Tuukka Korhonen

UNIVERSITY OF BERGEN

based on joint work with Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski, University of Warsaw

FPT Fest 2023 in the Honor of Mike Fellows

15 June 2023

• Setting: Design a data structure that maintains a graph *G* and supports the following operations:

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

Example: Connectivity (Query: Are *s* and *t* in the same component?)

1. Naive: $\mathcal{O}(m)$ worst-case time per operation

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $O(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81]

- Setting: Design a data structure that maintains a graph *G* and supports the following operations:
 - 1. Initialize(*n*): Create *G* as an empty *n*-vertex graph
 - 2. Insert(u, v): Insert edge between u and v
 - 3. Delete(u, v): Delete edge between u and v
 - 4. Query: Ask something about the graph G

Question

Can we support the operations faster than by re-computing from scratch every time?

- 1. Naive: $\mathcal{O}(m)$ worst-case time per operation
- 2. Union-find: $\mathcal{O}(\alpha(n))$ worst-case time, but deletions not allowed [Tarjan'75]
- 3. Link/cut tree: $O(\log n)$ amortized time when G is a forest [Sleator&Tarjan'81]
- 4. [Henzinger&King'99]: $\mathcal{O}(\log^3 n)$ amortized time

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

Previous results:

• "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: $O(\log n)$ worst-case time for treewidth-3, no edge deletions allowed

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: $O(\log n)$ worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: $O(\log n)$ worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d
- [Majewski,Pilipczuk,Sokołowski'23]: Oℓ(log n) amortized time for feedback vertex number ℓ

Question

Can we maintain a bounded-width tree decomposition of a bounded treewidth graph in the dynamic setting?

• Also, we would like to maintain any "finite-state" dynamic programming scheme on the tree decomposition (dynamic Courcelle's theorem)

- "Naive": $\mathcal{O}_k(n)$ worst-case time per operation [Bodlaender'96]
- [Bodlaender'93]: $O(\log n)$ worst-case time for treewidth-2 graphs
- [Cohen,Sairam,Tamassia,Vitter'93]: $O(\log n)$ worst-case time for treewidth-3, no edge deletions allowed
- [Dvořák,Kupec,Tůma'14]: $\mathcal{O}_d(1)$ worst-case time for treedepth-d
- [Majewski,Pilipczuk,Sokołowski'23]: Oℓ(log n) amortized time for feedback vertex number ℓ
- [Goranci,Räcke,Saranurak,Tan'21]: *n*^{o(1)} amortized time *n*^{o(1)}-approximate tree decomposition. Not suitable for dynamic programming.

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer *k* and an empty *n*-vertex graph *G*, and maintains a tree decomposition of *G* of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n} \log \log n})$, under the promise that the treewidth of *G* never exceeds *k*.

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer k and an empty n-vertex graph G, and maintains a tree decomposition of G of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n} \log \log n})$, under the promise that the treewidth of G never exceeds k.

Moreover

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer *k* and an empty *n*-vertex graph *G*, and maintains a tree decomposition of *G* of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n} \log \log n})$, under the promise that the treewidth of *G* never exceeds *k*.

Moreover

• the data structure can maintain the run of any tree automaton with evaluation time $\mathcal{O}_k(1)$ within the same running time

Summary of previous results

No non-trivial algorithms for maintaining tree decompositions of width f(k) for fully dynamic graphs of treewidth k > 3.

Theorem (This work)

There is a data structure that is initialized with an integer *k* and an empty *n*-vertex graph *G*, and maintains a tree decomposition of *G* of width at most 6k + 5 under edge additions and deletions in amortized update time $\mathcal{O}_k(2^{\sqrt{\log n} \log \log n})$, under the promise that the treewidth of *G* never exceeds *k*.

Moreover

- the data structure can maintain the run of any tree automaton with evaluation time $\mathcal{O}_k(1)$ within the same running time
- the data structure persists even when the treewidth of *G* exceeds *k*, in that case returning a marker "Treewidth too large" instead of maintaining the automaton

Corollary

Let *H* be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether *G* contains *H* as a minor.

Corollary

Let *H* be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether *G* contains *H* as a minor.

Proof:

Corollary

Let *H* be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether *G* contains *H* as a minor.

Proof:

• By the Grid Minor Theorem [Robertson&Seymour'85], there exists *k* so that every graph of treewidth > *k* contains *H* as a minor

Corollary

Let *H* be fixed planar graph. There is a dynamic algorithm with $\mathcal{O}_H(2^{\sqrt{\log n} \log \log n})$ amortized update time for maintaining whether *G* contains *H* as a minor.

Proof:

- By the Grid Minor Theorem [Robertson&Seymour'85], there exists *k* so that every graph of treewidth > *k* contains *H* as a minor
- Use dynamic treewidth data structure with this *k* and a tree automaton that tests for *H* as a minor by dynamic programming

The algorithm

The algorithm

• Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{O_k(\sqrt{\log n \log \log n})}$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2
- Maintain also dynamic programming tables directed towards the root

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$
- Edge addition: Add u and v to all bags on the path from their subtrees to the root, and re-compute dynamic programming tables in time O_k(d)

- Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth $d = 2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$
- [Bodlaender&Hagerup'98]: Any tree decomposition of width k can be turned into rooted binary tree decomposition of depth O(log n) and width 3k + 2
- Maintain also dynamic programming tables directed towards the root
- Edge deletion: Re-compute dynamic programming tables in time $\mathcal{O}_k(d)$
- Edge addition: Add u and v to all bags on the path from their subtrees to the root, and re-compute dynamic programming tables in time O_k(d)

• The width can become more than 6k + 5 on the green bags!

- The width can become more than 6k + 5 on the green bags!
- Solution: a *Refinement operation* to re-compute the tree decomposition on these bags

• Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq O(\log n)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq O(\log n)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq O(\log n)$
- Changes also other parts of the decomposition, but only improves the width, and the amortized amount of bags changed and the amortized complexity of the operation is $\mathcal{O}_k(|\mathcal{T}_{\text{pref}}|)$

- Refinement operation is given a *prefix* T_{pref} of the tree decomposition that contains all bags of width > 6k + 5
- Re-arranges the prefix into new prefix of width $\leq 6k + 5$ and depth $\leq O(\log n)$
- Changes also other parts of the decomposition, but only improves the width, and the amortized amount of bags changed and the amortized complexity of the operation is O_k(|T_{pref}|)
- Builds on the improvement operation of [K & Lokshtanov'23], also uses the dealternation lemma of [Bojańczyk&Pilipczuk'22] and Bodlaender-Hagerup-lemma

• Refinement operation can increase the depth by $\mathcal{O}(\log n)$

- Refinement operation can increase the depth by $\mathcal{O}(\log n)$
- Once depth becomes more than $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, need to reduce it

- Refinement operation can increase the depth by $\mathcal{O}(\log n)$
- Once depth becomes more than $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, need to reduce it
- Solution: A depth-reduction scheme by using the refinement operation and a potential function

• Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Idea: If depth too large, can decrease potential "for free"

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Idea: If depth too large, can decrease potential "for free"

Lemma

If depth > $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Idea: If depth too large, can decrease potential "for free"

Lemma

If depth > $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

\Rightarrow We can decrease potential in time propotional to the decrease

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Idea: If depth too large, can decrease potential "for free"

Lemma

If depth > $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

 \Rightarrow We can decrease potential in time propotional to the decrease

 \Rightarrow Amortized time complexity bounded by the potential

- Potential function of form $\phi(T) = \sum_{t \in V(T)} k^{10 \cdot |B_t|} \cdot \text{height}(t)$
- Idea: If depth too large, can decrease potential "for free"

Lemma

If depth > $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$, then exists prefix T_{pref} so that $\phi(T') < \phi(T) - \Omega(\phi(T_{\text{pref}}))$.

 \Rightarrow We can decrease potential in time propotional to the decrease

 \Rightarrow Amortized time complexity bounded by the potential

 \Rightarrow Can keep depth at most $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$ with amortized time complexity $2^{\mathcal{O}_k(\sqrt{\log n \log \log n})}$

O_k(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k

- *O_k*(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k
 - Can also maintain any dynamic programming on the tree decomposition

- *O_k*(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:

- *O_k*(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - Improve to $\mathcal{O}_k(\operatorname{poly} \log n)$

- *O_k*(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - Improve to $\mathcal{O}_k(\operatorname{poly} \log n)$
 - * Conjecture: Can be improved to $\mathcal{O}_k(\log n)$

- *O_k*(2^{√log n log log n}) amortized update time for maintaining a tree decomposition of width at most 6k + 5 of dynamic graph of treewidth ≤ k
 - Can also maintain any dynamic programming on the tree decomposition
- Open problems and directions:
 - Improve to $\mathcal{O}_k(\text{poly} \log n)$
 - * Conjecture: Can be improved to $\mathcal{O}_k(\log n)$
 - Dynamic k-DISJOINT PATHS on planar graphs?

Thank you!

Thank you!