Computing Treewidth

Tuukka Korhonen

UNIVERSITY OF BERGEN

FPT Fest 2023 in the honor of Mike Fellows

15 June 2023

• Measures how close a graph is to a tree

- Measures how close a graph is to a tree
 - Trees have treewidth 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - ▶ The *n* × *n*-grid has treewidth *n*
 - ► K_n has treewidth n − 1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - bags containing a vertex form a connected subtree

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

- Measures how close a graph is to a tree
 - Trees have treewidth 1
 - The example graph has treewidth 2
 - The n × n-grid has treewidth n
 - ► K_n has treewidth n − 1
- Treewidth = minimum width of a tree decomposition
- Tree decomposition is a tree of bags so that:
 - 1. every vertex is in some bag
 - 2. every edge is in some bag
 - 3. bags containing a vertex form a connected subtree
- Width = max bag size -1

[Robertson & Seymour '84, Arnborg & Proskurowski '89, Bertele & Brioschi '72, Halin '76]

Width 2

• Most of NP-hard graph problems are FPT parameterized by treewidth

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving $f(k) \cdot n$ time algorithms for problems definable in **MSO**₂-logic

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving $f(k) \cdot n$ time algorithms for problems definable in **MSO**₂-logic
- Often $2^{\mathcal{O}(k)} n$ time algorithms

- Most of NP-hard graph problems are FPT parameterized by treewidth
- Formalized by Courcelle's theorem, giving *f*(*k*) · *n* time algorithms for problems definable in MSO₂-logic
- Often $2^{\mathcal{O}(k)}n$ time algorithms

Need the tree decomposition!

Computing treewidth

1. Robertson-Seymour FPT-approximation and its descendants

- 1. Robertson-Seymour FPT-approximation and its descendants
- 2. Classic exact FPT algorithms

- 1. Robertson-Seymour FPT-approximation and its descendants
- 2. Classic exact FPT algorithms
- 3. New FPT algorithms based on local improvement

Robertson-Seymour FPT-approximation

1. Robertson-Seymour FPT-approximation

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Definition: Vertex set $X \subseteq V(G)$ is a balanced separator of a vertex set $W \subseteq V(G)$ if for every component *C* of G - X it holds that $|W \cap C| \leq |W|/2$.

Lemma

If treewidth $\leq k$, then every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$.

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Tree decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Balanced separator X with components C_1 and C_2

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Tree decomposition

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Lemma

If every $W \subseteq V(G)$ has a balanced separator of size $\leq k + 1$, then tw $(G) \leq 4k + 3$

Theorem (Robertson & Seymour '86)

Theorem (Robertson & Seymour '86)

There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation for treewidth

How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - ► [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$
 - [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - ► [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$
 - [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
 - ▶ [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]:
 3-approximation in time 2^{O(k)} n log n

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - ► [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$
 - [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
 - ▶ [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]:
 3-approximation in time 2^{O(k)} n log n
 - * and 5-approximation in time $2^{\mathcal{O}(k)}n$

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - ► [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$
 - [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
 - ▶ [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]:
 3-approximation in time 2^{O(k)} n log n
 - * and 5-approximation in time $2^{\mathcal{O}(k)}n$
 - ► [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna'18]: $\mathcal{O}(k)$ -approximation in time $k^{\mathcal{O}(1)} n \log n$

Theorem (Robertson & Seymour '86)

- How to improve the polynomial n²: Sometimes break the graph by a balanced separator of V(G)
 - ► [Matoušek & Thomas '91, Lagergren '91]: $\mathcal{O}(1)$ -approximation in time $k^{\mathcal{O}(k)} n \log^2 n$
 - [Reed '92]: 8-approximation in time $k^{\mathcal{O}(k)} n \log n$
 - ▶ [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]:
 3-approximation in time 2^{O(k)} n log n
 - * and 5-approximation in time $2^{\mathcal{O}(k)}n$
 - ► [Fomin, Lokshtanov, Pilipczuk, Saurabh & Wrochna'18]: $\mathcal{O}(k)$ -approximation in time $k^{\mathcal{O}(1)} n \log n$
 - [Belbasi & Fürer '21]: 5-approximation in time 2^{7k} n log n

Theorem (Robertson & Seymour '86)

There is a $2^{\mathcal{O}(k)}n^2$ time 4-approximation for treewidth

• Idea applied to many other width parameters:

Theorem (Robertson & Seymour '86)

- Idea applied to many other width parameters:
 - FPT-approximation of cliquewidth/rankwidth [Oum&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum&Seymour'06], *H*-treewidth [Jansen, de Kroon & Wlodarczyk '21]

Theorem (Robertson & Seymour '86)

- Idea applied to many other width parameters:
 - FPT-approximation of cliquewidth/rankwidth [Oum&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum&Seymour'06], *H*-treewidth [Jansen, de Kroon & Wlodarczyk '21]
 - XP-approximation of hypertreewidth [Adler, Gottlob, Grohe '07], fractional hypertreewidth [Marx '10], and minor-matching hypertreewidth [Yolov '17]

Theorem (Robertson & Seymour '86)

- Idea applied to many other width parameters:
 - FPT-approximation of cliquewidth/rankwidth [Oum&Seymour'06], [Oum'08], matroid branchwidth [Hlinený '05], [Oum&Seymour'06], *H*-treewidth [Jansen, de Kroon & Wlodarczyk '21]
 - XP-approximation of hypertreewidth [Adler, Gottlob, Grohe '07], fractional hypertreewidth [Marx '10], and minor-matching hypertreewidth [Yolov '17]
 - And many more...

2. Classic exact FPT algorithms

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $tw(G) \le k$ is minor-closed

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $tw(G) \le k$ is minor-closed

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $tw(G) \le k$ is minor-closed

Issue: Non-uniform, non-constructive (at the time)

[Bodlaender & Kloks, Lagergren & Arnborg, '91]: 2^{O(k³)} n time dynamic programming for treewidth by Typical Sequences

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $tw(G) \le k$ is minor-closed

- [Bodlaender & Kloks, Lagergren & Arnborg, '91]: 2^{O(k³)} n time dynamic programming for treewidth by Typical Sequences
 - Implied $2^{\mathcal{O}(k^3)} n \log^2 n$ time algorithm at the time

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $\mathsf{tw}(G) \leq k$ is minor-closed

- [Bodlaender & Kloks, Lagergren & Arnborg, '91]: 2^{O(k³)} n time dynamic programming for treewidth by Typical Sequences
 - Implied $2^{\mathcal{O}(k^3)} n \log^2 n$ time algorithm at the time
 - [Bodlaender '93]: Improvement to 2^{O(k³)} n by a recursive "compression" technique

Theorem (Robertson & Seymour '86)

There is a $f(k) \cdot n^2$ time (non-uniform) algorithm for treewidth

Proof: $tw(G) \le k$ is minor-closed

- [Bodlaender & Kloks, Lagergren & Arnborg, '91]: 2^{O(k³)} n time dynamic programming for treewidth by Typical Sequences
 - Implied $2^{\mathcal{O}(k^3)} n \log^2 n$ time algorithm at the time
 - [Bodlaender '93]: Improvement to 2^{O(k³)} n by a recursive "compression" technique
- Typical sequences applied to branchwidth [Bodlaender & Thilikos '97], cutwidth and carving-width [Thilikos, Serna & Bodlaender '00], rankwidth and matroid branchwidth [Jeong, Kim & Oum '18], and more...

New FPT algorithms based on local improvement

3. New FPT algorithms based on local improvement

Theorem (K. '21)

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]

• Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40k}$ to 2^{11k}

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation for treewidth

Compare to: $2^{\mathcal{O}(k)}n$ time 5-approximation of [Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk '16]

- Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms
- Improves the $2^{\mathcal{O}(k)}$ from $\approx 2^{40k}$ to 2^{11k}
- Techniques extended also to 2-approximating branchwidth in time $2^{\mathcal{O}(k)}n$ and rankwidth in time $2^{2^{\mathcal{O}(k)}}n^2$ [Fomin & K. '22]

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{\mathcal{O}(w)}n$

By the recursive compression technique of [Bodlaender '93] we can focus on:

```
Input: Graph G and a tree decomposition of G of width w

Output: A tree decomposition of G of width < w or conclusion that w \le 2 \cdot tw(G) + 1

Time complexity: 2^{\mathcal{O}(w)}n
```

Let *T* be a tree decomposition of width *w*

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{\mathcal{O}(w)}n$

Let T be a tree decomposition of width w

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{\mathcal{O}(w)}n$

Let T be a tree decomposition of width w

1. If $w > 2 \cdot tw(G) + 1$ then T can be improved by a certain improvement operation

• Decreases the number of bags of size w + 1 and does not increase the width

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{O(w)}n$

Let T be a tree decomposition of width w

- Decreases the number of bags of size w + 1 and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum & Diestel '02]

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{O(w)}n$

Let T be a tree decomposition of width w

- Decreases the number of bags of size w + 1 and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum & Diestel '02]
- 2. To improve the width by one, $\Omega(n)$ improvement operations may be needed

By the recursive compression technique of [Bodlaender '93] we can focus on:

Input: Graph *G* and a tree decomposition of *G* of width *w* **Output:** A tree decomposition of *G* of width < w or conclusion that $w \le 2 \cdot tw(G) + 1$ **Time complexity:** $2^{O(w)}n$

Let *T* be a tree decomposition of width *w*

- Decreases the number of bags of size w + 1 and does not increase the width
- Inspired by a proofs on Lean Tree Decompositions [Thomas '90, Bellenbaum & Diestel '02]
- 2. To improve the width by one, $\Omega(n)$ improvement operations may be needed
 - Efficient implementation by amortizatized analysis of the improvements and dynamic programming over the tree decomposition

The improvement operation

• Let W be a largest bag

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition (X, C_1, C_2, C_3) of V(G)

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition (X, C_1, C_2, C_3) of V(G)
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag *B* of *T*.

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition (X, C_1, C_2, C_3) of V(G)
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag *B* of *T*.
- The following is almost a tree decomposition of G:

The improvement operation

- Let W be a largest bag
- Take a small balanced separator X of W with partition (X, C_1, C_2, C_3) of V(G)
- For each $i \in \{1, 2, 3\}$, obtain a tree decomposition $T^i = T \cap (C_i \cup X)$ by setting $B^i = B \cap (C_i \cup X)$ for each bag *B* of *T*.
- The following is almost a tree decomposition of G:

Except that vertices in X may violate the connectedness condition

• Fix the connectedness condition by inserting vertices of X to bags

Fix the connectedness condition by inserting vertices of X to bags

Example: Let $(X, C_1, C_2, C_3) = (\{x_1, x_2\}, \{a, b, h\}, \{c, d, f\}, \{e, g, k\})$ be the partition:

Fix the connectedness condition by inserting vertices of X to bags

Example: Let $(X, C_1, C_2, C_3) = (\{x_1, x_2\}, \{a, b, h\}, \{c, d, f\}, \{e, g, k\})$ be the partition:

Fix the connectedness condition by inserting vertices of X to bags

Example: Let $(X, C_1, C_2, C_3) = (\{x_1, x_2\}, \{a, b, h\}, \{c, d, f\}, \{e, g, k\})$ be the partition:

• Insert x_1 to B^1 , A^1 , and W^1

Fix the connectedness condition by inserting vertices of X to bags

Example: Let $(X, C_1, C_2, C_3) = (\{x_1, x_2\}, \{a, b, h\}, \{c, d, f\}, \{e, g, k\})$ be the partition:

Insert x₁ to B¹, A¹, and W¹
Insert x₂ to A¹ and W¹

• Each bag *B* is replaced by bags B^1 , B^2 , B^3

• Each bag *B* is replaced by bags *B*¹, *B*², *B*³

Lemma

If the balanced separator X is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each *i*.

• Each bag *B* is replaced by bags *B*¹, *B*², *B*³

Lemma

If the balanced separator X is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each *i*.

• $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away

• Each bag B is replaced by bags B¹, B², B³

Lemma

If the balanced separator X is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each *i*.

- $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away
- For the bag W, |W'| < |W| is ensured by the definition of the balanced separator

• Each bag B is replaced by bags B¹, B², B³

Lemma

If the balanced separator X is chosen according to specific criteria, then $|B^i| \le |B|$ for all bags B and each *i*.

- $|B^i| = |B|$ holds only in a degenerate case where we can throw B^j for $j \neq i$ away
- For the bag W, |W'| < |W| is ensured by the definition of the balanced separator
- \Rightarrow The number of bags of size |W| decreases

Below 2-approximation with local improvement

• Barrier at approximation ratio 2 when using balanced separators

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov '23)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov '23)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

Theorem (K. & Lokshtanov '23)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov '23)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

Theorem (K. & Lokshtanov '23)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

Asked by [Downey & Fellows '99] if the $2^{\mathcal{O}(k^3)}$ factor in Bodlaender's algorithm could be improved

- Barrier at approximation ratio 2 when using balanced separators
- Idea: Replace balanced separator by a more general object

Theorem (K. & Lokshtanov '23)

There is a $k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

Theorem (K. & Lokshtanov '23)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

Asked by [Downey & Fellows '99] if the $2^{\mathcal{O}(k^3)}$ factor in Bodlaender's algorithm could be improved

 Same idea of improving a tree decomposition by decreasing the number of largest bags

Let W be a largest bag of T

Let W be a largest bag of T

Want to find:

Let W be a largest bag of T

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

• Make neighborhoods of components of *G* – *X* into cliques

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Make neighborhoods of components of G – X into cliques
Delete V(G) \ X

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

• If T is not optimal, then such X exists by taking X = V(G)

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

• a set X with $W \subseteq X \subseteq V(G)$, and

• a tree decomposition T_X of torso(X) of width $\leq |W| - 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

 $2^{\mathcal{O}(k^2)}n^2$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth

Subset treewidth for FPT-approximation

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function f.

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function f.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth

Techniques:

Recursive branching algorithm

- Recursive branching algorithm
- Greedy selection of safe separators

- Recursive branching algorithm
- Greedy selection of safe separators

- Recursive branching algorithm
- Greedy selection of safe separators

- Recursive branching algorithm
- Greedy selection of safe separators

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

• $2^{\mathcal{O}(k^2)}n^2$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(kt)}n^2$ time algorithm for Partitioned Subset Treewidth

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Solving Subset Treewidth

• $2^{\mathcal{O}(k^2)}n^2$ time algorithm for Subset Treewidth and $k^{\mathcal{O}(kt)}n^2$ time algorithm for Partitioned Subset Treewidth

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

- Recursive branching algorithm
- Greedy selection of safe separators
- Branching on important separators [Marx '06]

Classic approaches for computing width parameters:

Classic approaches for computing width parameters:

• Robertson-Seymour FPT-approximation

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

• Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
Conclusion

Classic approaches for computing width parameters:

- Robertson-Seymour FPT-approximation
- Exact FPT via typical sequences

New approach: Local improvement of the decomposition

Open problems:

- Prove $2^{\Omega(k)}$ lower bound for treewidth under ETH ($2^{\Omega(\sqrt{k})}$ known)
- Treewidth 1.9-approximation in $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time?
- Improve either dependence on k or n in the $2^{\mathcal{O}(k^2)}n^4$ exact treewidth algorithm

Thank you!

Thank you!