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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

[i,j, K& i, K k m]
Lmn
[1.n. o]
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Ky has treewidth n — 1
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@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1
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@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1
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@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag
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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1
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@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

[i,j, K& i, K k m]
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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

e Width = max bag size —1 [i.j, Kt i, k-t k m]
I, m, n
I,n, o
Width 2
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Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

e Width = max bag size —1

[Robertson & Seymour 84, Arnborg & Proskurowski '89,
Bertele & Brioschi '72, Halin '76]

Width 2
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Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 20 n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2°0) n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]
Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir'10,FHL08,FTV’15,FLS’18,BF’21,BF'22]
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e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement
o Repeatedly re-arrange the tree decomposition to make the largest bag smaller
e New ideas both in the graph-theoretic part of the re-arrangement and in the efficient

implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokotowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth < k with amortized update time 7(k) - n°‘"),
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New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement
o Repeatedly re-arrange the tree decomposition to make the largest bag smaller
e New ideas both in the graph-theoretic part of the re-arrangement and in the efficient

implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokotowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth < k with amortized update time 7(k) - n°‘"),

(first non-trivial algorithm in this setting for k > 3)
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1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)
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Plan

Plan:
1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech
Nadara, Michat Pilipczuk & Marek Sokotowski)
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Local improvement for FPT exact treewidth

Local improvement for FPT exact treewidth

(joint work with Daniel Lokshtanov)
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Setting
We have a tree decomposition T whose largest bag is W
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Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or
2. conclude that T is optimal

Repeat for O(tw(G) - n) iterations to get an optimal tree decomposition
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Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or
2. conclude that T is optimal

Repeat for O(tw(G) - n) iterations to get an optimal tree decomposition

(by [Bodlaender'93] we can assume to start with a decomposition of width O(tw(G)))

O
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Improving a tree decomposition

Let W be a largest bag of T
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
e aset X with W C X C V(G), and
@ atree decomposition of torso(X) of width < |W| -2

Torso?

G
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Torso?

e Make neighborhoods of components of G\ X into cliques
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Torso?

e Make neighborhoods of components of G\ X into cliques
e Delete V(G) \ X
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Improving a tree decomposition
Let W be alargest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Observations:
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
e aset X with W C X C V(G), and
@ atree decomposition of torso(X) of width < |W| -2

Observations:

W1 G

W = {wh ws, W3, 'UJ4}
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Improving a tree decomposition
Let W be alargest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Big-leaf formulation:

&1 G
‘A

W = {'LUl, W, W3, w4}
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Big-leaf formulation:

@ Find a tree decomposition of G whose internal bags have size < |W| and cover W,
but leaf bags can be arbitrarily large

== {wla w2, W3, w4}
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and
o atree decomposition Ty of torso(X) of width < |W| -2
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Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and
@ atree decomposition Tx of torso(X) of width < |[W| -2

Improving T:

O
T
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Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and

e atree decomposition Ty of torso(X) of width < |W| -2

Improving T:

X Tx

C Cs &
O
T
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Improving a tree decomposition

Let W be a largest bag of T
Have:

SUBSET TREEWIDTH

e aset X with W C X C V(G), and
@ a tree decomposition Tx of torso(X) of width < |W| —

Improving T:

Tuukka Korhonen

. QQ

ol

(T N N[Cy)N D

:

(T N N[Cy])N(Cs)

(TN N[V
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Constructing (T N N[C;])N(©)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N[C/]] so that N(C;) is
in the root
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct L L
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

T
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N[C/]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[C]]) u BN(©)
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|[C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (Bn N[C)]) u BMS)

What if |B| > |B|?
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct L L
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)

What if |B/| > |B|?

Then (N(C;)\ BN©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

B

-
T
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)

What if |B/| > |B|?

Then (N(C;)\ BM©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

= Create new X by “pushing” N(C;) forward
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Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)
What if |B| > |B|?

Then (N(C;)\ BM©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

= Create new X by “pushing” N(C;) forward
Decreases | X|
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Result

Tx

® O

€

o

S

(T N[C)NE

(T N N[C3])M(@

(T N N[Cy])MED

o By repeatedly applying the pushing argument, we achieve:
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Result

X Tx
= fe)

- C: ®
TO g e e
T (T A N[C)NED (T N N[Cy])N (@

(T N N[Cy))N(E)

o By repeatedly applying the pushing argument, we achieve:
e The copy B’ of abagin (T N N[C;])N(©) is not larger than the original bag B
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Result

X ) Q\Q

o Cy @
JO dule) &
(TN N[Cy]) N(C ) (Tn N[C’g])N(Cﬁ)
g (T N

o By repeatedly applying the pushing argument, we achieve:
e The copy B’ of abagin (T N N[C;])N(©) is not larger than the original bag B

» n*inthe running time comes from here

o Proof idea generalization of proofs of existence of lean tree decompositions [Thomas 90,
Bellenbaum & Diestel '02]
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Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH
Input: Graph G, integer k, set of vertices W C V(G) with |W| =k + 2

Output: Set X C V(G) with W C X and tree decomposition of torso(X) of width < k or that the
treewidth of Gis > k
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Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH
Input: Graph G, integer k, set of vertices W C V(G) with |W| =k + 2

Output: Set X C V(G) with W C X and tree decomposition of torso(X) of width < k or that the
treewidth of Gis > k

Theorem

If there is an f(k) - n(") time algorithm for subset treewidth, then there is an f(k) - (') time
algorithm for treewidth with the same function f.

20(K) 12 time algorithm for subset treewidth — 20(K) n* time algorithm for treewidth
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Tuukka Korhonen New methods in FPT algorithms for treewidth



How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

Tuukka Korhonen New methods in FPT algorithms for treewidth



How to solve subset treewidth?

Techniques:
1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New methods in FPT algorithms for treewidth 17/20



How to solve subset treewidth?

Techniques:
1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Forget-vertex
Parent bag

Important separator
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Local improvement in dynamic treewidth

Local improvement in dynamic treewidth

joint work with Konrad Majewski, Wojciech Nadara, Michat Pilipczuk & Marek Sokotowski
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Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")
e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
o Increases width! But only in a subtree of size O(depth) = n°(")
e Refinement operation: Rebuild a subtree T in amortized time f(k) - | T|
e Re-arranges given subtree into depth O(log n) and width < 6k + 5

o Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup 98],
and the “dealternation lemma” [Bojanczyk & Pilipczuk '22]
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Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time
Open problems:

o Prove 22 jower bound for treewidth under ETH (22(V5) known)
e Treewidth 1.9-approximation in 2°%) n®(") time?
e Dynamic treewidth in amortized f(k) - polylog(n) time?

Thank you!
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