Computing Tree Decompositions with Small Independence Number

Clément Dallard¹, Fedor V. Fomin, Petr A. Golovach, <u>Tuukka Korhonen</u>, Martin Milanič²

UNIVERSITY OF BERGEN

¹University of Fribourg ²University of Primorska

ICALP 2024

9 July 2024

1. Every vertex should be in a bag

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag

a, b, c b, c, d

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex ν , the bags containing ν should form a connected subtree

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1

f, k, m

k, l, m

I. m. n

I, n, o

- 1. Every vertex should be in a bag
- 2. Every edge should be in a bag
- 3. For every vertex v, the bags containing v should form a connected subtree
- 4. Width = maximum bag size -1
- 5. Treewidth = minimum width of a tree decomposition

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_t$

 $dp[t][S] = maximum independent set I below t with <math>I \cap B_t = S$

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_t$

 $dp[t][S] = maximum independent set I below t with <math>I \cap B_t = S$

 $2^{|B_t|}$ states per node

Dynamic programming for maximum independent set

For every node t and **independent** subset $S \subseteq B_t$

 $dp[t][S] = maximum independent set I below t with <math>I \cap B_t = S$

 $\#IS(B_t)$ states per node

What kind of tree decompositions have bounded $\#IS(B_t)$?

What kind of tree decompositions have bounded $\#IS(B_t)$?

• Clique-trees of chordal graphs: $\#IS(B_t) \le n$

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \le n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \leq n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]
- B_t is clique–k edges: $\#IS(B_t) \le 2^{\sqrt{k}}n$ [Fomin & Golovach '20]

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \le n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]
- B_t is clique—k edges: $\#IS(B_t) \le 2^{\sqrt{k}}n$ [Fomin & Golovach '20]

Maximum independent set in B_t has size k: $\#IS(B_t) \le n^k$

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \le n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]
- B_t is clique—k edges: $\#IS(B_t) \le 2^{\sqrt{k}}n$ [Fomin & Golovach '20]

Maximum independent set in B_t has size k: $\#IS(B_t) \le n^k$

The independence number of a tree decomposition: $\alpha(TD) = \max_{B_t} \alpha(B_t)$

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \le n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]
- B_t is clique-k edges: $\#IS(B_t) \le 2^{\sqrt{k}}n$ [Fomin & Golovach '20]

Maximum independent set in B_t has size k: $\#IS(B_t) \le n^k$

The independence number of a tree decomposition: $\alpha(TD) = \max_{B_t} \alpha(B_t)$

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$

What kind of tree decompositions have bounded $\#IS(B_t)$?

- Clique-trees of chordal graphs: $\#IS(B_t) \le n$
- B_t is clique+k vertices: $\#IS(B_t) \le 2^k n$ [Jacob, Panolan, Raman & Sahlot '20]
- B_t is clique—k edges: $\#IS(B_t) \le 2^{\sqrt{k}}n$ [Fomin & Golovach '20]

Maximum independent set in B_t has size k: $\#IS(B_t) \le n^k$

The independence number of a tree decomposition: $\alpha(TD) = \max_{B_t} \alpha(B_t)$

Tree-independence number: tree- $\alpha(G) = \min_{TD} \alpha(TD)$

Introduced by [Yolov, SODA'18] and independently by [Dallard, Milanič, & Storgel, '21]

Let $k = \text{tree-}\alpha(G)$

Let $k = \text{tree-}\alpha(G)$

• $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set [Yolov '18]

Let $k = \text{tree-}\alpha(G)$

- $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set [Yolov '18]
- n^{O(k)} time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, & Štorgel'24]

Let $k = \text{tree-}\alpha(G)$

- $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set [Yolov '18]
- n^{O(k)} time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, & Štorgel'24]
- Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang '23]

Let $k = \text{tree-}\alpha(G)$

- $\mathcal{O}(n^{k+2})$ time algorithm for maximum weight independent set [Yolov '18]
- n^{O(k)} time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, & Štorgel'24]
- Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang '23]

Important subroutine: Computing the tree decomposition!

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

• Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- ullet Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- ullet Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- ullet Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

• Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- ullet Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$

Theorem

There is a $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}(k^3)}$ time $\mathcal{O}(k^2)$ -approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- ullet Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time g(k)-approximation algorithm
- For every constant $k \ge 4$, NP-hard to decide if tree- $\alpha(G) \le k$
- Both apply also to computing tree-μ

The Algorithm

The Algorithm

Recursive top-down construction in Robertson-Seymour fashion Graph

Tree decomposition

Recursive top-down construction in Robertson-Seymour fashion

Graph

Tree decomposition

Balanced separator S with components C_1 and C_2

Recursive top-down construction in Robertson-Seymour fashion

Recursive top-down construction in Robertson-Seymour fashion

Graph

Balanced separator T with components D_1 and D_2

Tree decomposition

Recursive top-down construction in Robertson-Seymour fashion

Graph

Balanced separator T with components D_1 and D_2

Continue recursively...

Tree decomposition

Recursive top-down construction in Robertson-Seymour fashion

Graph

Balanced separator T with components D_1 and D_2

Continue recursively...

Tree decomposition

Theorem (Informal)

If for any vertex set X with $\alpha(X) = 9k$ we can find a separation (C_1, S, C_2) so that $\alpha(S) \le 2k$, $\alpha(X \cap C_1) \le 7k$, and $\alpha(X \cap C_2) \le 7k$, then we get 11-approximation

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \le 2k$, $\alpha(X \cap C_1) \le 7k$, $\alpha(X \cap C_2) \le 7k$, or (2) conclude that tree- $\alpha(G) > k$

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \le 2k$, $\alpha(X \cap C_1) \le 7k$, $\alpha(X \cap C_2) \le 7k$, or (2) conclude that tree- $\alpha(G) > k$

1. Balanced separators exist because of a walking argument on a tree decomposition

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \leq 2k$, $\alpha(X \cap C_1) \leq 7k$, $\alpha(X \cap C_2) \leq 7k$, or (2) conclude that tree- $\alpha(G) > k$

- 1. Balanced separators exist because of a walking argument on a tree decomposition
- 2. Reduction from balanced separators to separators by guessing independent sets $I_i \subseteq X \cap C_i$ with $|I_i| = 2k$ and then finding $I_1 I_2$ separator

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \leq 2k$, $\alpha(X \cap C_1) \leq 7k$, $\alpha(X \cap C_2) \leq 7k$, or (2) conclude that tree- $\alpha(G) > k$

- 1. Balanced separators exist because of a walking argument on a tree decomposition
- 2. Reduction from balanced separators to separators by guessing independent sets $I_i \subseteq X \cap C_i$ with $|I_i| = 2k$ and then finding $I_1 I_2$ separator
- 3. 2-Approximation algorithm for separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \leq 2k$, $\alpha(X \cap C_1) \leq 7k$, $\alpha(X \cap C_2) \leq 7k$, or (2) conclude that tree- $\alpha(G) > k$

- 1. Balanced separators exist because of a walking argument on a tree decomposition
- 2. Reduction from balanced separators to separators by guessing independent sets $I_i \subseteq X \cap C_i$ with $|I_i| = 2k$ and then finding $I_1 I_2$ separator
- 3. 2-Approximation algorithm for separators
 - 3.1 Iterative compression to guess a container with bounded α

Input: Graph G, integer k, and a vertex set X with $\alpha(X) = 9k$

Task: Either (1) find a separation (C_1, S, C_2) s.t. $\alpha(S) \le 2k$, $\alpha(X \cap C_1) \le 7k$, $\alpha(X \cap C_2) \le 7k$, or (2) conclude that tree- $\alpha(G) > k$

- 1. Balanced separators exist because of a walking argument on a tree decomposition
- 2. Reduction from balanced separators to separators by guessing independent sets $I_i \subseteq X \cap C_i$ with $|I_i| = 2k$ and then finding $I_1 I_2$ separator
- 3. 2-Approximation algorithm for separators
 - 3.1 Iterative compression to guess a container with bounded α
 - 3.2 Branching + linear programming to find the separator

• $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
 - ▶ Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
 - ▶ Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?
 - ▶ Is deciding tree- $\alpha(G) \le k$ for unbounded k in NP or $\sum_{k=0}^{p}$ -hard?

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
 - ▶ Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?
 - ▶ Is deciding tree- $\alpha(G) \le k$ for unbounded k in NP or $\sum_{k=0}^{p}$ -hard?
 - More general tree decomposition based parameters for which independent set and related problems are XP?

- $2^{\mathcal{O}(k^2)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
 - ▶ Complexity of deciding tree- $\alpha(G) \le k$ for k = 2, 3?
 - ▶ Is deciding tree- $\alpha(G) \le k$ for unbounded k in NP or $\sum_{k=0}^{p}$ -hard?
 - More general tree decomposition based parameters for which independent set and related problems are XP?

Thank you!