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Treewidth

Measures how close a graph is to a tree

I Trees have treewidth 1
I The example graph has treewidth 2
I The n × n-grid has treewidth n
I Kn has treewidth n − 1

Treewidth = minimum width of a tree
decomposition

Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected

subtree

Width = max bag size −1

[Robertson & Seymour ’84, Arnborg & Proskurowski ’89,
Bertele & Brioschi ’72, Halin ’76]
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Why treewidth: Algorithms

Algorithms on trees generalize to algorithms on
graphs of small treewidth

Given a graph with a tree decomposition of
width k :

Maximum independent set in time O(2k · n)

Minimum dominating set in time O(3k · n)

Hamiltonian cycle in time 2O(k) · n
Any problem in MSO-logic in time f (k) · n

Need to compute the tree
decomposition first!
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Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]

I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,
Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Computing treewidth exactly

NP-complete [Arnborg, Corneil, Proskurowski ’87]

O(nk+2) time [Arnborg, Corneil, Proskurowski ’87]

f (k) · n2 time, non-uniform [Robertson & Seymour ’86]

2O(k3)n time [Bodlaender, STOC’93]
I Using 2O(k3)n time dynamic programming of [Bodlaender & Kloks,

Lagergren & Arnborg, ’91]

“Can the dependence 2O(k3) on k be improved?” [Downey & Fellows ’99]

Theorem (This work)

There is a 2O(k2)n4 time algorithm for treewidth.

No dynamic programming, runs in space poly(n, k)

Korhonen and Lokshtanov Improved Parameterized Algorithm for Treewidth



Approximating treewidth

Polynomial-time approximation:

I O(
√
log k)-approximation [Feige, Hajiaghayi & Lee ’08]

I Assuming SSE-conjecture, NP-hard to c-approximate for every
constant c [Wu, Austrin, Pitassi & Liu ’14]

f (k) · poly(n)-time constant-approximation:

I 2O(k)n2 time 4-approximation [Robertson & Seymour ’86]

I kO(k)n log2 n [Matoušek and Thomas ’91, Lagergren ’91] and
kO(k)n log n time [Reed ’92] approximations

I 2O(k)n time 5-approximation [Bodlaender, Drange, Dregi, Fomin,
Lokshtanov & Pilipczuk ’16]

I 2O(k)n time 2-approximation [K. ’21]

Theorem (This work)
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Overview of our algorithms

Strategy: Iteratively improve a tree decomposition

1. How to improve a tree decomposition

Theorem: It suffices to solve the Subset treewidth problem

Techniques:
Generalization of the improvement method from [K. ’21]

I Pulling argument to re-arrange tree decompositions, originating from
lean tree decompositions [Thomas ’90, Bellenbaum and Diestel ’02]

2. Solving the subset treewidth problem

Theorem: 2O(k2)n2 and kO(k/ε)n2 time algorithms for Subset treewidth

Techniques:

Branching on important separators [Marx ’06]

Together with the pulling argument
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Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or
2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition
(assume to start with width O(tw(G)) decomposition)

W

T
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Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X ) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)
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Improving a tree decomposition
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Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size ≤ |W | − 1 and
cover W , but leaf bags can be arbitrarily large
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X ) of width ≤ |W | − 2

Improving T :

W

T
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Have:
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C1
C2
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X ) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T
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Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X ) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth
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Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X ) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth
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Conclusion

2O(k2)n4 time algorithm and kO(k/ε)n4 time (1 + ε)-approximation for
treewidth

The first improvement on f (k) in f (k) · poly(n) treewidth algorithms since
[Bodlaender & Kloks, Lagergren & Arnborg, ’91]

Open questions:

What is the best f (k) so that treewidth can be computed in f (k) · poly(n)
time?

Prove a 2Ω(k) lower bound assuming ETH

I Known reductions give 2Ω(
√

k) lower bound
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Thank you!

Thank you!

Longer talk: https://www.youtube.com/watch?v=9If417oeWcQ

Slides: https://tuukkakorhonen.com/
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