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Tree Decompositions

[f,k, m|

[
[k, I, m—{1,m, n]
1. Every vertex should be in a bag
2. Every edge should be in a bag

3. For every vertex v, the bags containing v should form a connected subtree
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Tree Decompositions

\
le,g.i| |i,j K] \f,k‘,m\

\
lhij| [k, mI, m, n]

1. Every vertex should be in a bag
2. Every edge should be in a bag

3. For every vertex v, the bags containing v should form a connected subtree
4. Width = maximum bag size —1
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Tree Decompositions

\i,j‘,k\ [f,k, m|
h,‘i,j K, |‘, mj—l, m, n|
. Every vertex should be in a bag
. Every edge should be in a bag

. For every vertex v, the bags containing v should form a connected subtree

. Width = maximum bag size —1

. Treewidth = minimum width of a tree decomposition

eq,i

a B~ W N =
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Dynamic programming for maximum independent set

li.j k| [k m]
\ \
[h,i.j] [k L m}l. m,n]

le,g,i

For every node t and subset S C B;

dp[f][S] = maximum independent set / below { with INB; = S
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Dynamic programming for maximum independent set

i,j, k
\ \
[h,i.j] [k 1 m}l.m,n]

e, g.i] [f,k, m|

For every node t and independent subset S C B;
dp[f][S] = maximum independent set / below { with INB; = S
#1S(B;) states per node

Dallard, Fomin, Golovach, Korhonen, Milani¢ Computing Tree Decompositions with Small Independence Number

3/10



When can we bound #1S(B;)?

What kind of tree decompositions have bounded #/S(B;)?
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When can we bound #I1S(B;)?

What kind of tree decompositions have bounded #/S(B;)?
@ Clique-trees of chordal graphs: #IS(B;) < n

@ B is clique+k vertices: #IS(B;) < 2¥n [Jacob, Panolan, Raman & Sahlot '20]

@ B is clique—k edges: #I1S(B;) < 2vkn [Fomin & Golovach '20]

Maximum independent set in B; has size k: #IS(B;) < n*

The independence number of a tree decomposition: a(TD) = maxg, «(B;)

Tree-independence number: tree-a(G) = mintp a(TD)

@ Introduced by [Yolov, SODA’18] and independently by [Dallard, Milani¢, & Storgel, '21]
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Algorithmic Applications of Tree-independence number

Let k = tree-a(G)
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Algorithmic Applications of Tree-independence number

Let k = tree-a(G)

° O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

o n9%) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanic,
Mursi¢, Okrasa, Rzazewski, & Storgel'24]

@ Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang '23]

Important subroutine: Computing the tree decomposition!
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Our results

Theorem

There is a 2°(<) 1°(¥) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.
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corresponding tree decomposition.

o Improves over n°(<") time ©(k?)-approximation by [Yolov '18]
@ Almost matches the n©%) running time of dynamic programming

@ Applies also to computing a slightly more general parameter called tree-u [Yolov *18]

Hardness results:
@ Assuming Gap-ETH, no f(k) - n°%%) time g(k)-approximation algorithm

@ For every constant k > 4, NP-hard to decide if tree-a(G) < k

@ Both apply also to computing tree-u
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The Algorithm

The Algorithm
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Recursive top-down construction in Robertson-Seymour fashion
Graph
Tree decomposition

X
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Recursive top-down construction in Robertson-Seymour fashion
Graph
Tree decomposition

X

XUS

= 7=
SUXNG) SUXNC)

Balanced separator S with components Cy and C»
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Recursive top-down construction in Robertson-Seymour fashion

Graph

Y
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Recursive top-down construction in Robertson-Seymour fashion
Graph

Tree decomposition

1 Y

D»

Balanced separator T with components Dy and D.

|Tu(YnD1)| |TU(YnD2)|
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Recursive top-down construction in Robertson-Seymour fashion
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Recursive top-down construction in Robertson-Seymour fashion
Graph

Tree decomposition

1 Y

D

Balanced separator T with components Dy and D.

[Tu(ynDy] [Tu(¥nD)]

Continue recursively...

Theorem (Informal)

If for any vertex set X with a(X) = 9k we can find a separation (Ci, S, C) so that a(S) < 2k,
a(X N Cy) <7k, and a(X N Cy) < 7k, then we get 11-approximation
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Balanced separators

Input: Graph G, integer k, and a vertex set X with a(X) = 9k

Task: Either (1) find a separation (Cy, S, C2) s.t. a(S) < 2k, a(XNCy) < 7k, a(XNCy) < 7k,
or (2) conclude that tree-a(G) > k
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Balanced separators

Input: Graph G, integer k, and a vertex set X with «(X) = 9k

Task: Either (1) find a separation (Cy, S, C2) s.t. a(S) < 2k, a(XNCy) < 7k, a(XNCy) < 7k,
or (2) conclude that tree-a(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets [; C X N C;
with |;| = 2k and then finding /1 — k separator

3. 2-Approximation algorithm for separators

3.1 lterative compression to guess a container with bounded «

3.2 Branching + linear programming to find the separator
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Conclusion

o 20(K) nO(K) time 8-approximation algorithm for tree-independence number
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Conclusion

o 20(K) nO(k) time 8-approximation algorithm for tree-independence number
@ para-NP-hardness of computing tree-independence number exactly
@ Open problems:

» Complexity of deciding tree-a(G) < k for k = 2,37

» Is deciding tree-a(G) < k for unbounded k in NP or Zg-hard?

» More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!
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