Lower Bounds on Dynamic Programming for Maximum Weight Independent Set

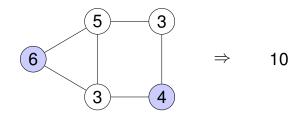
Tuukka Korhonen

Department of Computer Science, University of Helsinki, Finland

ICALP 2021 Online July 13, 2021

Maximum Weight Independent Set

Given a vertex-weighted graph, determine the weight of a maximum weight independent set (MWIS)

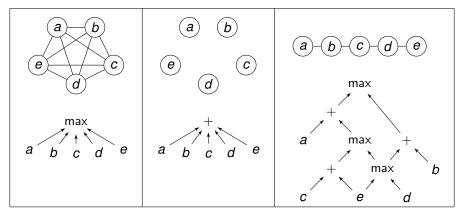


MWIS-Circuits

MWIS-circuit of a graph G is a circuit with

- Vertex weights as inputs
- max and + operations as gates (tropical circuit)
- Computes the weight of MWIS of G for any assignment of weights

Examples:



Why Do I Care?

Many known algorithms for MWIS actually build MWIS-circuits

- Dynamic programming on tree decompositions
- Chordal graphs (and almost-chordal graphs)
- Clique-width
- Algorithms based on potential maximal cliques (and their generalizations)
- Branching algorithms

Why Do I Care?

Many known algorithms for MWIS actually build MWIS-circuits

- Dynamic programming on tree decompositions
- Chordal graphs (and almost-chordal graphs)
- Clique-width
- Algorithms based on potential maximal cliques (and their generalizations)
- Branching algorithms

Lower bounds for MWIS-circuits \Rightarrow lower bounds for algorithmic techniques

Let

- tw(G) the treewidth of a graph G
- d(G) the maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(tw(G)/d(G))}$

Let

- tw(G) the treewidth of a graph G
- d(G) the maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(tw(G)/d(G))}$

This is the best possible in 2 senses:

1. Dynamic programming by treewidth gives a $2^{O(tw(G))}|V(G)|$ size MWIS-circuit – polynomially **instance-optimal** algorithm when d(G) = O(1).

Let

- tw(G) the treewidth of a graph G
- d(G) the maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(tw(G)/d(G))}$

This is the best possible in 2 senses:

- 1. Dynamic programming by treewidth gives a $2^{O(tw(G))}|V(G)|$ size MWIS-circuit polynomially **instance-optimal** algorithm when d(G) = O(1).
- For every pair tw(G), d(G), there are graphs G with MWIS-circuits of size d(G)2^{O(tw(G)/d(g))}.

Let

- tw(G) the treewidth of a graph G
- d(G) the maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(tw(G)/d(G))}$

This is the best possible in 2 senses:

- 1. Dynamic programming by treewidth gives a $2^{O(tw(G))}|V(G)|$ size MWIS-circuit polynomially **instance-optimal** algorithm when d(G) = O(1).
- For every pair tw(G), d(G), there are graphs G with MWIS-circuits of size d(G)2^{O(tw(G)/d(g))}.

Note: For d(G) = O(1), a $2^{\Omega(tw(G))}$ lower bound follows from earlier work on DNNF-compilation [Amarilli, Capelli, Monet and Senellart, 2020]

Graph H is an *induced minor* of G if we can obtain H from G by vertex deletions and edge contractions. (edge deletions **not** allowed)

Definition (Bounded-degree induced minor width)

Let bdimw(G) denote the maximum of tw(H), where H is an induced minor of G with maximum degree O(1).

Graph *H* is an *induced minor* of *G* if we can obtain *H* from *G* by vertex deletions and edge contractions. (edge deletions **not** allowed)

Definition (Bounded-degree induced minor width)

Let bdimw(G) denote the maximum of tw(H), where H is an induced minor of G with maximum degree O(1).

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(bdimw(G))}$

Graph H is an *induced minor* of G if we can obtain H from G by vertex deletions and edge contractions. (edge deletions **not** allowed)

Definition (Bounded-degree induced minor width)

Let bdimw(G) denote the maximum of tw(H), where H is an induced minor of G with maximum degree O(1).

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(bdimw(G))}$

- \Rightarrow Matching upper and lower bounds when $bdimw(G) = \Omega(tw(G))$.
 - Bounded-degree graphs

Graph H is an *induced minor* of G if we can obtain H from G by vertex deletions and edge contractions. (edge deletions **not** allowed)

Definition (Bounded-degree induced minor width)

Let bdimw(G) denote the maximum of tw(H), where H is an induced minor of G with maximum degree O(1).

Theorem

For every graph G, the size of any MWIS-circuit of G is $2^{\Omega(bdimw(G))}$

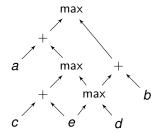
- \Rightarrow Matching upper and lower bounds when $bdimw(G) = \Omega(tw(G))$.
 - Bounded-degree graphs
 - Planar graphs
 - Bounded-genus graphs
 - Graphs excluding some fixed minor

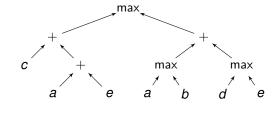
MWIS-formulas

MWIS-formula is an MWIS-circuit whose underlying graph is a tree

MWIS-circuit

MWIS-formula





Let

- td(G) treedepth of a graph G
- d(G) maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-formula of G is $2^{\Omega(td(G)/d(G))}$

Let

- td(G) treedepth of a graph G
- d(G) maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-formula of G is $2^{\Omega(td(G)/d(G))}$

Again,

- 1. $2^{O(td(G))}|V(G)|$ size MWIS-formulas known, so instance-optimality for d(G) = O(1)
- 2. For every pair td(G), d(G), there are graphs *G* with MWIS-formulas of size $d(G)2^{O(td(G)/d(G))}$.

Let

- td(G) treedepth of a graph G
- d(G) maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-formula of G is $2^{\Omega(td(G)/d(G))}$

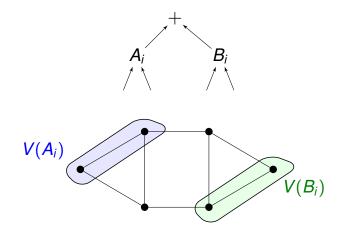
Again,

- 1. $2^{O(td(G))}|V(G)|$ size MWIS-formulas known, so instance-optimality for d(G) = O(1)
- For every pair td(G), d(G), there are graphs G with MWIS-formulas of size d(G)2^{O(td(G)/d(G))}.

However, no $2^{O(td(G))}|V(G)|^{O(1)}$ time constant-factor approximation algorithm for treedepth known, so the instance-optimality is "non-uniform"

Proof idea of Theorem 1

Consider a + gate computing $A_i + B_i$, where A_i and B_i are gates



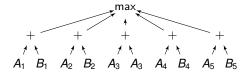
Let $V(A_i)$ be vertices that have a path to A_i and $V(B_i)$ vertices that have a path to B_i . $V(A_i)$ and $V(B_i)$ must be disjoint, without edges in between.

Circuit Decomposition

 Treewidth tw(G) guarantees a vertex subset X ⊆ V(G) s.t. every balanced separator of X has size Ω(tw(G)).

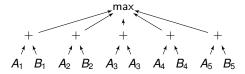
Circuit Decomposition

- Treewidth tw(G) guarantees a vertex subset X ⊆ V(G) s.t. every balanced separator of X has size Ω(tw(G)).
- Decompose the circuit (rectangle bound style) with respect to X
- Circuit of form $\max(A_1 + B_1, A_2 + B_2, A_3 + B_3, \dots, A_{\tau} + B_{\tau})$, where $|V(A_i) \cap X| \le 2|X|/3$ and $|V(B_i) \cap X| \le 2|X|/3$, and τ the number of gates in the original circuit



Circuit Decomposition

- Treewidth tw(G) guarantees a vertex subset X ⊆ V(G) s.t. every balanced separator of X has size Ω(tw(G)).
- Decompose the circuit (rectangle bound style) with respect to X
- Circuit of form $\max(A_1 + B_1, A_2 + B_2, A_3 + B_3, \dots, A_{\tau} + B_{\tau})$, where $|V(A_i) \cap X| \le 2|X|/3$ and $|V(B_i) \cap X| \le 2|X|/3$, and τ the number of gates in the original circuit



• Let $S_i = V(G) \setminus (V(A_i) \cup V(B_i))$, note that $|S_i| = \Omega(tw(G))$

• We can fool the circuit by constructing an IS that intersects every S_i

Fooling the Circuit

Given τ vertex subsets $S_1, S_2, \ldots, S_{\tau}$ of size $|S_i| \ge k = \Omega(tw(G))$, can we construct an independent set that intersects them all?

Fooling the Circuit

Given τ vertex subsets $S_1, S_2, \ldots, S_{\tau}$ of size $|S_i| \ge k = \Omega(tw(G))$, can we construct an independent set that intersects them all?

Theorem Yes, if $\tau \leq e^{k/(6d(G))}$

Proof idea:

Apply Lopsided Lovász Local Lemma, showing that when choosing each vertex with probability 1/(2d(G)), we get such IS with non-zero probability

Other proof ideas

- Theorem 2. $(2^{\Omega(bdimw(G))} \text{ lower bound for MWIS-circuits}):$
 - Map an unbreakable set $X \subseteq V(H)$ of the induced minor H to a set $X' \subseteq V(G)$, and then decompose the circuit w.r.t. X'.
 - A different application of the local lemma that works for d(H) = O(1).

Other proof ideas

- Theorem 2. $(2^{\Omega(bdimw(G))} \text{ lower bound for MWIS-circuits}):$
 - Map an unbreakable set $X \subseteq V(H)$ of the induced minor H to a set $X' \subseteq V(G)$, and then decompose the circuit w.r.t. X'.
 - A different application of the local lemma that works for d(H) = O(1).

- Theorem 3. $(2^{\Omega(td(G)/d(G))}$ lower bound for MWIS-formulas):
 - Ad-hoc extraction of O(τ) vertex sets of size Ω(td(G)) such that an independent set that intersects them all fools the circuit
 - Same application of the local lemma as in Theorem 1.

Future work

- 1. Prove similar lower bounds for other graph problems (min weight vertex cover, max weight matching, ...)
- 2. Prove analogue of Theorem 2 for MWIS-formulas
- 3. Go deeper on MWIS-circuits

Future work

- 1. Prove similar lower bounds for other graph problems (min weight vertex cover, max weight matching, ...)
- 2. Prove analogue of Theorem 2 for MWIS-formulas
- 3. Go deeper on MWIS-circuits
 - Does a 2^{Ω(tw(G))} lower bound hold for all bounded-degeneracy graphs?

Future work

- 1. Prove similar lower bounds for other graph problems (min weight vertex cover, max weight matching, ...)
- 2. Prove analogue of Theorem 2 for MWIS-formulas
- 3. Go deeper on MWIS-circuits
 - Does a 2^{Ω(tw(G))} lower bound hold for all bounded-degeneracy graphs?
 - Are there MWIS-circuits of size FPT or XP parameterized by bdimw(G)? (single-exponential FPT unlikely)

Thank you for your attention!

For any questions/comments, please attend ICALP session 2A or send me email tuukka.m.korhonen@helsinki.fi

Bibliography

Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart.

Connecting knowledge compilation classes and width parameters. *Theory of Computing Systems*, 64(5):861–914, 2020.