Tutorial: New methods in FPT algorithms for treewidth

Tuukka Korhonen

UNIVERSITY OF BERGEN

IPEC 2023

7 September 2023

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree

» Trees have treewidth 1
» The example graph has treewidth 2

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1
» The example graph has treewidth 2
» The n x n-grid has treewidth n

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

K, has treewidth n — 1

vvyYyy

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

[i,j, K& i, K k m]
Lmn
[1.n. o]

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:

[i,j, K& i, K k m]

LX)
.ol

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag

[i,j, K& i, K k m]

LX)
ool

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:

1. every vertex is in some bag
2. every edge is in some bag

[i,j, K& i, K k m]

LX)

l,n, o

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

[i,j, K& i, K k m]

LX)

I,n,o

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

e Width = max bag size —1 [i.j, Kt i, k-t k m]
I, m, n
I,n, o
Width 2

Tuukka Korhonen New methods in FPT algorithms for treewidth

Treewidth

@ Measures how close a graph is to a tree
» Trees have treewidth 1

The example graph has treewidth 2

The n x n-grid has treewidth n

Ky has treewidth n — 1

vvyYyy

@ Treewidth = minimum width of a tree decomposition

o Tree decomposition is a tree of bags so that:
1. every vertex is in some bag
2. every edge is in some bag
3. bags containing a vertex form a connected subtree

e Width = max bag size —1

[Robertson & Seymour 84, Arnborg & Proskurowski '89,
Bertele & Brioschi '72, Halin '76]

Width 2

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth

Computing treewidth

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86) J

There is a 2°0) n? time 4-approximation algorithm for treewidth.

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 2°0) n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 2°0) n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 2°0) n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2°0) n time 5-approximation for treewidth.

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 20 n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2°0) n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: Classical results

Theorem (Robertson & Seymour, Graph minors XIIl, '86)

There is a 20 n? time 4-approximation algorithm for treewidth.

Theorem (Bodlaender '93)

There is a 2°¢*) n time algorithm for treewidth.

Using dynamic programming of [Bodlaender & Kloks '91]

Theorem (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk ’13)

There is a 2°0) n time 5-approximation for treewidth.

Builds on both [Robertson-Seymour’86] and [Bodlaender’93]
Many more: [ACP’87,MT’91,Lagergren’96,Reed’92,Amir'10,FHL08,FTV’15,FLS’18,BF’21,BF'22]

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: New results

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: New results

Theorem (K. ’21) J

There is a 2°0) 1 time 2-approximation for treewidth

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: New results

Theorem (K. ’21)

There is a 2°0) 1 time 2-approximation for treewidth J

Compare to: 290 1 time 5-approximation of [BDDFLP *13]

Tuukka Korhonen New methods in FPT algorithms for treewidth

Computing treewidth: New results

Theorem (K. ’21)

There is a 2°0) n time 2-approximation for treewidth

Compare to: 290 1 time 5-approximation of [BDDFLP *13]

@ Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

Tuukka Korhonen New methods in FPT algorithms for treewidth

5/20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2°0) n time 2-approximation for treewidth

Compare to: 290 1 time 5-approximation of [BDDFLP *13]
@ Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

o Improves the 29 from ~ 240K to 211K

Tuukka Korhonen New methods in FPT algorithms for treewidth

5/20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2°0) n time 2-approximation for treewidth

Compare to: 290 1 time 5-approximation of [BDDFLP *13]
@ Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

o Improves the 29 from ~ 240K to 211K

Theorem (K. & Lokshtanov ’23)

There is a 29K n* time algorithm for treewidth.

Tuukka Korhonen New methods in FPT algorithms for treewidth

5/20

Computing treewidth: New results

Theorem (K. ’21)

There is a 2°0) n time 2-approximation for treewidth

Compare to: 2°) 1 time 5-approximation of [BDDFLP '13]
@ Breaks the 3-approximation barrier of Robertson-Seymour-type algorithms

o Improves the 29 from ~ 240K to 211K

Theorem (K. & Lokshtanov ’23)

There is a 29K n* time algorithm for treewidth.

Compare to: 20() n time algorithm of [Bodlaender’93]

Tuukka Korhonen New methods in FPT algorithms for treewidth

5/20

New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement

Tuukka Korhonen New methods in FPT algorithms for treewidth

6/20

New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement

o Repeatedly re-arrange the tree decomposition to make the largest bag smaller

Tuukka Korhonen New methods in FPT algorithms for treewidth

6/20

New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement
o Repeatedly re-arrange the tree decomposition to make the largest bag smaller

e New ideas both in the graph-theoretic part of the re-arrangement and in the efficient
implementation, with further applications:

Tuukka Korhonen New methods in FPT algorithms for treewidth

6/20

New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement
o Repeatedly re-arrange the tree decomposition to make the largest bag smaller
e New ideas both in the graph-theoretic part of the re-arrangement and in the efficient

implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokotowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth < k with amortized update time 7(k) - n°‘"),

Tuukka Korhonen New methods in FPT algorithms for treewidth 6/20

New method: Local improvement

e In [K'21],[K.&Lokshtanov’'23] new method for treewidth: Local improvement
o Repeatedly re-arrange the tree decomposition to make the largest bag smaller
e New ideas both in the graph-theoretic part of the re-arrangement and in the efficient

implementation, with further applications:

Theorem (K., Majewski, Nadara, Pilipczuk & Sokotowski '23)

There is a data structure for maintaining a tree decomposition of width O(k) for a fully
dynamic graph of treewidth < k with amortized update time 7(k) - n°‘"),

(first non-trivial algorithm in this setting for k > 3)

Tuukka Korhonen New methods in FPT algorithms for treewidth 6/20

Plan

Plan:

s in FPT algorithms for treewi

Plan

Plan:

1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

Tuukka Korhonen New methods in FPT algorithms for treewidth

Plan

Plan:
1. Local improvement for FPT exact treewidth (joint work with Daniel Lokshtanov)

2. Local improvement in dynamic treewidth (joint work with Konrad Majewski, Wojciech
Nadara, Michat Pilipczuk & Marek Sokotowski)

Tuukka Korhonen New methods in FPT algorithms for treewidth

Local improvement for FPT exact treewidth

Local improvement for FPT exact treewidth

(joint work with Daniel Lokshtanov)

Tuukka Korhonen New methods in FPT algorithms for treewidth

8/20

Setting
We have a tree decomposition T whose largest bag is W

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

Setting
We have a tree decomposition T whose largest bag is W

Goal:

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

9/20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or

2. conclude that T is optimal

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

9/20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or
2. conclude that T is optimal

Repeat for O(tw(G) - n) iterations to get an optimal tree decomposition

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

9/20

Setting
We have a tree decomposition T whose largest bag is W

Goal:
1. either decrease the number of bags of size |W| while not increasing the width of T, or
2. conclude that T is optimal

Repeat for O(tw(G) - n) iterations to get an optimal tree decomposition

(by [Bodlaender'93] we can assume to start with a decomposition of width O(tw(G)))

O

Tuukka Korhonen New methods in FPT algorithms for treewidth

9/20

Improving a tree decomposition

Let W be a largest bag of T

Tuukka Korhonen New methods in FPT algorithms for treewidth

Improving a tree decomposition

Let W be a largest bag of T
Want to find:

Tuukka Korhonen New methods in FPT algorithms for treewidth

Improving a tree decomposition

Let W be a largest bag of T
Want to find:
e aset X with W C X C V(G), and

Tuukka Korhonen New methods in FPT algorithms for treewidth

Improving a tree decomposition

Let W be a largest bag of T
Want to find:
e aset X with W C X C V(G), and
@ a tree decomposition of torso(X) of width < |W| -2

Tuukka Korhonen New methods in FPT algorithms for treewidth 10/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Tuukka Korhonen New methods in FPT algorithms for treewidth 10/20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
e aset X with W C X C V(G), and
@ atree decomposition of torso(X) of width < |W| -2

Torso?

G

Tuukka Korhonen New methods in FPT algorithms for treewidth 10/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Torso?

e Make neighborhoods of components of G\ X into cliques

Tuukka Korhonen New methods in FPT algorithms for treewidth

10/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Torso?

e Make neighborhoods of components of G\ X into cliques
e Delete V(G) \ X

Tuukka Korhonen New methods in FPT algorithms for treewidth 10/20

Improving a tree decomposition
Let W be alargest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Observations:

Tuukka Korhonen New methods in FPT algorithms for treewidth 11/20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH

Want to find:
e aset X with W C X C V(G), and
@ atree decomposition of torso(X) of width < |W| -2

Observations:

W1 G

W = {wh ws, W3, 'UJ4}

Tuukka Korhonen New methods in FPT algorithms for treewidth 11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ atree decomposition of torso(X) of width < |W| -2

Observations:
@ If T is not optimal, then such X exists by taking X = V(G)
@ Freedom to choose X C V(G)

Tuukka Korhonen New methods in FPT algorithms for treewidth

11/20

Improving a tree decomposition
Let W be alargest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Big-leaf formulation:

&1 G
‘A

W = {'LUl, W, W3, w4}

Tuukka Korhonen New methods in FPT algorithms for treewidth 12/20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Want to find:

e aset X with W C X C V(G), and

@ a tree decomposition of torso(X) of width < |W| -2

Big-leaf formulation:

@ Find a tree decomposition of G whose internal bags have size < |W| and cover W,
but leaf bags can be arbitrarily large

== {wla w2, W3, w4}

Tuukka Korhonen New methods in FPT algorithms for treewidth 12/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and
o atree decomposition Ty of torso(X) of width < |W| -2

Tuukka Korhonen New methods in FPT algorithms for treewidth 13/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and
@ atree decomposition Tx of torso(X) of width < |[W| -2

Improving T:

O
T

Tuukka Korhonen New methods in FPT algorithms for treewidth 13/20

Improving a tree decomposition

Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and
@ atree decomposition Ty of torso(X) of width < |W| -2

Improving T:

Tuukka Korhonen New methods in FPT algorithms for treewidth

13/20

Improving a tree decomposition
Let W be a largest bag of T SUBSET TREEWIDTH
Have:

e aset X with W C X C V(G), and

e atree decomposition Ty of torso(X) of width < |W| -2

Improving T:

X Tx

C Cs &
O
T

Tuukka Korhonen New methods in FPT algorithms for treewidth 13/20

Improving a tree decomposition

Let W be a largest bag of T
Have:

SUBSET TREEWIDTH

e aset X with W C X C V(G), and
@ a tree decomposition Tx of torso(X) of width < |W| —

Improving T:

Tuukka Korhonen

. QQ

ol

(T N N[Cy)N D

:

(T N N[Cy])N(Cs)

(TN N[V

New methods in FPT algorithms for treewidth

13/20

Constructing (T N N[C;])N(©)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N[C/]] so that N(C;) is
in the root

Tuukka Korhonen New methods in FPT algorithms for treewidth

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct L L
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

T

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|[C;]] so that N(C;) is
in the root

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N[C/]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[C]]) u BN(©)

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|[C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (Bn N[C)]) u BMS)

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|[C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (Bn N[C)]) u BMS)

What if |B| > |B|?

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct L L
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)

What if |B/| > |B|?

Then (N(C;)\ BN©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

B

-
T

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)

What if |B/| > |B|?

Then (N(C;)\ BM©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

= Create new X by “pushing” N(C;) forward

Tuukka Korhonen New methods in FPT algorithms for treewidth 14/20

Constructing (T N N[C;])N(C)

Goal: For each component C; of G\ X, construct
a tree decomposition of G[N|C;]] so that N(C;) is
in the root

Replace each bag B by:
B' = (BN N[Ci]) u BN(©)
What if |B| > |B|?

Then (N(C;)\ BM©))U(B\ C) is a separator
between N(C;) and W of size < |N(C;))|

= Create new X by “pushing” N(C;) forward
Decreases | X|

Tuukka Korhonen New methods in FPT algorithms for treewidth

14/20

Result

Tx

® O

€

o

S

(T N[C)NE

(T N N[C3])M(@

(T N N[Cy])MED

o By repeatedly applying the pushing argument, we achieve:

Tuukka Korhonen New methods in FPT algorithms for treewidth

15/20

Result

X Tx
= fe)

- C: ®
TO g e e
T (T A N[C)NED (T N N[Cy])N (@

(T N N[Cy))N(E)

o By repeatedly applying the pushing argument, we achieve:
e The copy B’ of abagin (T N N[C;])N(©) is not larger than the original bag B

Tuukka Korhonen New methods in FPT algorithms for treewidth 15/20

Result

X) Q\Q

o Cy @
JO dule) &
(TN N[Cy]) N(C) (Tn N[Cg])N(Cﬁ)
g (T N

o By repeatedly applying the pushing argument, we achieve:
e The copy B’ of abagin (T N N[C;])N(©) is not larger than the original bag B

» n*inthe running time comes from here

Tuukka Korhonen New methods in FPT algorithms for treewidth 15/20

Result

X) Q\Q

o Cy @
JO dule) &
(TN N[Cy]) N(C) (Tn N[C’g])N(Cﬁ)
g (T N

o By repeatedly applying the pushing argument, we achieve:
e The copy B’ of abagin (T N N[C;])N(©) is not larger than the original bag B

» n*inthe running time comes from here

o Proof idea generalization of proofs of existence of lean tree decompositions [Thomas 90,
Bellenbaum & Diestel '02]

Tuukka Korhonen New methods in FPT algorithms for treewidth 15/20

Subset treewidth for exact FPT algorithms

Tuukka Korhonen New methods in FPT algorithms for treewidth

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH
Input: Graph G, integer k, set of vertices W C V(G) with |W| =k + 2

Output: Set X C V(G) with W C X and tree decomposition of torso(X) of width < k or that the
treewidth of Gis > k

Tuukka Korhonen New methods in FPT algorithms for treewidth 16/20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH
Input: Graph G, integer k, set of vertices W C V(G) with |W| =k + 2

Output: Set X C V(G) with W C X and tree decomposition of torso(X) of width < k or that the
treewidth of Gis > k

Theorem

If there is an f(k) - n(") time algorithm for subset treewidth, then there is an f(k) - (') time
algorithm for treewidth with the same function f.

Tuukka Korhonen New methods in FPT algorithms for treewidth 16/20

Subset treewidth for exact FPT algorithms

SUBSET TREEWIDTH
Input: Graph G, integer k, set of vertices W C V(G) with |W| =k + 2

Output: Set X C V(G) with W C X and tree decomposition of torso(X) of width < k or that the
treewidth of Gis > k

Theorem

If there is an f(k) - n(") time algorithm for subset treewidth, then there is an f(k) - (') time
algorithm for treewidth with the same function f.

20(K) 12 time algorithm for subset treewidth — 20(K) n* time algorithm for treewidth

Tuukka Korhonen New methods in FPT algorithms for treewidth 16/20

How to solve subset treewidth?

Tuukka Korhonen New methods in FPT algorithms for treewidth

How to solve subset treewidth?

Techniques:

Tuukka Korhonen New methods in FPT algorithms for treewidth

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06]

Tuukka Korhonen New methods in FPT algorithms for treewidth

How to solve subset treewidth?

Techniques:

1. Branching on important separators [Marx’06] (poly space!)

Tuukka Korhonen New methods in FPT algorithms for treewidth

How to solve subset treewidth?

Techniques:
1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Tuukka Korhonen New methods in FPT algorithms for treewidth 17/20

How to solve subset treewidth?

Techniques:
1. Branching on important separators [Marx’06] (poly space!)

2. Lot of Bellenbaum-Diestel type “pulling arguments” to re-arrange tree decompositions

Forget-vertex
Parent bag

Important separator

Tuukka Korhonen New methods in FPT algorithms for treewidth 17/20

Local improvement in dynamic treewidth

Local improvement in dynamic treewidth

joint work with Konrad Majewski, Wojciech Nadara, Michat Pilipczuk & Marek Sokotowski

Tuukka Korhonen New methods in FPT algorithms for treewidth 18/20

Local improvement in dynamic treewidth

Tuukka Korhonen New methods in FPT algorithms for treewidth

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width (k) and depth n°(")

Tuukka Korhonen New methods in FPT algorithms for treewidth

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width (k) and depth n°(")

e Edge insertion:

Tuukka Korhonen New methods in FPT algorithms for treewidth

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")

e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")

e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
e Increases width!

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")

e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
o Increases width! But only in a subtree of size O(depth) = n°(")

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")

e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
o Increases width! But only in a subtree of size O(depth) = n°(")
e Refinement operation: Rebuild a subtree T in amortized time f(k) - | T|

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")
e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
o Increases width! But only in a subtree of size O(depth) = n°(")
e Refinement operation: Rebuild a subtree T in amortized time f(k) - | T|
e Re-arranges given subtree into depth O(log n) and width < 6k + 5

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Local improvement in dynamic treewidth
Goal: Maintain a tree decomposition of width O(k) and depth n°(")
e Edge insertion: Add endpoints to all bags on the path from their subtrees to the root
o Increases width! But only in a subtree of size O(depth) = n°(")
e Refinement operation: Rebuild a subtree T in amortized time f(k) - | T|
e Re-arranges given subtree into depth O(log n) and width < 6k + 5

o Builds on subset treewidth, log-depth decompositions [Bodlaender & Hagerup 98],
and the “dealternation lemma” [Bojanczyk & Pilipczuk '22]

Tuukka Korhonen New methods in FPT algorithms for treewidth 19/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

Tuukka Korhonen New methods in FPT algorithms for treewidth

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

Tuukka Korhonen New methods in FPT algorithms for treewidth

20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time

Open problems:

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time

Open problems:

o Prove 22() jower bound for treewidth under ETH (225 known)

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time

Open problems:

o Prove 22 jower bound for treewidth under ETH (22(V5) known)

e Treewidth 1.9-approximation in 2°%) n®(") time?

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time
Open problems:

o Prove 22 jower bound for treewidth under ETH (22(V5) known)
e Treewidth 1.9-approximation in 2°%) n®(") time?
e Dynamic treewidth in amortized f(k) - polylog(n) time?

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

Conclusion
New method for FPT algorithms for treewidth: Local improvement

o Introduced in [K. '21] for 2-approximation in 290 1 time

e Generalized in [K. & Lokshtanov '23] for exact in 29() n* time and (1 + £)-approximation in
kOK/2) n* time

e Used in [K., Majewski, Nadara, Pilipczuk & Sokotowski 23] for fully dynamic treewidth in
f(k) - n°"") amortized update time
Open problems:

o Prove 22 jower bound for treewidth under ETH (22(V5) known)
e Treewidth 1.9-approximation in 2°%) n®(") time?
e Dynamic treewidth in amortized f(k) - polylog(n) time?

Thank you!

Tuukka Korhonen New methods in FPT algorithms for treewidth 20/20

