theorem (Robertson \& Seymour, Graph minors XIII, '86)
There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a $2^{\mathcal{O}\left(k^{3}\right)} n$ time algorithm for treewidth.
Using dynamic programming of [Bodlaender \& Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '13)
There is a $2^{\mathcal{O}(k)} n$ time 5 -approximation for treewidth.
Builds on both [Robertson-Seymour'86] and [Bodlaender'93]

Computing treewidth: Classical results
Theorem (Robertson \& Seymour, Graph minors XIII, '86)
There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a $2^{\mathcal{O}\left(k^{3}\right)} n$ time algorithm for treewidth.
Using dynamic programming of [Bodlaender \& Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '13)

There is a $2^{\mathcal{O}(k)} n$ time 5 -approximation for treewidth.
Builds on both [Robertson-Seymour'86] and [Bodlaender'93]
Many more: [ACP'87,MT'91,Lagergren'96,Reed'92,Amir'10,FHL'08,FTV'15,FLS'18,BF'21,BF'22]

Computing treewidth: New results

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5 -approximation of [BDDFLP '13]

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5 -approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5 -approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40 k}$ to $2^{11 k}$

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5 -approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40 k}$ to $2^{11 k}$

Theorem (K. \& Lokshtanov '23)

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.

Computing treewidth: New results

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5 -approximation of [BDDFLP '13]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40 k}$ to $2^{11 k}$

Theorem (K. \& Lokshtanov '23)

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.
Compare to: $2^{\mathcal{O}\left(k^{3}\right)} n$ time algorithm of [Bodlaender'93]

New method: Local improvement

- In [K.'21],[K.\&Lokshtanov'23] new method for treewidth: Local improvement

New method: Local improvement

- In [K.'21],[K.\&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller

New method: Local improvement

- In [K.'21],[K.\&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

New method: Local improvement

- In [K.'21],[K.\&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk \& Sokołowski '23)

There is a data structure for maintaining a tree decomposition of width $\mathcal{O}(k)$ for a fully dynamic graph of treewidth $\leq k$ with amortized update time $f(k) \cdot n^{o(1)}$.

New method: Local improvement

- In [K.'21],[K.\&Lokshtanov'23] new method for treewidth: Local improvement
- Repeatedly re-arrange the tree decomposition to make the largest bag smaller
- New ideas both in the graph-theoretic part of the re-arrangement and in the efficient implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk \& Sokołowski '23)

There is a data structure for maintaining a tree decomposition of width $\mathcal{O}(k)$ for a fully dynamic graph of treewidth $\leq k$ with amortized update time $f(k) \cdot n^{o(1)}$.
(first non-trivial algorithm in this setting for $k \geq 3$)

Plan

Plan:

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)
2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk \& Marek Sokołowski)

Local improvement for FPT exact treewidth

(joint work with Daniel Lokshtanov)

Setting

We have a tree decomposition T whose largest bag is W

Setting

We have a tree decomposition T whose largest bag is W

Goal:

Setting

We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or

Setting

We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is optimal

Setting

We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is optimal

Repeat for $\mathcal{O}(\operatorname{tw}(G) \cdot n)$ iterations to get an optimal tree decomposition

Setting

We have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is optimal

Repeat for $\mathcal{O}(\operatorname{tw}(G) \cdot n)$ iterations to get an optimal tree decomposition (by [Bodlaender'93] we can assume to start with a decomposition of width $\mathcal{O}(\operatorname{tw}(G))$)

Improving a tree decomposition

Let W be a largest bag of T

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition

Let W be a largest bag of T
SUBSET TREEWIDTH Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G \backslash X$ into cliques

Improving a tree decomposition
Let W be a largest bag of T
SUBSET TREEWIDTH
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G \backslash X$ into cliques
- Delete $V(G) \backslash X$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Big-leaf formulation:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Big-leaf formulation:

- Find a tree decomposition of G whose internal bags have size $<|W|$ and cover W, but leaf bags can be arbitrarily large

Improving a tree decomposition
Let W be a largest bag of $T \quad$ SUBSET TREEWIDTH Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving a tree decomposition

Let W be a largest bag of T
SUbSET TREEWIDTH Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition

Let W be a largest bag of T
SUBSET TREEWIDTH Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
SUBSET TREEWIDTH Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

T

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$
What if $\left|B^{i}\right|>|B|$?

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$

What if $\left|B^{i}\right|>|B|$?

Then $\left(N\left(C_{i}\right) \backslash B^{N\left(C_{i}\right)}\right) \cup(B \backslash C)$ is a separator between $N\left(C_{i}\right)$ and W of size $<\left|N\left(C_{i}\right)\right|$

T

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$

What if $\left|B^{i}\right|>|B|$?

Then $\left(N\left(C_{i}\right) \backslash B^{N\left(C_{i}\right)}\right) \cup(B \backslash C)$ is a separator between $N\left(C_{i}\right)$ and W of size $<\left|N\left(C_{i}\right)\right|$
\Rightarrow Create new X by "pushing" $N\left(C_{i}\right)$ forward

T

Constructing $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$

Goal: For each component C_{i} of $G \backslash X$, construct a tree decomposition of $G\left[N\left[C_{i}\right]\right]$ so that $N\left(C_{i}\right)$ is in the root

Replace each bag B by:
$B^{i}=\left(B \cap N\left[C_{i}\right]\right) \cup B^{N\left(C_{i}\right)}$

What if $\left|B^{i}\right|>|B|$?

Then $\left(N\left(C_{i}\right) \backslash B^{N\left(C_{i}\right)}\right) \cup(B \backslash C)$ is a separator between $N\left(C_{i}\right)$ and W of size $<\left|N\left(C_{i}\right)\right|$
\Rightarrow Create new X by "pushing" $N\left(C_{i}\right)$ forward Decreases $|X|$

T

Result

- By repeatedly applying the pushing argument, we achieve:

Result

- By repeatedly applying the pushing argument, we achieve:
- The copy B^{i} of a bag in $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$ is not larger than the original bag B

Result

- By repeatedly applying the pushing argument, we achieve:
- The copy B^{i} of a bag in $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$ is not larger than the original bag B
- n^{4} in the running time comes from here

Result

- By repeatedly applying the pushing argument, we achieve:
- The copy B^{i} of a bag in $\left(T \cap N\left[C_{i}\right]\right)^{N\left(C_{i}\right)}$ is not larger than the original bag B
- n^{4} in the running time comes from here
- Proof idea generalization of proofs of existence of lean tree decompositions [Thomas '90, Bellenbaum \& Diestel '02]

Subset treewidth for exact FPT algorithms

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.
$2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth

How to solve subset treewidth?

How to solve subset treewidth?

Techniques:

How to solve subset treewidth?
Techniques:

1. Branching on important separators [Marx'06]

How to solve subset treewidth?
Techniques:

1. Branching on important separators [Marx'06] (poly space!)

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)
2. Lot of Bellenbaum-Diestel type "pulling arguments" to re-arrange tree decompositions

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)
2. Lot of Bellenbaum-Diestel type "pulling arguments" to re-arrange tree decompositions

Local improvement in dynamic treewidth

Local improvement in dynamic treewidth

joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk \& Marek Sokołowski

Local improvement in dynamic treewidth

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

Local improvement in dynamic treewidth

Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion:

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width!

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size \mathcal{O} (depth $)=n^{\circ(1)}$

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size \mathcal{O} (depth) $=n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot|T|$

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{\circ(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size \mathcal{O} (depth) $=n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot|T|$
- Re-arranges given subtree into depth $\mathcal{O}(\log n)$ and width $\leq 6 k+5$

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width $\mathcal{O}(k)$ and depth $n^{O(1)}$

- Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
- Increases width! But only in a subtree of size \mathcal{O} (depth) $=n^{o(1)}$
- Refinement operation: Rebuild a subtree T in amortized time $f(k) \cdot|T|$
- Re-arranges given subtree into depth $\mathcal{O}(\log n)$ and width $\leq 6 k+5$
- Builds on subset treewidth, log-depth decompositions [Bodlaender \& Hagerup '98], and the "dealternation lemma" [Bojańczyk \& Pilipczuk '22]

Conclusion

New method for FPT algorithms for treewidth: Local improvement

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
- Dynamic treewidth in amortized $f(k) \cdot \operatorname{polylog}(n)$ time?

Conclusion

New method for FPT algorithms for treewidth: Local improvement

- Introduced in [K. '21] for 2-approximation in $2^{\mathcal{O}(k)} n$ time
- Generalized in [K. \& Lokshtanov '23] for exact in $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time and $(1+\varepsilon)$-approximation in $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
- Used in [K., Majewski, Nadara, Pilipczuk \& Sokołowski '23] for fully dynamic treewidth in $f(k) \cdot n^{o(1)}$ amortized update time

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
- Dynamic treewidth in amortized $f(k) \cdot \operatorname{polylog}(n)$ time?

Thank you!

