FPT Algorithms for Treewidth via Local Improvement

Tuukka Korhonen

UNIVERSITY OF BERGEN

based on joint work with Daniel Lokshtanov¹

¹University of California Santa Barbara

Graph Decompositions: Small Width, Big Challenges

27 October 2022

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '13]: $2^{O(k)}n$ time 5-approximation

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '13]: $2^{\mathcal{O}(k)}n$ time 5-approximation

Theorem (K. & Lokshtanov '22+) There is a $2^{O(k^2)}n^4$ time algorithm for treewidth.

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '13]: $2^{\mathcal{O}(k)}n$ time 5-approximation

Theorem (K. & Lokshtanov '22+)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

[Bodlaender '93]: $2^{\mathcal{O}(k^3)}n$ time

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '13]: $2^{O(k)}n$ time 5-approximation

Theorem (K. & Lokshtanov '22+)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

[Bodlaender '93]: $2^{\mathcal{O}(k^3)}n$ time (based on $2^{\mathcal{O}(k^3)}n$ time dynamic programming of [Bodlaender & Kloks '91])

Theorem (K. '21)

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk '13]: $2^{O(k)}n$ time 5-approximation

Theorem (K. & Lokshtanov '22+)

There is a $2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth.

[Bodlaender '93]: $2^{\mathcal{O}(k^3)}n$ time (based on $2^{\mathcal{O}(k^3)}n$ time dynamic programming of [Bodlaender & Kloks '91])

Theorem (K. & Lokshtanov '22+)

There is a $k^{\mathcal{O}(k/\varepsilon)} n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth.

Outline

Outline

1. How to improve a tree decomposition

Suffices to solve the Subset treewidth problem

Outline

1. How to improve a tree decomposition

Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem

Algorithms for subset treewidth that then imply algorithms for treewidth

1. How to improve a tree decomposition

How to improve a tree decomposition

Suppose we have a tree decomposition T whose largest bag is W

Suppose we have a tree decomposition T whose largest bag is W

Goal:

Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W| while not increasing the width of *T*, or

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of *T*, or
- 2. conclude that T is (approximately) optimal

Suppose we have a tree decomposition T whose largest bag is W

Goal:

- 1. either decrease the number of bags of size |W| while not increasing the width of *T*, or
- 2. conclude that T is (approximately) optimal

Repeat for $\mathcal{O}(\mathsf{tw}(G) \cdot n)$ iterations to get an (approximately) optimal tree decomposition

Let W be a largest bag of T

Let W be a largest bag of T

Want to find:

Let W be a largest bag of T

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

Let W be a largest bag of T

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

• a set X with $W \subseteq X \subseteq V(G)$, and

• a tree decomposition of torso(X) of width $\leq |W| - 2$

Torso?

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Make neighborhoods of components of G \ X into cliques

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V(G) \ X

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Observations:

• If T is not optimal, then such X exists by taking X = V(G)

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

- If T is not optimal, then such X exists by taking X = V(G)
- Freedom to choose $X \subset V(G)$

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Big-leaf formulation:

• Find a tree decomposition of *G* whose internal bags have size $\leq |W| - 1$ and cover *W*, but leaf bags can be arbitrarily large

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

• a set X with $W \subseteq X \subseteq V(G)$, and

• a tree decomposition T_X of torso(X) of width $\leq |W| - 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

Let W be a largest bag of T

SUBSET TREEWIDTH

Have:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition T_X of torso(X) of width $\leq |W| 2$

• Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag

- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- This holds if T_X is preprocessed so that its every bag is linked into W

• Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag

This holds if T_X is preprocessed so that its every bag is linked into W
 k^{O(1)}n⁴ time here

- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- This holds if T_X is preprocessed so that its every bag is linked into W
 k^{O(1)}n⁴ time here
- Proofs by Bellenbaum-Diestel type arguments

- Want: The copy of a bag in $(T \cap N[C_i])^{N(C_i)}$ is not larger than the original bag
- This holds if T_X is preprocessed so that its every bag is linked into W
 k^{O(1)}n⁴ time here
- Proofs by Bellenbaum-Diestel type arguments
- (actually needs a bit stronger condition than linkedness for improvement)

Subset treewidth for 2-approximation

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

Subset treewidth for 2-approximation

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

If $|W| \ge 2 \cdot tw(G) + 3$, then such X and a decomposition of shape $K_{1,3}$ exists

Subset treewidth for 2-approximation

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

- a set X with $W \subseteq X \subseteq V(G)$, and
- a tree decomposition of torso(X) of width $\leq |W| 2$

If $|W| \ge 2 \cdot tw(G) + 3$, then such X and a decomposition of shape $K_{1,3}$ exists

• Where (S, C_1, C_2, C_3) is a balanced 3-way separation of G and $X = S \cup W$

Subset treewidth for exact algorithms

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

(actually if and only if)

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k + 2

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for subset treewidth, then there is an $f(k) \cdot n^{\mathcal{O}(1)}$ time algorithm for treewidth with the same function *f*.

(actually if and only if)

 $2^{\mathcal{O}(k^2)}n^2$ time algorithm for subset treewidth $\rightarrow 2^{\mathcal{O}(k^2)}n^4$ time algorithm for treewidth

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth

• Idea: Can afford to increase treewidth by εk

PARTITIONED SUBSET TREEWIDTH

Input: Graph *G*, integer *k*, set of vertices $W \subseteq V(G)$ with |W| = k+2 that is partitioned into *t* cliques W_1, \ldots, W_t

Output: Set $X \subseteq V(G)$ with $W \subseteq X$ and tree decomposition of torso(X) of width $\leq k$ or that the treewidth of G is > k

Theorem

If there is an $f(k, t) \cdot n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth, then there is a $f(\mathcal{O}(k), \mathcal{O}(1/\varepsilon)) \cdot k^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth with the same function *f*.

 $k^{\mathcal{O}(kt)}n^2$ time algorithm for partitioned subset treewidth $\rightarrow k^{\mathcal{O}(k/\varepsilon)}n^4$ time $(1 + \varepsilon)$ -approximation algorithm for treewidth

- Idea: Can afford to increase treewidth by εk
- Any set W can be partitioned into t = O(1/ε) sets W₁,..., W_t so that making them into cliques increases treewidth by at most ε|W|

2. Solving the subset treewidth problem

Solving the subset treewidth problem

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time algorithm for partitioned subset treewidth

(this is also a $k^{\mathcal{O}(k^2)} n^{\mathcal{O}(1)}$ time algorithm for subset treewidth)

Setting:

• Input: Graph *G*, *t* terminal cliques W_1, \ldots, W_t , and an integer *k*

Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^{t} W_i$ and a tree decomposition of torso(X) of width $\leq k$

Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^{t} W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^{t} W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Let S be a non-trivial minimum size (W_i, W_j) -separator

Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^{t} W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Let *S* be a non-trivial minimum size (W_i , W_j)-separator Make *S* into a terminal clique and solve both sides independently

Setting:

- Input: Graph G, t terminal cliques W_1, \ldots, W_t , and an integer k
- Goal: Find $X \supseteq \bigcup_{i=1}^{t} W_i$ and a tree decomposition of torso(X) of width $\leq k$

Reduction rule:

Let *S* be a non-trivial minimum size (W_i , W_j)-separator Make *S* into a terminal clique and solve both sides independently

Branching for partitioned subset treewidth

• Now terminal cliques strongly linked into each other

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique
- Increase W₂ by guessing an important separator

- Now terminal cliques strongly linked into each other
- Goal: To make progress, increase the size/flow of some terminal clique
- Increase W₂ by guessing an important separator

Analysis of branching

 Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator

Analysis of branching

- Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator
- Sum of sizes/flows of terminal cliques at most (k + 1)t, so branching depth at most kt

Analysis of branching

- Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an important separator
- Sum of sizes/flows of terminal cliques at most (k + 1)t, so branching depth at most kt
- To get $k^{\mathcal{O}(kt)} n^{\mathcal{O}(1)}$ time, need also an important separator hitting set lemma

Open questions:

Open questions:

• Is there $2^{\mathcal{O}(k^{1.999})} n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?

Open questions:

- Is there $2^{\mathcal{O}(k^{1.999})}n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?
- When t = O(1), is there 2^{O(k)}n^{O(1)} time algorithm for partitioned subset treewidth?

Open questions:

- Is there $2^{\mathcal{O}(k^{1.999})}n^{\mathcal{O}(1)}$ time algorithm for subset treewidth?
- When t = O(1), is there 2^{O(k)}n^{O(1)} time algorithm for partitioned subset treewidth?
- How much can the *n*⁴ factor be optimized?

Thank you!

Thank you!

Tuukka Korhonen

Algorithms for Treewidth via Local Improvement