Computing Tree Decompositions with Small Independence Number

Clément Dallard ${ }^{1}$, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, Martin Milanič²

Tree Decompositions

Tree Decompositions

1. Every vertex should be in a bag

Tree Decompositions

1. Every vertex should be in a bag

2. Every edge should be in a bag

Tree Decompositions

1. Every vertex should be in a bag

2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

Tree Decompositions

1. Every vertex should be in a bag

2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree
4. Width $=$ maximum bag size -1

Tree Decompositions

1. Every vertex should be in a bag

2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree
4. Width $=$ maximum bag size -1
5. Treewidth = minimum width of a tree decomposition

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_{t}$
$\mathrm{dp}[t][S]=$ maximum independent set $/$ below t with $I \cap B_{t}=S$

Dynamic programming for maximum independent set

For every node t and subset $S \subseteq B_{t}$
$\mathrm{dp}[t][S]=$ maximum independent set $/$ below t with $I \cap B_{t}=S$
$2^{\left|B_{t}\right|}$ states per node

Dynamic programming for maximum independent set

For every node t and independent subset $S \subseteq B_{t}$
$\mathrm{dp}[t][S]=$ maximum independent set $/$ below t with $I \cap B_{t}=S$
$\# I S\left(B_{t}\right)$ states per node

When can we bound $\# I S\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

When can we bound \#IS $\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$

When can we bound \#IS $\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: \#IS($\left.B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]

When can we bound $\# I S\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: \#IS($\left.B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin \& Golovach '20]

When can we bound \#IS $\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin \& Golovach '20]

Maximum independent set in B_{t} has size k : \#IS $\left(B_{t}\right) \leq n^{k}$

When can we bound \#IS $\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin \& Golovach '20]

Maximum independent set in B_{t} has size k : \#IS $\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$

When can we bound \#IS $\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS $\left(B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]
- B_{t} is clique- k edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin \& Golovach '20]

Maximum independent set in B_{t} has size k : \#IS $\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

When can we bound $\# I S\left(B_{t}\right)$?

What kind of tree decompositions have bounded \#IS($\left.B_{t}\right)$?

- Clique-trees of chordal graphs: $\# I S\left(B_{t}\right) \leq n$
- B_{t} is clique $+k$ vertices: $\# I S\left(B_{t}\right) \leq 2^{k} n$ [Jacob, Panolan, Raman \& Sahlot '20]
- B_{t} is clique $-k$ edges: $\# I S\left(B_{t}\right) \leq 2^{\sqrt{k}} n$ [Fomin \& Golovach '20]

Maximum independent set in B_{t} has size k : $\# I S\left(B_{t}\right) \leq n^{k}$
The independence number of a tree decomposition: $\alpha(T D)=\max _{B_{t}} \alpha\left(B_{t}\right)$
Tree-independence number: tree- $\alpha(G)=\min _{T D} \alpha(T D)$

- Introduced by [Yolov, SODA'18] and independently by [Dallard, Milanič, \& Storgel, '21]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set [Yolov '18]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set [Yolov '18]
- $n^{\mathcal{O}(k)}$ time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, \& Štorgel'24]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set [Yolov '18]
- $n^{\mathcal{O}(k)}$ time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, \& Štorgel'24]
- Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang '23]

Algorithmic Applications of Tree-independence number

Let $k=\operatorname{tree}-\alpha(G)$

- $\mathcal{O}\left(n^{k+2}\right)$ time algorithm for maximum weight independent set [Yolov '18]
- $n^{\mathcal{O}(k)}$ time algorithms for feedback vertex set, longest induced path, and generalizations [Lima, Milanič, Muršič, Okrasa, Rzazewski, \& Štorgel'24]
- Used in Baker-like approximation schemes for geometric intersection graphs [Galby, Munaro, Yang '23]

Important subroutine: Computing the tree decomposition!

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}}(k)$ running time of dynamic programming

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}}(k)$ running time of dynamic programming
- Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}}(k)$ running time of dynamic programming
- Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time $g(k)$-approximation algorithm

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time $g(k)$-approximation algorithm
- For every constant $k \geq 4$, NP-hard to decide if $\operatorname{tree}-\alpha(G) \leq k$

Our results

Theorem

There is a $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number, which also outputs the corresponding tree decomposition.

- Improves over $n^{\mathcal{O}\left(k^{3}\right)}$ time $\mathcal{O}\left(k^{2}\right)$-approximation by [Yolov '18]
- Almost matches the $n^{\mathcal{O}(k)}$ running time of dynamic programming
- Applies also to computing a slightly more general parameter called tree- μ [Yolov '18]

Hardness results:

- Assuming Gap-ETH, no $f(k) \cdot n^{o(k)}$ time $g(k)$-approximation algorithm
- For every constant $k \geq 4$, NP-hard to decide if tree- $\alpha(G) \leq k$
- Both apply also to computing tree- μ

The Algorithm

The Algorithm

Recursive top-down construction in Robertson-Seymour fashion Graph

Tree decomposition
\square

Recursive top-down construction in Robertson-Seymour fashion

 Graph

Tree decomposition

Balanced separator S with components C_{1} and C_{2}

Recursive top-down construction in Robertson-Seymour fashion

 Graph

Tree decomposition

Recursive top-down construction in Robertson-Seymour fashion

 Graph

Balanced separator T with components D_{1} and D_{2}
Tree decomposition

Recursive top-down construction in Robertson-Seymour fashion

Graph

Balanced separator T with components D_{1} and D_{2}
Tree decomposition

Continue recursively...

Recursive top-down construction in Robertson-Seymour fashion Graph

Balanced separator T with components D_{1} and D_{2}
Tree decomposition

Continue recursively...

Theorem (Informal)

If for any vertex set X with $\alpha(X)=9 k$ we can find a separation $\left(C_{1}, S, C_{2}\right)$ so that $\alpha(S) \leq 2 k$, $\alpha\left(X \cap C_{1}\right) \leq 7 k$, and $\alpha\left(X \cap C_{2}\right) \leq 7 k$, then we get 11-approximation

Balanced separators

Input: Graph \mathcal{G}, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree $-\alpha(G)>k$

Balanced separators

Input: Graph \mathcal{G}, integer k, and a vertex set \boldsymbol{X} with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree $-\alpha(G)>k$

1. Balanced separators exist because of a walking argument on a tree decomposition

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree $-\alpha(G)>k$

1. Balanced separators exist because of a walking argument on a tree decomposition
2. Reduction from balanced separators to separators by guessing independent sets $I_{i} \subseteq X \cap C_{i}$ with $\left|I_{i}\right|=2 k$ and then finding $I_{1}-I_{2}$ separator

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree- $\alpha(G)>k$

1. Balanced separators exist because of a walking argument on a tree decomposition
2. Reduction from balanced separators to separators by guessing independent sets $I_{i} \subseteq X \cap C_{i}$ with $\left|I_{i}\right|=2 k$ and then finding $I_{1}-I_{2}$ separator
3. 2-Approximation algorithm for separators

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree- $\alpha(G)>k$

1. Balanced separators exist because of a walking argument on a tree decomposition
2. Reduction from balanced separators to separators by guessing independent sets $I_{i} \subseteq X \cap C_{i}$ with $\left|I_{i}\right|=2 k$ and then finding $I_{1}-I_{2}$ separator
3. 2-Approximation algorithm for separators
3.1 Iterative compression to guess a container with bounded α

Balanced separators

Input: Graph G, integer k, and a vertex set X with $\alpha(X)=9 k$
Task: Either (1) find a separation $\left(C_{1}, S, C_{2}\right)$ s.t. $\alpha(S) \leq 2 k, \alpha\left(X \cap C_{1}\right) \leq 7 k, \alpha\left(X \cap C_{2}\right) \leq 7 k$, or (2) conclude that tree- $\alpha(G)>k$

1. Balanced separators exist because of a walking argument on a tree decomposition
2. Reduction from balanced separators to separators by guessing independent sets $I_{i} \subseteq X \cap C_{i}$ with $\left|I_{i}\right|=2 k$ and then finding $I_{1}-I_{2}$ separator
3. 2-Approximation algorithm for separators
3.1 Iterative compression to guess a container with bounded α
3.2 Branching + linear programming to find the separator

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
- Complexity of deciding tree- $\alpha(G) \leq k$ for $k=2,3$?

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
- Complexity of deciding tree $-\alpha(G) \leq k$ for $k=2,3$?
- Is deciding tree- $\alpha(G) \leq k$ for unbounded k in NP or \sum_{2}^{P}-hard?

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
- Complexity of deciding tree- $\alpha(G) \leq k$ for $k=2,3$?
- Is deciding tree- $\alpha(G) \leq k$ for unbounded k in NP or \sum_{2}^{P}-hard?
- More general tree decomposition based parameters for which independent set and related problems are XP?

Conclusion

- $2^{\mathcal{O}\left(k^{2}\right)} n^{\mathcal{O}(k)}$ time 8-approximation algorithm for tree-independence number
- para-NP-hardness of computing tree-independence number exactly
- Open problems:
- Complexity of deciding tree- $\alpha(G) \leq k$ for $k=2,3$?
- Is deciding tree- $\alpha(G) \leq k$ for unbounded k in NP or \sum_{2}^{P}-hard?
- More general tree decomposition based parameters for which independent set and related problems are XP?

Thank you!

