An Improved Parameterized Algorithm for Treewidth

Tuukka Korhonen and Daniel Lokshtanov ${ }^{1}$

STOC 2023

Treewidth

- Measures how close a graph is to a tree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

- Width = max bag size -1

Width 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

- Width $=$ max bag size -1
[Robertson \& Seymour '84, Arnborg \& Proskurowski '89, Bertele \& Brioschi '72, Halin '76]

Width 2

Why treewidth: Algorithms

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :
- Maximum independent set in time $\mathcal{O}\left(2^{k} \cdot n\right)$

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :
- Maximum independent set in time $\mathcal{O}\left(2^{k} \cdot n\right)$
- Minimum dominating set in time $\mathcal{O}\left(3^{k} \cdot n\right)$

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :
- Maximum independent set in time $\mathcal{O}\left(2^{k} \cdot n\right)$
- Minimum dominating set in time $\mathcal{O}\left(3^{k} \cdot n\right)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :
- Maximum independent set in time $\mathcal{O}\left(2^{k} \cdot n\right)$
- Minimum dominating set in time $\mathcal{O}\left(3^{k} \cdot n\right)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$
- Any problem in MSO-logic in time $f(k) \cdot n$

Why treewidth: Algorithms

- Algorithms on trees generalize to algorithms on graphs of small treewidth
- Given a graph with a tree decomposition of width k :
- Maximum independent set in time $\mathcal{O}\left(2^{k} \cdot n\right)$
- Minimum dominating set in time $\mathcal{O}\left(3^{k} \cdot n\right)$
- Hamiltonian cycle in time $2^{\mathcal{O}(k)} \cdot n$
- Any problem in MSO-logic in time $f(k) \cdot n$
- Need to compute the tree decomposition first!

Computing treewidth exactly

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]
- $2^{\mathcal{O}\left(k^{3}\right)} n$ time [Bodlaender, STOC'93]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]
- $2^{\mathcal{O}\left(k^{3}\right)} n$ time [Bodlaender, STOC'93]
- Using $2^{\mathcal{O}\left(k^{3}\right)} n$ time dynamic programming of [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]
- $2^{\mathcal{O}\left(k^{3}\right)} n$ time [Bodlaender, STOC'93]
- Using $2^{\mathcal{O}\left(k^{3}\right)} n$ time dynamic programming of [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}\left(k^{3}\right)}$ on k be improved?" [Downey \& Fellows '99]

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]
- $2^{\mathcal{O}\left(k^{3}\right)} n$ time [Bodlaender, STOC'93]
- Using $2^{\mathcal{O}\left(k^{3}\right)} n$ time dynamic programming of [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}\left(k^{3}\right)}$ on k be improved?" [Downey \& Fellows '99]

Theorem (This work)
There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.

Computing treewidth exactly

- NP-complete [Arnborg, Corneil, Proskurowski '87]
- $\mathcal{O}\left(n^{k+2}\right)$ time [Arnborg, Corneil, Proskurowski '87]
- $f(k) \cdot n^{2}$ time, non-uniform [Robertson \& Seymour '86]
- $2^{\mathcal{O}\left(k^{3}\right)} n$ time [Bodlaender, STOC'93]
- Using $2^{\mathcal{O}\left(k^{3}\right)} n$ time dynamic programming of [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]
- "Can the dependence $2^{\mathcal{O}\left(k^{3}\right)}$ on k be improved?" [Downey \& Fellows '99]

Theorem (This work)

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.

- No dynamic programming, runs in space poly (n, k)

Approximating treewidth

- Polynomial-time approximation:

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot$ poly (n)-time constant-approximation:

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot \operatorname{poly}(n)$-time constant-approximation:
- $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation [Robertson \& Seymour '86]

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot \operatorname{poly}(n)$-time constant-approximation:
- $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation [Robertson \& Seymour '86]
- $k^{\mathcal{O}(k)} n \log ^{2} n$ [Matoušek and Thomas '91, Lagergren '91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed '92] approximations

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot \operatorname{poly}(n)$-time constant-approximation:
- $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation [Robertson \& Seymour '86]
- $k^{\mathcal{O}(k)} n \log ^{2} n$ [Matoušek and Thomas '91, Lagergren '91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed '92] approximations
- $2^{\mathcal{O}(k)} n$ time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov \& Pilipczuk '16]

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot \operatorname{poly}(n)$-time constant-approximation:
- $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation [Robertson \& Seymour '86]
- $k^{\mathcal{O}(k)} n \log ^{2} n$ [Matoušek and Thomas '91, Lagergren '91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed '92] approximations
- $2^{\mathcal{O}(k)} n$ time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov \& Pilipczuk '16]
- $2^{\mathcal{O}(k)} n$ time 2-approximation [K. '21]

Approximating treewidth

- Polynomial-time approximation:
- $\mathcal{O}(\sqrt{\log k})$-approximation [Feige, Hajiaghayi \& Lee '08]
- Assuming SSE-conjecture, NP-hard to c-approximate for every constant c [Wu, Austrin, Pitassi \& Liu '14]
- $f(k) \cdot \operatorname{poly}(n)$-time constant-approximation:
- $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation [Robertson \& Seymour '86]
- $k^{\mathcal{O}(k)} n \log ^{2} n$ [Matoušek and Thomas '91, Lagergren '91] and $k^{\mathcal{O}(k)} n \log n$ time [Reed '92] approximations
- $2^{\mathcal{O}(k)} n$ time 5-approximation [Bodlaender, Drange, Dregi, Fomin, Lokshtanov \& Pilipczuk '16]
- $2^{\mathcal{O}(k)} n$ time 2-approximation [K. '21]

Theorem (This work)

There is a $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth.

Our algorithms

Our algorithms

Overview of our algorithms

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
- Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
- Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ and $k^{\mathcal{O}(k / \varepsilon)} n^{2}$ time algorithms for Subset treewidth

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
- Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ and $k^{\mathcal{O}(k / \varepsilon)} n^{2}$ time algorithms for Subset treewidth

Techniques:

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
- Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ and $k^{\mathcal{O}(k / \varepsilon)} n^{2}$ time algorithms for Subset treewidth

Techniques:

- Branching on important separators [Marx '06]

Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:

- Generalization of the improvement method from [K. '21]
- Pulling argument to re-arrange tree decompositions, originating from lean tree decompositions [Thomas '90, Bellenbaum and Diestel '02]

2. Solving the subset treewidth problem

Theorem: $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ and $k^{\mathcal{O}(k / \varepsilon)} n^{2}$ time algorithms for Subset treewidth

Techniques:

- Branching on important separators [Marx '06]
- Together with the pulling argument

Improving a tree decomposition

Improving a tree decomposition

Setting

Suppose we have a tree decomposition T whose largest bag is W

Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or

Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is (approximately) optimal

Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\operatorname{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition

Setting

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size $|W|$ while not increasing the width of T, or
2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\operatorname{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition
(assume to start with width $\mathcal{O}(\operatorname{tw}(G))$ decomposition)

Improving a tree decomposition

Let W be a largest bag of T

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G \backslash X$ into cliques

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G \backslash X$ into cliques
- Delete $V(G) \backslash X$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Big-leaf formulation:

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Big-leaf formulation:

- Find a tree decomposition of G whose internal bags have size $\leq|W|-1$ and cover W, but leaf bags can be arbitrarily large

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of $\operatorname{torso}(X)$ of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Subset treewidth for exact algorithms

Subset treewidth for exact algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Subset treewidth for exact algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Subset treewidth for exact algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.
(actually if and only if)

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.
(actually if and only if)
$2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth

Subset treewidth for approximation schemes

Subset treewidth for approximation schemes

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Subset treewidth for approximation schemes

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1 / \varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$-approximation algorithm for treewidth with the same function f.

Subset treewidth for approximation schemes

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1 / \varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$-approximation algorithm for treewidth with the same function f.
$k^{\mathcal{O}(k t)} n^{2}$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth
- The first improvement on $f(k)$ in $f(k) \cdot \operatorname{poly}(n)$ treewidth algorithms since [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth
- The first improvement on $f(k)$ in $f(k) \cdot \operatorname{poly}(n)$ treewidth algorithms since [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Open questions:

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth
- The first improvement on $f(k)$ in $f(k) \cdot \operatorname{poly}(n)$ treewidth algorithms since [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Open questions:

- What is the best $f(k)$ so that treewidth can be computed in $f(k) \cdot \operatorname{poly}(n)$ time?

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth
- The first improvement on $f(k)$ in $f(k) \cdot \operatorname{poly}(n)$ treewidth algorithms since [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Open questions:

- What is the best $f(k)$ so that treewidth can be computed in $f(k) \cdot \operatorname{poly}(n)$ time?
- Prove a $2^{\Omega(k)}$ lower bound assuming ETH

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm and $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation for treewidth
- The first improvement on $f(k)$ in $f(k) \cdot \operatorname{poly}(n)$ treewidth algorithms since [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]

Open questions:

- What is the best $f(k)$ so that treewidth can be computed in $f(k) \cdot \operatorname{poly}(n)$ time?
- Prove a $2^{\Omega(k)}$ lower bound assuming ETH
- Known reductions give $2^{\Omega(\sqrt{k})}$ lower bound

Thank you!

Thank you!

- Longer talk: https://www.youtube.com/watch?v=9lf417oeWcQ
- Slides: https://tuukkakorhonen.com/

