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Graph containment

1. Induced subgraph
I vertex deletions

2. Induced minor
I vertex deletions
I edge contractions

3. Minor
I vertex deletions
I edge contractions
I edge deletions

In this talk, all graphs are simple! (no self loops or parallel edges)
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Graph classes defined by containment

For a graph H, we can define graph classes by excluding H

I H-minor-free graphs

I H-induced-minor-free graphs

Example: C4-minor-free graphs

Every biconnected component is a triangle
Chordal and treewidth ≤ 2
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Induced-minor-free graphs
How about C4-induced-minor-free graphs?

Contain all C4-minor-free graphs

Contain all cliques⇒ unbounded treewidth

C4-induced-minor-free graphs = chordal graphs
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Which algorithmic properties of H-minor-free graphs generalize to
H-induced-minor-free graphs?

When H is planar:
H-minor-free⇔ bounded treewidth
Do H-induced-minor-free generalize the algorithmic properties of chordal graphs?
Open problem: Is max independent set (quasi)polytime?
Solved for: H = Pk [Gartland & Lokshtanov FOCS’20], H = Ck [Gartland, Lokshtanov, Pilipczuk, Pilipczuk &

Rzążewski STOC’21], H = W4, H = K−
5 , and H = K2,q [Dallard, Milanič & Štorgel ’21], H = tC3 [Bonamy, Bonnet,

Déprés, Esperet, Geniet, Hilaire, Thomasse & Wesolek SODA’23], H = K1 + tK2 and H = tC3 ] C4 [Bonnet, Duron,

Geniet, Thomassé & Wesolek ESA’23], O(1)-degree input graphs [K. JCTB’23]

When H is non-planar:
H-minor-free ≈ generalization of planar graphs

H-induced-minor-free ≈ generalization of string graphs?

Tuukka Korhonen and Daniel Lokshtanov Induced-Minor-Free Graphs 5 / 12



Which algorithmic properties of H-minor-free graphs generalize to
H-induced-minor-free graphs?

When H is planar:
H-minor-free⇔ bounded treewidth

Do H-induced-minor-free generalize the algorithmic properties of chordal graphs?
Open problem: Is max independent set (quasi)polytime?
Solved for: H = Pk [Gartland & Lokshtanov FOCS’20], H = Ck [Gartland, Lokshtanov, Pilipczuk, Pilipczuk &
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Separator theorem

Theorem (Alon, Seymour, Thomas STOC’90)

H-minor-free graphs have balanced separators of size |H|O(1) ·
√

n.

⇒ H-minor-free graphs have treewidth OH(
√

n)

⇒ 2OH(
√

n) time algorithms for various NP-hard problems (like max independent set)

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size |H|O(1) ·
√

m.

Generalizes separator theorems on string graphs: O(m3/4√logm) by [Fox and Pach’10],
O(
√

m logm) by [Matousek ’14], O(
√

m) by [Lee’17]
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Subexponential algorithms

Theorem (This work)

H-induced-minor-free graphs have balanced separators of size |H|O(1) ·
√

m.

First application: Independent set in time nOH(n2/3) on H-induced-minor-free graphs:

1. Branch while exists a vertex of degree ≥ n1/3

2. After that, m ≤ n4/3 ⇒ treewidth OH(n2/3)

3. Solve by dynamic programming

Generalizes to nOH(n2/3) time algorithms for various problems that

are about finding sparse induced subgraphs and

can be solved in time 2O(k log k)nO(1) parameterized by treewidth k
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Proof sketch of separator theorem

Theorem (Leighton-Rao ’99)

Either a balanced separator of size O(t log n), or concurrent flow of congestionO(n2

t ).

Concurrent flow: One unit of flow between every pair of vertices

Congestion: Upper bound on total flow going through a single vertex

Theorem (Klein-Plotkin-Rao ’93, Lee ’17)

For H-induced-minor-free graphs, either a balanced separator of size |H|O(1) · t , or concurrent flow

of congestionO(n2

t ).

Set t = |H|O(1) ·
√

m: If we get a separator, we are done.
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Proof sketch of separator theorem

Have: Concurrent flow of congestionO(n2

t ) for t = |H|O(1) ·
√

m.

Goal: Show that G contains H as an induced minor

Idea: Embed H by sampling random endpoints and random paths from the concurrent flow

Any two non-incident edges are embedded independently of each other, and therefore collide
with small probability

Issue: No control over edges sharing a vertex

Solution: Subdivide H three times, get a bad model of subdivided graph, reroute to a good
model of H
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Part 2: Improved Hardness of Recognition

Theorem (Fellows, Kratochvíl, Middendorf & Pfeiffer ’95)

There exists a fixed graph H, so that H-induced-minor-containment is NP-hard.

Our separator theorem gives nOH(n2/3) time algorithm for H-induced-minor containment if
minimal models of H are sparse
For example, when every edge of H is incident to a degree-2 vertex

Theorem (This work)

There exists a fixed graph H, so that assuming ETH, there is no 2o(n/ log3 n) time algorithm for
H-induced-minor-containment.

Furthermore, H is a tree and the proof also gives NP-hardness

Solves two open problems of [Fellows, Kratochvil, Middendorf, & Pfeiffer ’95], who asked the
existence of such H that is (1) planar (2) a tree
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About the proof

Chain of reductions:

3-COLORING ≤ GENERALIZED 3-COLORING
≤ MULTICOLORED INDUCED 6-DISJOINT PATHS
≤ ANCHORED T ∗-INDUCED MINOR CONTAINMENT
≤ T -INDUCED MINOR CONTAINMENT

Main challenge: Control the structure of the graphs

Need an expander G that contains a Hamiltonian path P, so that E(G) can be partitioned into
E1, . . . ,E5 so that P ∪ Ei has bounded pathwidth for every i

I We use binary De Bruijn graphs
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Conclusion

1. |H|O(1) ·
√

m separator theorem on H-induced-minor-free graphs

2. 2o(n/ log3 n) hardness of H-induced-minor-containment for fixed tree H assuming ETH

Open problems:
1. Complexity of max independent set on H-induced-minor-free graphs: Quasipolynomial when H

is planar? 2ÕH(
√

n) when H is non-planar?
2. Are all H-induced-minor-free graphs intersection graphs of connected subgraphs of

H ′-minor-free graphs?
3. Complexity of H-induced-minor-containment when minimal models of H are sparse? NP-hard?

Quasipolynomial?
4. Related: Complexity of k -disjoint induced paths on H-induced-minor-free graphs? (or unit disk

graphs?)

Thanks!
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