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Maximum Weight Independent Set

Given a vertex-weighted graph, determine the weight of a maximum weight
independent set (MWIS)
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MWIS-Circuits

MWIS-circuit of a graph G is a circuit with
Vertex weights as inputs
max and + operations as gates (tropical circuit)
Computes the weight of MWIS of G for any assignment of weights
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Why Do I Care?

Many known algorithms for MWIS actually build MWIS-circuits

Dynamic programming on tree decompositions
Chordal graphs (and almost-chordal graphs)
Clique-width
Algorithms based on potential maximal cliques (and their generalizations)
Branching algorithms

Lower bounds for MWIS-circuits⇒ lower bounds for algorithmic techniques
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Theorem 1

Let

tw(G) – the treewidth of a graph G

d(G) – the maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-circuit of G is 2Ω(tw(G)/d(G))

This is the best possible in 2 senses:

1. Dynamic programming by treewidth gives a 2O(tw(G))|V (G)| size MWIS-circuit –
polynomially instance-optimal algorithm when d(G) = O(1).

2. For every pair tw(G), d(G), there are graphs G with MWIS-circuits of size
d(G)2O(tw(G)/d(g)).

Note: For d(G) = O(1), a 2Ω(tw(G)) lower bound follows from earlier work on
DNNF-compilation [Amarilli, Capelli, Monet and Senellart, 2020]
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Theorem 2

Graph H is an induced minor of G if we can obtain H from G by vertex deletions and
edge contractions. (edge deletions not allowed)

Definition (Bounded-degree induced minor width)

Let bdimw(G) denote the maximum of tw(H), where H is an induced minor of G with
maximum degree O(1).

Theorem

For every graph G, the size of any MWIS-circuit of G is 2Ω(bdimw(G))

⇒ Matching upper and lower bounds when bdimw(G) = Ω(tw(G)).

Bounded-degree graphs

Planar graphs

Bounded-genus graphs

Graphs excluding some fixed minor
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MWIS-formulas

MWIS-formula is an MWIS-circuit whose underlying graph is a tree
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Theorem 3

Let

td(G) – treedepth of a graph G

d(G) – maximum degree of a graph G

Theorem

For every graph G, the size of any MWIS-formula of G is 2Ω(td(G)/d(G))

Again,

1. 2O(td(G))|V (G)| size MWIS-formulas known, so instance-optimality for d(G) = O(1)

2. For every pair td(G), d(G), there are graphs G with MWIS-formulas of size
d(G)2O(td(G)/d(G)).

However, no 2O(td(G))|V (G)|O(1) time constant-factor approximation algorithm for
treedepth known, so the instance-optimality is “non-uniform”
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Proof idea of Theorem 1

Consider a + gate computing Ai + Bi , where Ai and Bi are gates

V (Ai)

V (Bi)

+

Ai Bi

Let V (Ai ) be vertices that have a path to Ai and V (Bi ) vertices that have a path to Bi .

V (Ai ) and V (Bi ) must be disjoint, without edges in between.



Circuit Decomposition

Treewidth tw(G) guarantees a vertex subset X ⊆ V (G) s.t. every balanced
separator of X has size Ω(tw(G)).

Decompose the circuit (rectangle bound style) with respect to X

Circuit of form max(A1 + B1,A2 + B2,A3 + B3, . . . ,Aτ + Bτ ), where
|V (Ai ) ∩ X | ≤ 2|X |/3 and |V (Bi ) ∩ X | ≤ 2|X |/3, and τ the number of gates in the
original circuit

max

+ + + + +

A1 B1 A2 B2 A3 A3 A4 B4 A5 B5

Let Si = V (G) \ (V (Ai ) ∪ V (Bi )), note that |Si | = Ω(tw(G))

We can fool the circuit by constructing an IS that intersects every Si
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Fooling the Circuit

Given τ vertex subsets S1,S2, . . . ,Sτ of size |Si | ≥ k = Ω(tw(G)), can we construct an
independent set that intersects them all?

Theorem

Yes, if τ ≤ ek/(6d(G))

Proof idea:
Apply Lopsided Lovász Local Lemma, showing that when choosing each vertex with
probability 1/(2d(G)), we get such IS with non-zero probability
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Other proof ideas

Theorem 2. (2Ω(bdimw(G)) lower bound for MWIS-circuits):
I Map an unbreakable set X ⊆ V (H) of the induced minor H to a set

X ′ ⊆ V (G), and then decompose the circuit w.r.t. X ′.

I A different application of the local lemma that works for d(H) = O(1).

Theorem 3. (2Ω(td(G)/d(G)) lower bound for MWIS-formulas):
I Ad-hoc extraction of O(τ) vertex sets of size Ω(td(G)) such that an

independent set that intersects them all fools the circuit

I Same application of the local lemma as in Theorem 1.
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Future work

1. Prove similar lower bounds for other graph problems (min weight vertex
cover, max weight matching, . . .)

2. Prove analogue of Theorem 2 for MWIS-formulas

3. Go deeper on MWIS-circuits

I Does a 2Ω(tw(G)) lower bound hold for all bounded-degeneracy
graphs?

I Are there MWIS-circuits of size FPT or XP parameterized by
bdimw(G)? (single-exponential FPT unlikely)
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The end

Thank you for your attention!

For any questions/comments, please attend ICALP session 2A or send me email
tuukka.m.korhonen@helsinki.fi
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