
FPT Algorithms for Treewidth via Local Improvement

Tuukka Korhonen

based on joint work with
Daniel Lokshtanov1

1University of California Santa Barbara

Graph Decompositions: Small Width, Big Challenges

27 October 2022

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

New Results on Computing Treewidth

Theorem (K. ’21)

There is a 2O(k)n time 2-approximation algorithm for treewidth.

[Bodlaender, Drange, Dregi, Fomin, Lokshtanov & Pilipczuk ’13]: 2O(k)n time
5-approximation

Theorem (K. & Lokshtanov ’22+)

There is a 2O(k2)n4 time algorithm for treewidth.

[Bodlaender ’93]: 2O(k3)n time

(based on 2O(k3)n time dynamic programming of [Bodlaender & Kloks ’91])

Theorem (K. & Lokshtanov ’22+)

There is a kO(k/ε)n4 time (1 + ε)-approximation algorithm for treewidth.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Outline

1. How to improve a tree decomposition
Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem
Algorithms for subset treewidth that then imply algorithms for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Outline

1. How to improve a tree decomposition
Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem
Algorithms for subset treewidth that then imply algorithms for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Outline

1. How to improve a tree decomposition
Suffices to solve the Subset treewidth problem

2. Solving the subset treewidth problem
Algorithms for subset treewidth that then imply algorithms for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

1. How to improve a tree decomposition

How to improve a tree decomposition

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or
2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:

1. either decrease the number of bags of size |W | while not increasing the
width of T , or

2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or

2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or
2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Setting
Suppose we have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W | while not increasing the

width of T , or
2. conclude that T is (approximately) optimal

Repeat for O(tw(G) · n) iterations to get an (approximately) optimal tree
decomposition

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:

a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and

a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T

SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

G

X

Make neighborhoods of components of G \ X into cliques

Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Torso?

torso(X)

X

Make neighborhoods of components of G \ X into cliques
Delete V (G) \ X

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:

If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Observations:
If T is not optimal, then such X exists by taking X = V (G)

Freedom to choose X ⊂ V (G)

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size ≤ |W | − 1 and
cover W , but leaf bags can be arbitrarily large

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

Big-leaf formulation:

Find a tree decomposition of G whose internal bags have size ≤ |W | − 1 and
cover W , but leaf bags can be arbitrarily large

G
W = {w1, w2, w3, w4}

w1

w2

w3

w4

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

W

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Have:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition TX of torso(X) of width ≤ |W | − 2

Improving T :

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T
Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W

I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Does T improve?

WX

C1
C2

C3

⇒ N(C1)

N(C2) N(C3)

TX

(T ∩N [C1])
N(C1)

(T ∩N [C2])
N(C2)

(T ∩N [C3])
N(C3)

T

Want: The copy of a bag in (T ∩ N[Ci])
N(Ci) is not larger than the original bag

This holds if TX is preprocessed so that its every bag is linked into W
I kO(1)n4 time here

Proofs by Bellenbaum-Diestel type arguments

(actually needs a bit stronger condition than linkedness for improvement)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for 2-approximation

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

If |W | ≥ 2 · tw(G) + 3, then such X and a decomposition of shape K1,3 exists

Where (S,C1,C2,C3) is a balanced 3-way separation of G and X = S ∪W

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for 2-approximation

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

If |W | ≥ 2 · tw(G) + 3, then such X and a decomposition of shape K1,3 exists

S

(W ∩ C3) ∪ S

(W ∩ C1) ∪ S (W ∩ C2) ∪ S

Where (S,C1,C2,C3) is a balanced 3-way separation of G and X = S ∪W

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for 2-approximation

Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
a set X with W ⊆ X ⊆ V (G), and
a tree decomposition of torso(X) of width ≤ |W | − 2

If |W | ≥ 2 · tw(G) + 3, then such X and a decomposition of shape K1,3 exists

S

(W ∩ C3) ∪ S

(W ∩ C1) ∪ S (W ∩ C2) ∪ S

Where (S,C1,C2,C3) is a balanced 3-way separation of G and X = S ∪W

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for exact algorithms

SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k + 2

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k) · nO(1) time algorithm for subset treewidth, then there is an
f (k) · nO(1) time algorithm for treewidth with the same function f .

(actually if and only if)

2O(k2)n2 time algorithm for subset treewidth→ 2O(k2)n4 time algorithm for treewidth

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk

Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Subset treewidth for approximation schemes

PARTITIONED SUBSET TREEWIDTH

Input: Graph G, integer k , set of vertices W ⊆ V (G) with |W | = k +2 that is partitioned
into t cliques W1, . . . ,Wt

Output: Set X ⊆ V (G) with W ⊆ X and tree decomposition of torso(X) of width ≤ k
or that the treewidth of G is > k

Theorem

If there is an f (k , t) · nO(1) time algorithm for partitioned subset treewidth, then there is
a f (O(k),O(1/ε)) · kO(k)nO(1) time (1 + ε)-approximation algorithm for treewidth with
the same function f .

kO(kt)n2 time algorithm for partitioned subset treewidth→ kO(k/ε)n4 time
(1 + ε)-approximation algorithm for treewidth

Idea: Can afford to increase treewidth by εk
Any set W can be partitioned into t = O(1/ε) sets W1, . . . ,Wt so that making
them into cliques increases treewidth by at most ε|W |

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch kO(kt)nO(1) time algorithm for partitioned subset treewidth

(this is also a kO(k2)nO(1) time algorithm for subset treewidth)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch kO(kt)nO(1) time algorithm for partitioned subset treewidth

(this is also a kO(k2)nO(1) time algorithm for subset treewidth)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

2. Solving the subset treewidth problem

Solving the subset treewidth problem

Goal: Sketch kO(kt)nO(1) time algorithm for partitioned subset treewidth

(this is also a kO(k2)nO(1) time algorithm for subset treewidth)

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj)-separator
Make S into a terminal clique and solve both sides independently

G

W1

W2

W3

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj)-separator
Make S into a terminal clique and solve both sides independently

G

W1

W2

W3

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:

Let S be a non-trivial minimum size (Wi ,Wj)-separator
Make S into a terminal clique and solve both sides independently

G

W1

W2

W3

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj)-separator

Make S into a terminal clique and solve both sides independently

G

W1

W2

W3
S

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj)-separator
Make S into a terminal clique and solve both sides independently

G

W1

W2

W3
S

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Solving subset treewidth

Setting:

Input: Graph G, t terminal cliques W1, . . . ,Wt , and an integer k

Goal: Find X ⊇
⋃t

i=1 Wi and a tree decomposition of torso(X) of width ≤ k

Reduction rule:
Let S be a non-trivial minimum size (Wi ,Wj)-separator
Make S into a terminal clique and solve both sides independently

W1

S

W2

W3
S

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

Leaf bag
.

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

Leaf bag
Parent bag

Forget-vertex

Important separator

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Branching for partitioned subset treewidth

Now terminal cliques strongly linked into each other

Goal: To make progress, increase the size/flow of some terminal clique

Increase W2 by guessing an important separator

G

W1

W2

W3

W2

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Analysis of branching

W1

W2

W3

W2

W1

W2

W3

⇒

Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an
important separator

Sum of sizes/flows of terminal cliques at most (k + 1)t , so branching depth at
most kt

To get kO(kt)nO(1) time, need also an important separator hitting set lemma

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Analysis of branching

W1

W2

W3

W2

W1

W2

W3

⇒

Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an
important separator

Sum of sizes/flows of terminal cliques at most (k + 1)t , so branching depth at
most kt

To get kO(kt)nO(1) time, need also an important separator hitting set lemma

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Analysis of branching

W1

W2

W3

W2

W1

W2

W3

⇒

Increased the size/flow of a leaf terminal clique by guessing a forget-vertex and an
important separator

Sum of sizes/flows of terminal cliques at most (k + 1)t , so branching depth at
most kt

To get kO(kt)nO(1) time, need also an important separator hitting set lemma

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Conclusion

Open questions:

Is there 2O(k1.999)nO(1) time algorithm for subset treewidth?

When t = O(1), is there 2O(k)nO(1) time algorithm for partitioned subset
treewidth?

How much can the n4 factor be optimized?

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Conclusion

Open questions:

Is there 2O(k1.999)nO(1) time algorithm for subset treewidth?

When t = O(1), is there 2O(k)nO(1) time algorithm for partitioned subset
treewidth?

How much can the n4 factor be optimized?

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Conclusion

Open questions:

Is there 2O(k1.999)nO(1) time algorithm for subset treewidth?

When t = O(1), is there 2O(k)nO(1) time algorithm for partitioned subset
treewidth?

How much can the n4 factor be optimized?

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Conclusion

Open questions:

Is there 2O(k1.999)nO(1) time algorithm for subset treewidth?

When t = O(1), is there 2O(k)nO(1) time algorithm for partitioned subset
treewidth?

How much can the n4 factor be optimized?

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

Thank you!

Thank you!

Tuukka Korhonen Algorithms for Treewidth via Local Improvement

