
Computing Tree Decompositions with Small Independence Number

Clément Dallard1, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, Martin Milanič2

1University of Fribourg 2University of Primorska

ICALP 2024

9 July 2024

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 1 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Tree Decompositions

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v , the bags containing v should form a connected subtree

4. Width = maximum bag size −1

5. Treewidth = minimum width of a tree decomposition

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 2 / 10

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 3 / 10

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

2|Bt | states per node

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 3 / 10

Dynamic programming for maximum independent set

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i, k

e, g, i

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

For every node t and independent subset S ⊆ Bt

dp[t][S] = maximum independent set I below t with I ∩ Bt = S

#IS(Bt) states per node

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 3 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

When can we bound #IS(Bt)?

What kind of tree decompositions have bounded #IS(Bt)?

Clique-trees of chordal graphs: #IS(Bt) ≤ n

Bt is clique+k vertices: #IS(Bt) ≤ 2k n [Jacob, Panolan, Raman & Sahlot ’20]

Bt is clique−k edges: #IS(Bt) ≤ 2
√

k n [Fomin & Golovach ’20]

Maximum independent set in Bt has size k : #IS(Bt) ≤ nk

The independence number of a tree decomposition: α(TD) = maxBt α(Bt)

Tree-independence number: tree-α(G) = minTD α(TD)

Introduced by [Yolov, SODA’18] and independently by [Dallard, Milanič, & Storgel, ’21]

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 4 / 10

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

nO(k) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič,
Muršič, Okrasa, Rzazewski, & Štorgel’24]

Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang ’23]

Important subroutine: Computing the tree decomposition!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 5 / 10

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

nO(k) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič,
Muršič, Okrasa, Rzazewski, & Štorgel’24]

Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang ’23]

Important subroutine: Computing the tree decomposition!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 5 / 10

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

nO(k) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič,
Muršič, Okrasa, Rzazewski, & Štorgel’24]

Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang ’23]

Important subroutine: Computing the tree decomposition!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 5 / 10

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

nO(k) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič,
Muršič, Okrasa, Rzazewski, & Štorgel’24]

Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang ’23]

Important subroutine: Computing the tree decomposition!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 5 / 10

Algorithmic Applications of Tree-independence number

Let k = tree-α(G)

O(nk+2) time algorithm for maximum weight independent set [Yolov ’18]

nO(k) time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič,
Muršič, Okrasa, Rzazewski, & Štorgel’24]

Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang ’23]

Important subroutine: Computing the tree decomposition!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 5 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

Our results

Theorem

There is a 2O(k2)nO(k) time 8-approximation algorithm for tree-independence number, which also outputs the
corresponding tree decomposition.

Improves over nO(k3) time O(k2)-approximation by [Yolov ’18]

Almost matches the nO(k) running time of dynamic programming

Applies also to computing a slightly more general parameter called tree-µ [Yolov ’18]

Hardness results:

Assuming Gap-ETH, no f (k) · no(k) time g(k)-approximation algorithm

For every constant k ≥ 4, NP-hard to decide if tree-α(G) ≤ k

Both apply also to computing tree-µ

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 6 / 10

The Algorithm

The Algorithm

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 7 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X

Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y ZY ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X

Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y ZY ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y Z

Y ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y Z

Y ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y Z

Y ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Recursive top-down construction in Robertson-Seymour fashion
Graph

SC1 C2

Balanced separator S with components C1 and C2

X Y

T

D1

D2

Balanced separator T with components D1 and D2

Continue recursively...

Tree decomposition

X

X ∪ S

Y =
S ∪ (X ∩ C1)

Z =
S ∪ (X ∩ C2)

Y Z

Y ∪ T Z

T ∪ (Y ∩ D1) T ∪ (Y ∩ D2)

Theorem (Informal)
If for any vertex set X with α(X) = 9k we can find a separation (C1,S,C2) so that α(S) ≤ 2k ,
α(X ∩ C1) ≤ 7k , and α(X ∩ C2) ≤ 7k , then we get 11-approximation

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 8 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Balanced separators

Input: Graph G, integer k , and a vertex set X with α(X) = 9k

Task: Either (1) find a separation (C1,S,C2) s.t. α(S) ≤ 2k , α(X ∩C1) ≤ 7k , α(X ∩C2) ≤ 7k ,
or (2) conclude that tree-α(G) > k

1. Balanced separators exist because of a walking argument on a tree decomposition

2. Reduction from balanced separators to separators by guessing independent sets Ii ⊆ X ∩ Ci
with |Ii | = 2k and then finding I1 − I2 separator

3. 2-Approximation algorithm for separators

3.1 Iterative compression to guess a container with bounded α

3.2 Branching + linear programming to find the separator

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 9 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

Conclusion

2O(k2)nO(k) time 8-approximation algorithm for tree-independence number

para-NP-hardness of computing tree-independence number exactly

Open problems:

I Complexity of deciding tree-α(G) ≤ k for k = 2, 3?

I Is deciding tree-α(G) ≤ k for unbounded k in NP or
∑P

2 -hard?

I More general tree decomposition based parameters for which independent set and related problems
are XP?

Thank you!

Dallard, Fomin, Golovach, Korhonen, Milanič Computing Tree Decompositions with Small Independence Number 10 / 10

