An Improved Parameterized Algorithm for Treewidth

Tuukka Korhonen and Daniel Lokshtanov¹

UNIVERSITY OF BERGEN

¹University of California Santa Barbara

STOC 2023

• Measures how close a graph is to a tree

- Measures how close a graph is to a tree
 - Trees have treewidth 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - bags containing a vertex form a connected subtree

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

Width 2

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

[Robertson & Seymour '84, Arnborg & Proskurowski '89, Bertele & Brioschi '72, Halin '76]

Width 2

 Algorithms on trees generalize to algorithms on graphs of small treewidth

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:
- Maximum independent set in time $\mathcal{O}(2^k \cdot n)$

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:
- Maximum independent set in time $\mathcal{O}(2^k \cdot n)$
- Minimum dominating set in time $\mathcal{O}(3^k \cdot n)$

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:
- Maximum independent set in time $\mathcal{O}(2^k \cdot n)$
- Minimum dominating set in time $\mathcal{O}(3^k \cdot n)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:
- Maximum independent set in time $\mathcal{O}(2^k \cdot n)$
- Minimum dominating set in time $\mathcal{O}(3^k \cdot n)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$
- Any problem in MSO-logic in time $f(k) \cdot n$

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width *k*:
- Maximum independent set in time $\mathcal{O}(2^k \cdot n)$
- Minimum dominating set in time $\mathcal{O}(3^k \cdot n)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$
- Any problem in MSO-logic in time $f(k) \cdot n$
- Need to compute the tree decomposition first!

• NP-complete [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^{O(k³)} n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^O(k³) n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99]

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^O(k³) n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99]

Theorem (This work)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}(n^{k+2})$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^2$ time, non-uniform [Robertson & Seymour '86]
- $2^{\mathcal{O}(k^3)}n$ time [Bodlaender, STOC'93]
 - ► Using 2^O(k³) n time dynamic programming of [Bodlaender & Kloks, Lagergren & Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}(k^3)}$ on k be improved?" [Downey & Fellows '99]

Theorem (This work)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

• No dynamic programming, runs in space poly(n, k)

• Polynomial-time approximation:

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:
 - ▶ $2^{\mathcal{O}(k)}n^2$ time 4-approximation [Robertson & Seymour '86]

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:
 - ▶ 2^{O(k)}n² time 4-approximation [Robertson & Seymour '86]
 - ► k^{O(k)} n log² n [Matoušek and Thomas '91, Lagergren '91] and k^{O(k)} n log n time [Reed '92] approximations
Approximating treewidth

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:
 - ▶ 2^{O(k)}n² time 4-approximation [Robertson & Seymour '86]
 - ► k^{O(k)} n log² n [Matoušek and Thomas '91, Lagergren '91] and k^{O(k)} n log n time [Reed '92] approximations
 - ► 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]

Approximating treewidth

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:
 - ▶ 2^{O(k)}n² time 4-approximation [Robertson & Seymour '86]
 - ► k^{O(k)} n log² n [Matoušek and Thomas '91, Lagergren '91] and k^{O(k)} n log n time [Reed '92] approximations
 - ► 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 2^{O(k)} n time 2-approximation [K. '21]

Approximating treewidth

- Polynomial-time approximation:
 - $\mathcal{O}(\sqrt{\log k})$ -approximation [Feige, Hajiaghayi & Lee '08]
 - Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi & Liu '14]
- *f*(*k*) · poly(*n*)-time constant-approximation:
 - 2^{O(k)}n² time 4-approximation [Robertson & Seymour '86]
 - ► k^{O(k)} n log² n [Matoušek and Thomas '91, Lagergren '91] and k^{O(k)} n log n time [Reed '92] approximations
 - 2^{O(k)} n time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '16]
 - ▶ 2^{O(k)} n time 2-approximation [K. '21]

Theorem (This work)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

Our algorithms

Our algorithms

Strategy: Iteratively improve a tree decomposition

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

• Generalization of the improvement method from [K. '21]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)}n^2$ and $k^{\mathcal{O}(k/\varepsilon)}n^2$ time algorithms for Subset treewidth

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)}n^2$ and $k^{\mathcal{O}(k/\varepsilon)}n^2$ time algorithms for Subset treewidth

Techniques:

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)}n^2$ and $k^{\mathcal{O}(k/\varepsilon)}n^2$ time algorithms for Subset treewidth

Techniques:

• Branching on important separators [Marx '06]

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
 - Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}(k^2)}n^2$ and $k^{\mathcal{O}(k/\varepsilon)}n^2$ time algorithms for Subset treewidth

Techniques:

- Branching on important separators [Marx '06]
- Together with the pulling argument

Improving a tree decomposition

Suppose we have a tree decomposition T whose largest bag is W

Suppose we have a tree decomposition T whose largest bag is W

Goal:

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W| while not increasing the width of *T*, or

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of *T*, or
- 2. conclude that T is (approximately) optimal

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of *T*, or
- 2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of *T*, or
- 2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition

(assume to start with width $\mathcal{O}(\mathsf{tw}(G))$ decomposition)

Let W be a largest bag of T

Let W be a largest bag of T

Want to find:

Let W be a largest bag of T

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

• a tree decomposition of torso(X) of width $\leq |W| - 2$

Torso?

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Make neighborhoods of components of G \ X into cliques

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V(G) \ X

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

• If T is not optimal, then such X exists by taking X = V(G)

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

• Find a tree decomposition of *G* whose internal bags have size $\leq |W| - 1$ and cover *W*, but leaf bags can be arbitrarily large

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Subset treewidth for exact algorithms

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

(actually if and only if)

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

(actually if and only if)

 $2^{\mathcal{O}(k^2)}n^2$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth

• $2^{\mathcal{O}(k^2)} n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation for treewidth

- $2^{\mathcal{O}(k^2)} n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation for treewidth
- The first improvement on f(k) in f(k) · poly(n) treewidth algorithms since [Bodlaender & Kloks, Lagergren & Arnborg, '91]

- $2^{\mathcal{O}(k^2)} n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation for treewidth
- The first improvement on f(k) in f(k) · poly(n) treewidth algorithms since [Bodlaender & Kloks, Lagergren & Arnborg, '91]

Open questions:

- $2^{\mathcal{O}(k^2)} n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation for treewidth
- The first improvement on f(k) in f(k) · poly(n) treewidth algorithms since [Bodlaender & Kloks, Lagergren & Arnborg, '91]

Open questions:

What is the best f(k) so that treewidth can be computed in f(k) · poly(n) time?

- $2^{\mathcal{O}(k^2)} n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation for treewidth
- The first improvement on f(k) in f(k) · poly(n) treewidth algorithms since [Bodlaender & Kloks, Lagergren & Arnborg, '91]

Open questions:

- What is the best f(k) so that treewidth can be computed in f(k) · poly(n) time?
- Prove a $2^{\Omega(k)}$ lower bound assuming ETH

- $2^{\mathcal{O}(k^2)}n^4$ time algorithm and $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation for treewidth
- The first improvement on f(k) in f(k) · poly(n) treewidth algorithms since [Bodlaender & Kloks, Lagergren & Arnborg, '91]

Open questions:

- What is the best f(k) so that treewidth can be computed in f(k) · poly(n) time?
- Prove a $2^{\Omega(k)}$ lower bound assuming ETH
 - Known reductions give $2^{\Omega(\sqrt{k})}$ lower bound

Thank you!

Thank you!

- Longer talk: https://www.youtube.com/watch?v=9If417oeWcQ
- Slides: https://tuukkakorhonen.com/