Computing Treewidth

Tuukka Korhonen

FPT Fest 2023 in the honor of Mike Fellows

15 June 2023

Treewidth

- Measures how close a graph is to a tree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

- Width = max bag size -1

Width 2

Treewidth

- Measures how close a graph is to a tree
- Trees have treewidth 1
- The example graph has treewidth 2
- The $n \times n$-grid has treewidth n
- K_{n} has treewidth $n-1$
- Treewidth = minimum width of a tree decomposition

- Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

- Width $=$ max bag size -1
[Robertson \& Seymour '84, Arnborg \& Proskurowski '89, Bertele \& Brioschi '72, Halin '76]

Width 2

Why treewidth

Why treewidth

- Most of NP-hard graph problems are FPT parameterized by treewidth

Why treewidth

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving $f(k) \cdot n$ time algorithms for problems definable in $\mathbf{M S O}_{2}$-logic

Why treewidth

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving $f(k) \cdot n$ time algorithms for problems definable in $\mathbf{M S O}_{2}$-logic
- Often $2^{\mathcal{O}(k)} n$ time algorithms

Why treewidth

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving $f(k) \cdot n$ time algorithms for problems definable in $\mathbf{M S O}_{2}$-logic
- Often $2^{\mathcal{O}(k)} n$ time algorithms

Need the tree decomposition!

Computing treewidth

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants
2. Classic exact FPT algorithms

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants
2. Classic exact FPT algorithms
3. New FPT algorithms based on local improvement

Robertson-Seymour FPT-approximation

1. Robertson-Seymour FPT-approximation

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.
Proof:

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.
Proof:

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.
Proof:

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.
Proof:

Robertson-Seymour FPT-approximation: Balanced separators

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component C of $G-X$ it holds that $|W \cap C| \leq|W| / 2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$.
Proof:

Constructing the decomposition

Lemma
If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Constructing the decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Graph

Tree decomposition

W

Constructing the decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Graph

Tree decomposition

Balanced separator X with components C_{1} and C_{2}

Constructing the decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Graph

Tree decomposition

Constructing the decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Graph

Balanced separator Y with components D_{1} and D_{2}

$$
Y \cup\left(L \cap D_{1}\right)
$$

Tree decomposition

$$
Y \cup\left(L \cap D_{2}\right)
$$

Constructing the decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k+1$, then $\mathrm{tw}(G) \leq 4 k+3$

Graph

Balanced separator Y with components D_{1} and D_{2}

$$
Y \cup\left(L \cap D_{1}\right)
$$

Tree decomposition

$$
Y \cup\left(L \cap D_{2}\right)
$$

Continue recursively...

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)
There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$
- [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$
- [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
- [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]: 3-approximation in time $2^{\mathcal{O}(k)} n \log n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$
- [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
- [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]: 3-approximation in time $2^{\mathcal{O}(k)} n \log n$
* and 5-approximation in time $2^{\mathcal{O}(k)} n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$
- [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
- [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]: 3-approximation in time $2^{\mathcal{O}(k)} n \log n$
* and 5-approximation in time $2^{\mathcal{O}(k)} n$
- [Fomin, Lokshtanov, Pilipczuk, Saurabh \& Wrochna'18]: $\mathcal{O}(k)$-approximation in time $k^{\mathcal{O}(1)} n \log n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4 -approximation for treewidth

- How to improve the polynomial n^{2} : Sometimes break the graph by a balanced separator of $V(G)$
- [Matoušek \& Thomas '91, Lagergren '91]: $\mathcal{O}(1)$-approximation in time $k^{\mathcal{O}(k)} n \log ^{2} n$
- [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
- [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]: 3-approximation in time $2^{\mathcal{O}(k)} n \log n$
* and 5-approximation in time $2^{\mathcal{O}(k)} n$
- [Fomin, Lokshtanov, Pilipczuk, Saurabh \& Wrochna'18]: $\mathcal{O}(k)$-approximation in time $k^{\mathcal{O}(1)} n \log n$
- [Belbasi \& Fürer '21]: 5-approximation in time $2^{7 k} n \log n$

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- Idea applied to many other width parameters:

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- Idea applied to many other width parameters:
- FPT-approximation of cliquewidth/rankwidth [Oum\&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum\&Seymour'06], \mathcal{H}-treewidth [Jansen, de Kroon \& Wlodarczyk '21]

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- Idea applied to many other width parameters:
- FPT-approximation of cliquewidth/rankwidth [Oum\&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum\&Seymour'06], \mathcal{H}-treewidth [Jansen, de Kroon \& Wlodarczyk '21]
- XP-approximation of hypertreewidth [Adler, Gottlob, Grohe '07], fractional hypertreewidth [Marx '10], and minor-matching hypertreewidth [Yolov '17]

Robertson-Seymour FPT-approximation of treewidth

Theorem (Robertson \& Seymour '86)

There is a $2^{\mathcal{O}(k)} n^{2}$ time 4-approximation for treewidth

- Idea applied to many other width parameters:
- FPT-approximation of cliquewidth/rankwidth [Oum\&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum\&Seymour'06], \mathcal{H}-treewidth [Jansen, de Kroon \& Wlodarczyk '21]
- XP-approximation of hypertreewidth [Adler, Gottlob, Grohe '07], fractional hypertreewidth [Marx '10], and minor-matching hypertreewidth [Yolov '17]
- And many more...

Classic exact FPT algorithms

2. Classic exact FPT algorithms

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed
Issue: Non-uniform, non-constructive (at the time)

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed
Issue: Non-uniform, non-constructive (at the time)

- [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]: $2^{\mathcal{O}\left(k^{3}\right) n \text { time dynamic }}$ programming for treewidth by Typical Sequences

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed
Issue: Non-uniform, non-constructive (at the time)

- [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]: $2^{\mathcal{O}\left(k^{3}\right) n \text { time dynamic }}$ programming for treewidth by Typical Sequences
- Implied $2^{\mathcal{O}\left(k^{3}\right)} n \log ^{2} n$ time algorithm at the time

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed
Issue: Non-uniform, non-constructive (at the time)

- [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]: $2^{\mathcal{O}\left(k^{3}\right) n \text { time dynamic }}$ programming for treewidth by Typical Sequences
- Implied $2^{\mathcal{O}\left(k^{3}\right)} n \log ^{2} n$ time algorithm at the time
- [Bodlaender '93]: Improvement to $2^{\mathcal{O}\left(k^{3}\right)} n$ by a recursive "compression" technique

Classic exact FPT algorithms

Theorem (Robertson \& Seymour '86)

There is a $f(k) \cdot n^{2}$ time (non-uniform) algorithm for treewidth
Proof: $\mathrm{tw}(G) \leq k$ is minor-closed
Issue: Non-uniform, non-constructive (at the time)

- [Bodlaender \& Kloks, Lagergren \& Arnborg, '91]: $2^{\mathcal{O}\left(k^{3}\right)} n$ time dynamic programming for treewidth by Typical Sequences
- Implied $2^{\mathcal{O}\left(k^{3}\right)} n \log ^{2} n$ time algorithm at the time
- [Bodlaender '93]: Improvement to $2^{\mathcal{O}\left(k^{3}\right)} n$ by a recursive "compression" technique
- Typical sequences applied to branchwidth [Bodlaender \& Thilikos '97], cutwidth and carving-width [Thilikos, Serna \& Bodlaender '00], rankwidth and matroid branchwidth [Jeong, Kim \& Oum '18], and more...

New FPT algorithms based on local improvement

3. New FPT algorithms based on local improvement

Local improvement based FPT 2-approximation

Local improvement based FPT 2-approximation

Theorem (K. '21)
There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth

Local improvement based FPT 2-approximation

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2-approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]

Local improvement based FPT 2-approximation

Theorem (K. '21)
There is a $2^{\mathcal{O}(k)} n$ time 2 -approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Local improvement based FPT 2-approximation

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2-approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40 k}$ to $2^{11 k}$

Local improvement based FPT 2-approximation

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)} n$ time 2-approximation for treewidth
Compare to: $2^{\mathcal{O}(k)} n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, \& Pilipczuk '16]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40 k}$ to $2^{11 k}$
- Techniques extended also to 2-approximating branchwidth in time $2^{\mathcal{O}(k)} n$ and rankwidth in time $2^{2^{\mathcal{O}(k)}} n^{2}$ [Fomin \& K. '22]

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot \mathrm{tw}(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot \mathrm{tw}(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

Let T be a tree decomposition of width w

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot \operatorname{tw}(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

Let T be a tree decomposition of width w

1. If $w>2 \cdot \operatorname{tw}(G)+1$ then T can be improved by a certain improvement operation

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot t w(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

Let T be a tree decomposition of width w

1. If $w>2 \cdot \operatorname{tw}(G)+1$ then T can be improved by a certain improvement operation

- Decreases the number of bags of size $w+1$ and does not increase the width

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot t w(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

Let T be a tree decomposition of width w

1. If $w>2 \cdot \operatorname{tw}(G)+1$ then T can be improved by a certain improvement operation

- Decreases the number of bags of size $w+1$ and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum \& Diestel '02]

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot t w(G)+1$
Time complexity: $2^{\mathcal{O}(w)} n$

Let T be a tree decomposition of width w

1. If $w>2 \cdot \operatorname{tw}(G)+1$ then T can be improved by a certain improvement operation

- Decreases the number of bags of size $w+1$ and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum \& Diestel '02]

2. To improve the width by one, $\Omega(n)$ improvement operations may be needed

FPT 2-approximation: Outline

By the recursive compression technique of [Bodlaender '93] we can focus on:
Input: Graph G and a tree decomposition of G of width w
Output: A tree decomposition of G of width $<w$ or conclusion that $w \leq 2 \cdot t w(G)+1$
Time complexity: $2^{\mathcal{O}(\omega)} n$

Let T be a tree decomposition of width w

1. If $w>2 \cdot \operatorname{tw}(G)+1$ then T can be improved by a certain improvement operation

- Decreases the number of bags of size $w+1$ and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum \& Diestel '02]

2. To improve the width by one, $\Omega(n)$ improvement operations may be needed

- Efficient implementation by amortizatized analysis of the improvements and dynamic programming over the tree decomposition

The improvement operation

- Let W be a largest bag

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition $\left(X, C_{1}, C_{2}, C_{3}\right)$ of $V(G)$

T

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition $\left(X, C_{1}, C_{2}, C_{3}\right)$ of $V(G)$
- For each $i \in\{1,2,3\}$, obtain a tree decomposition $T^{i}=T \cap\left(C_{i} \cup X\right)$ by setting $B^{i}=B \cap\left(C_{i} \cup X\right)$ for each bag B of T.

T

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition $\left(X, C_{1}, C_{2}, C_{3}\right)$ of $V(G)$
- For each $i \in\{1,2,3\}$, obtain a tree decomposition $T^{i}=T \cap\left(C_{i} \cup X\right)$ by setting $B^{i}=B \cap\left(C_{i} \cup X\right)$ for each bag B of T.
- The following is almost a tree decomposition of G :

T

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition $\left(X, C_{1}, C_{2}, C_{3}\right)$ of $V(G)$
- For each $i \in\{1,2,3\}$, obtain a tree decomposition $T^{i}=T \cap\left(C_{i} \cup X\right)$ by setting $B^{i}=B \cap\left(C_{i} \cup X\right)$ for each bag B of T.
- The following is almost a tree decomposition of G :

T

Except that vertices in X may violate the connectedness condition

Fixing a tree decomposition

- Fix the connectedness condition by inserting vertices of X to bags

Fixing a tree decomposition

- Fix the connectedness condition by inserting vertices of X to bags

Example: Let $\left(X, C_{1}, C_{2}, C_{3}\right)=\left(\left\{x_{1}, x_{2}\right\},\{a, b, h\},\{c, d, f\},\{e, g, k\}\right)$ be the partition:

Fixing a tree decomposition

- Fix the connectedness condition by inserting vertices of X to bags

Example: Let $\left(X, C_{1}, C_{2}, C_{3}\right)=\left(\left\{x_{1}, x_{2}\right\},\{a, b, h\},\{c, d, f\},\{e, g, k\}\right)$ be the partition:

Fixing a tree decomposition

- Fix the connectedness condition by inserting vertices of X to bags

Example: Let $\left(X, C_{1}, C_{2}, C_{3}\right)=\left(\left\{x_{1}, x_{2}\right\},\{a, b, h\},\{c, d, f\},\{e, g, k\}\right)$ be the partition:

- Insert x_{1} to B^{1}, A^{1}, and W^{1}

Fixing a tree decomposition

- Fix the connectedness condition by inserting vertices of X to bags

Example: Let $\left(X, C_{1}, C_{2}, C_{3}\right)=\left(\left\{x_{1}, x_{2}\right\},\{a, b, h\},\{c, d, f\},\{e, g, k\}\right)$ be the partition:

- Insert x_{1} to B^{1}, A^{1}, and W^{1}
- Insert x_{2} to A^{1} and W^{1}

Analysis of the improvement

- Each bag B is replaced by bags B^{1}, B^{2}, B^{3}

Analysis of the improvement

- Each bag B is replaced by bags B^{1}, B^{2}, B^{3}

Lemma

If the balanced separator X is chosen according to specific criteria, then $\left|B^{i}\right| \leq|B|$ for all bags B and each i.

Analysis of the improvement

- Each bag B is replaced by bags B^{1}, B^{2}, B^{3}

Lemma

If the balanced separator X is chosen according to specific criteria, then $\left|B^{i}\right| \leq|B|$ for all bags B and each i.

- $\left|B^{i}\right|=|B|$ holds only in a degenerate case where we can throw B^{j} for $j \neq i$ away

Analysis of the improvement

- Each bag B is replaced by bags B^{1}, B^{2}, B^{3}

Lemma

If the balanced separator X is chosen according to specific criteria, then $\left|B^{i}\right| \leq|B|$ for all bags B and each i.

- $\left|B^{i}\right|=|B|$ holds only in a degenerate case where we can throw B^{j} for $j \neq i$ away
- For the bag $W,\left|W^{i}\right|<|W|$ is ensured by the definition of the balanced separator

Analysis of the improvement

- Each bag B is replaced by bags B^{1}, B^{2}, B^{3}

Lemma

If the balanced separator X is chosen according to specific criteria, then $\left|B^{i}\right| \leq|B|$ for all bags B and each i.

- $\left|B^{i}\right|=|B|$ holds only in a degenerate case where we can throw B^{j} for $j \neq i$ away
- For the bag $W,\left|W^{i}\right|<|W|$ is ensured by the definition of the balanced separator
\Rightarrow The number of bags of size $|W|$ decreases

Below 2-approximation with local improvement

Below 2-approximation with local improvement

Below 2-approximation with local improvement

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. \& Lokshtanov '23)

There is a $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth.

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. \& Lokshtanov '23)
There is a $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth.
Theorem (K. \& Lokshtanov '23)
There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. \& Lokshtanov '23)

There is a $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth.

Theorem (K. \& Lokshtanov '23)

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.
Asked by [Downey \& Fellows '99] if the $2^{\mathcal{O}\left(k^{3}\right)}$ factor in Bodlaender's algorithm could be improved

Below 2-approximation with local improvement

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. \& Lokshtanov '23)

There is a $k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time $(1+\varepsilon)$-approximation algorithm for treewidth.

Theorem (K. \& Lokshtanov '23)

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth.
Asked by [Downey \& Fellows '99] if the $2^{\mathcal{O}\left(k^{3}\right)}$ factor in Bodlaender's algorithm could be improved

- Same idea of improving a tree decomposition by decreasing the number of largest bags

Improving a tree decomposition

Let W be a largest bag of T

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G-X$ into cliques

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Torso?

- Make neighborhoods of components of $G-X$ into cliques
- Delete $V(G) \backslash X$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso (X) of width $\leq|W|-2$

Observations:

- If T is not optimal, then such X exists by taking $X=V(G)$
- Freedom to choose $X \subset V(G)$

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Improving a tree decomposition
Let W be a largest bag of T
Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_{X} of torso (X) of width $\leq|W|-2$

Improving T :

Subset treewidth for exact FPT algorithms

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.

Subset treewidth for exact FPT algorithms

Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$
Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function f.
$2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ time algorithm for treewidth

Subset treewidth for FPT-approximation

Subset treewidth for FPT-approximation

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Subset treewidth for FPT-approximation

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1 / \varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$-approximation algorithm for treewidth with the same function f.

Subset treewidth for FPT-approximation

Partitioned Subset Treewidth

Input: Graph G, integer k, set of vertices $W \subseteq V(G)$ with $|W|=k+2$ that is partitioned into t cliques W_{1}, \ldots, W_{t}

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso (X) of width $\leq k$ or that the treewidth of G is $>k$

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1 / \varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1+\varepsilon)$-approximation algorithm for treewidth with the same function f.
$k^{\mathcal{O}(k t)} n^{2}$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k / \varepsilon)} n^{4}$ time
$(1+\varepsilon)$-approximation algorithm for treewidth

Solving Subset Treewidth

- $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(k t)} n^{2}$ time algorithm for Partitioned Subset Treewidth

Solving Subset Treewidth

- $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(k t)} n^{2}$ time algorithm for Partitioned Subset Treewidth
Techniques:

Solving Subset Treewidth

- $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(k t)} n^{2}$ time algorithm for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm

Solving Subset Treewidth

- $2^{\mathcal{O}\left(k^{2}\right)} n^{2}$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(k t)} n^{2}$ time algorithm for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

 for Partitioned Subset Treewidth

Techniques:

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Conclusion

Classic approaches for computing width parameters:

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH $\left(2^{\Omega(\sqrt{k})}\right.$ known)

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?

Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
- Improve either dependence on k or n in the $2^{\mathcal{O}\left(k^{2}\right)} n^{4}$ exact treewidth algorithm

Thank you!

Thank you!

