
Fast FPT-Approximation of Branchwidth

Fedor V. Fomin, Tuukka Korhonen

Department of Informatics, University of Bergen, Norway

IBS Virtual Discrete Math Colloquium
November 25, 2021

In this work

Framework for designing fast FPT 2-approximation algorithms for
branchwidth of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.

In this work

Framework for designing fast FPT 2-approximation algorithms for
branchwidth of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.

In this work

Framework for designing fast FPT 2-approximation algorithms for
branchwidth of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.

In this work

Framework for designing fast FPT 2-approximation algorithms for
branchwidth of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.

Plan

1. Definitions and background

2. Overview of techniques for rankwidth

3. Combinatorial part of our framework

4. Algorithmic part of our framework

Plan

1. Definitions and background
2. Overview of techniques for rankwidth

3. Combinatorial part of our framework

4. Algorithmic part of our framework

Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T)

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f

Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T)

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f

Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T)

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f

Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T)

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f

Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T)

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f

Connectivity functions

Function f : 2V → Z≥0 is a connectivity function if for any A,B ⊆ V :
I f (A) = f (A) (symmetric)

I f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) (submodular)

Examples:

Border of edge set: V = E(G), for any A ⊆ V , f (A) is the number of vertices
adjacent to edges in both A and A

I Branchwidth of G

Cut-rank: V = V (G), for any A ⊆ V , f (A) is the GF(2) rank of the |A| × |A| matrix
representing G[A,A]

I Rankwidth of G

Connectivity functions

Function f : 2V → Z≥0 is a connectivity function if for any A,B ⊆ V :
I f (A) = f (A) (symmetric)

I f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) (submodular)

Examples:

Border of edge set: V = E(G), for any A ⊆ V , f (A) is the number of vertices
adjacent to edges in both A and A

I Branchwidth of G

Cut-rank: V = V (G), for any A ⊆ V , f (A) is the GF(2) rank of the |A| × |A| matrix
representing G[A,A]

I Rankwidth of G

Connectivity functions

Function f : 2V → Z≥0 is a connectivity function if for any A,B ⊆ V :
I f (A) = f (A) (symmetric)

I f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) (submodular)

Examples:

Border of edge set: V = E(G), for any A ⊆ V , f (A) is the number of vertices
adjacent to edges in both A and A

I Branchwidth of G

Cut-rank: V = V (G), for any A ⊆ V , f (A) is the GF(2) rank of the |A| × |A| matrix
representing G[A,A]

I Rankwidth of G

History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?

History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?

History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?

History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?

History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?

History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n

History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n

History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n

History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n

History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n

History of rankwidth

Reference APX TIME Remarks
Oum & Seymour, 2006 3k + 1 8k n9 log n Works for any connectivity function

Oum, 2008 3k + 1 8k n4

Oum, 2008 3k − 1 f (k)n3 Uses MSO
Courcelle & Oum, 2007 exact f (k)n3 Does not provide decomposition
Hlinený & Oum, 2008 exact f (k)n3 Uses forbidden minors

Jeong, Kim & Oum, 2021 exact 22O(k2)
n3

This work 2k 22O(k)
n2

After the algorithm of Oum and Seymour, there has been several improvements

In this work, improvement on the dependency on n from n3 to n2

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n2

History of rankwidth

Reference APX TIME Remarks
Oum & Seymour, 2006 3k + 1 8k n9 log n Works for any connectivity function

Oum, 2008 3k + 1 8k n4

Oum, 2008 3k − 1 f (k)n3 Uses MSO
Courcelle & Oum, 2007 exact f (k)n3 Does not provide decomposition
Hlinený & Oum, 2008 exact f (k)n3 Uses forbidden minors

Jeong, Kim & Oum, 2021 exact 22O(k2)
n3

This work 2k 22O(k)
n2

After the algorithm of Oum and Seymour, there has been several improvements

In this work, improvement on the dependency on n from n3 to n2

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n2

History of rankwidth

Reference APX TIME Remarks
Oum & Seymour, 2006 3k + 1 8k n9 log n Works for any connectivity function

Oum, 2008 3k + 1 8k n4

Oum, 2008 3k − 1 f (k)n3 Uses MSO
Courcelle & Oum, 2007 exact f (k)n3 Does not provide decomposition
Hlinený & Oum, 2008 exact f (k)n3 Uses forbidden minors

Jeong, Kim & Oum, 2021 exact 22O(k2)
n3

This work 2k 22O(k)
n2

After the algorithm of Oum and Seymour, there has been several improvements

In this work, improvement on the dependency on n from n3 to n2

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n2

Plan

1. Definitions and background

2. Overview of techniques for rankwidth
3. Combinatorial part of our framework

4. Algorithmic part of our framework

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time

Plan

1. Definitions and background

2. Overview of techniques for rankwidth

3. Combinatorial part of our framework
4. Algorithmic part of our framework

General idea

Setting:

I Let f : 2V → Z≥0 be a connectivity function

I We have a branch decomposition T of f of width k

I We want to either improve T or conclude k ≤ 2bw(f)

Strategy:

I Let h(T) be the number of edges of T of width ≥ k (heavy edges)

I Either decrease h(T) by using a refinement operation, or conclude
that k ≤ 2bw(f)

General idea

Setting:

I Let f : 2V → Z≥0 be a connectivity function

I We have a branch decomposition T of f of width k

I We want to either improve T or conclude k ≤ 2bw(f)

Strategy:

I Let h(T) be the number of edges of T of width ≥ k (heavy edges)

I Either decrease h(T) by using a refinement operation, or conclude
that k ≤ 2bw(f)

Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T) and (C1,C2,C3) tripartition of V

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g
w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h
w3

t

w1

w2 w3

ga

b

c
e
f

d

h

Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T) and (C1,C2,C3) tripartition of V
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g
w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h
w3

t

w1

w2 w3

ga

b

c
e
f

d

h

Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T) and (C1,C2,C3) tripartition of V
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g

w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h

w3

t

w1

w2 w3

ga

b

c
e
f

d

h

Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T) and (C1,C2,C3) tripartition of V
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g
w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h
w3

t

w1

w2 w3

ga

b

c
e
f

d

h

Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T) and (C1,C2,C3) tripartition of V
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a
b

g
w1

u2 v2

c

e
f

w2

↓

u3 v3

d

h
w3

t

w1

w2 w3

ga

b

c
e
f

d

h

Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)
I (Except when Ci is empty)

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W)

and (Ci ∩W ,Ci ∩W)

Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)

I (Except when Ci is empty)

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W)

and (Ci ∩W ,Ci ∩W)

Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)
I (Except when Ci is empty)

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W)

and (Ci ∩W ,Ci ∩W)

Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)
I (Except when Ci is empty)

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W)

and (Ci ∩W ,Ci ∩W)

Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)
I (Except when Ci is empty)

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W)

and (Ci ∩W ,Ci ∩W)

Local Improvement
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Combination of Observation 1 and 2:
I The widths of edges “near the center” will be f (Ci), f (Ci ∩W), and f (Ci ∩W) for each i

Theorem
For any set W ⊆ V with f (W) > 2bw(f) there exists tripartition (C1,C2,C3) of V so that
for each i it holds that f (Ci) < f (W)/2, f (Ci ∩W) < f (W), and f (Ci ∩W) < f (W).

⇒ If f (uv) > 2bw(f), there exists refinement with uv that locally improves T

Local Improvement
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Combination of Observation 1 and 2:
I The widths of edges “near the center” will be f (Ci), f (Ci ∩W), and f (Ci ∩W) for each i

Theorem
For any set W ⊆ V with f (W) > 2bw(f) there exists tripartition (C1,C2,C3) of V so that
for each i it holds that f (Ci) < f (W)/2, f (Ci ∩W) < f (W), and f (Ci ∩W) < f (W).

⇒ If f (uv) > 2bw(f), there exists refinement with uv that locally improves T

Local Improvement
Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

a

b

c

d

g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Let (W ,W) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Combination of Observation 1 and 2:
I The widths of edges “near the center” will be f (Ci), f (Ci ∩W), and f (Ci ∩W) for each i

Theorem
For any set W ⊆ V with f (W) > 2bw(f) there exists tripartition (C1,C2,C3) of V so that
for each i it holds that f (Ci) < f (W)/2, f (Ci ∩W) < f (W), and f (Ci ∩W) < f (W).

⇒ If f (uv) > 2bw(f), there exists refinement with uv that locally improves T

Global Improvement

Let uv ∈ E(T), (W ,W) the cut of uv , and f (uv) = k

W -improvement is any tripartition of (C1,C2,C3) of V with
1. f (Ci) < f (W)/2
2. f (Ci ∩W) < f (W)

3. f (Ci ∩W) < f (W)

Recall: If f (uv) > 2bw(f), then W -improvement exists

Theorem
If there exists a W -improvement, then there exists a W -improvement (C1,C2,C3) so
that refinement with (uv ,C1,C2,C3) does not increase width and decreases number of
edges of width k .

Global Improvement

Let uv ∈ E(T), (W ,W) the cut of uv , and f (uv) = k

W -improvement is any tripartition of (C1,C2,C3) of V with
1. f (Ci) < f (W)/2
2. f (Ci ∩W) < f (W)

3. f (Ci ∩W) < f (W)

Recall: If f (uv) > 2bw(f), then W -improvement exists

Theorem
If there exists a W -improvement, then there exists a W -improvement (C1,C2,C3) so
that refinement with (uv ,C1,C2,C3) does not increase width and decreases number of
edges of width k .

Global Improvement

Let uv ∈ E(T), (W ,W) the cut of uv , and f (uv) = k

W -improvement is any tripartition of (C1,C2,C3) of V with
1. f (Ci) < f (W)/2
2. f (Ci ∩W) < f (W)

3. f (Ci ∩W) < f (W)

Recall: If f (uv) > 2bw(f), then W -improvement exists

Theorem
If there exists a W -improvement, then there exists a W -improvement (C1,C2,C3) so
that refinement with (uv ,C1,C2,C3) does not increase width and decreases number of
edges of width k .

Global Improvement

Let uv ∈ E(T), (W ,W) the cut of uv , and f (uv) = k

W -improvement is any tripartition of (C1,C2,C3) of V with
1. f (Ci) < f (W)/2
2. f (Ci ∩W) < f (W)

3. f (Ci ∩W) < f (W)

Recall: If f (uv) > 2bw(f), then W -improvement exists

Theorem
If there exists a W -improvement, then there exists a W -improvement (C1,C2,C3) so
that refinement with (uv ,C1,C2,C3) does not increase width and decreases number of
edges of width k .

Global Improvement: Observation

u v

x
a

b

c

d

y g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

For a node x ∈ V (T), denote by Tr [x] ⊆ V the leaves in the subtree below x
I Example: Tr [x] = {a, b} and Tr [y] = {e, f , g}

Let T ′ be refinement of T with (r ,C1,C2,C3)

Observation: Each edge of T ′ corresponds either to (Ci ,Ci) or to
(Tr [x] ∩ Ci ,Tr [x] ∩ Ci) for some x ∈ V (T)

Global Improvement: Observation

u v

x
a

b

c

d

y g

h

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

For a node x ∈ V (T), denote by Tr [x] ⊆ V the leaves in the subtree below x
I Example: Tr [x] = {a, b} and Tr [y] = {e, f , g}

Let T ′ be refinement of T with (r ,C1,C2,C3)

Observation: Each edge of T ′ corresponds either to (Ci ,Ci) or to
(Tr [x] ∩ Ci ,Tr [x] ∩ Ci) for some x ∈ V (T)

Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T) it holds that
f (Tr [x] ∩ Ci) ≤ f (Tr [x]), and moreover f (Tr [x] ∩ Ci) = f (Tr [x]) only if Tr [x] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x],
I each of the new edges corresponding to Tr [x] ∩ Ci has width at most f (e)
I at most one of the new edges corresponding to Tr [x] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement

Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T) it holds that
f (Tr [x] ∩ Ci) ≤ f (Tr [x]), and moreover f (Tr [x] ∩ Ci) = f (Tr [x]) only if Tr [x] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x],
I each of the new edges corresponding to Tr [x] ∩ Ci has width at most f (e)
I at most one of the new edges corresponding to Tr [x] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement

Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T) it holds that
f (Tr [x] ∩ Ci) ≤ f (Tr [x]), and moreover f (Tr [x] ∩ Ci) = f (Tr [x]) only if Tr [x] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x],
I each of the new edges corresponding to Tr [x] ∩ Ci has width at most f (e)

I at most one of the new edges corresponding to Tr [x] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement

Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T) it holds that
f (Tr [x] ∩ Ci) ≤ f (Tr [x]), and moreover f (Tr [x] ∩ Ci) = f (Tr [x]) only if Tr [x] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x],
I each of the new edges corresponding to Tr [x] ∩ Ci has width at most f (e)
I at most one of the new edges corresponding to Tr [x] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement

Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T) it holds that
f (Tr [x] ∩ Ci) ≤ f (Tr [x]), and moreover f (Tr [x] ∩ Ci) = f (Tr [x]) only if Tr [x] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x],
I each of the new edges corresponding to Tr [x] ∩ Ci has width at most f (e)
I at most one of the new edges corresponding to Tr [x] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement

Plan

1. Definitions and background

2. Overview of techniques for rankwidth

3. Combinatorial part of our framework

4. Algorithmic part of our framework

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f)

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n

Algorithmic Framework

Let f be a connectivity function for which there exists dynamic programming data
structure with time complexity t(k) per node, where k is the width of the
decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k , in time t(k)2O(k)n
either outputs a branch decomposition of width at most k − 1, or concludes k ≤ 2bw(f).

For rankwidth, t(k) = 22O(k)

For graph branchwidth t(k) = 2O(k)

Algorithmic Framework

Let f be a connectivity function for which there exists dynamic programming data
structure with time complexity t(k) per node, where k is the width of the
decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k , in time t(k)2O(k)n
either outputs a branch decomposition of width at most k − 1, or concludes k ≤ 2bw(f).

For rankwidth, t(k) = 22O(k)

For graph branchwidth t(k) = 2O(k)

Algorithmic Framework

Let f be a connectivity function for which there exists dynamic programming data
structure with time complexity t(k) per node, where k is the width of the
decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k , in time t(k)2O(k)n
either outputs a branch decomposition of width at most k − 1, or concludes k ≤ 2bw(f).

For rankwidth, t(k) = 22O(k)

For graph branchwidth t(k) = 2O(k)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x

a

b

c

d

g

h

y

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x

a

b

c

d

g

h

y

e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement

I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x
a

b

c

d

g

h

y
e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x
a

b

c

d

g

h

y
e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement

I R forms a connected subtree around uv , and refinement can be implemented by
removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x
a

b

c

d

g

h

y
e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})

u v

x
a

b

c

d

g

h

y
e

f

⇒ t

w1

w2 w3

ga

b

c
e
f

d

h

Consider T rooted at r = uv

Observation: If Tr [x] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x] = {a, b} ⊆ C1 and Tr [y] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)

The Algorithm

Maintain dynamic programming tables towards a root edge r = uv

When changing r = uv to an incident edge r ′ = vw , only the table of v needs to
be recomputed

u v

w ⇒
v w

u

Use DFS to traverse the tree and refine when necessary, total amount of
re-computed DP-tables will be 2O(k)n by refinement amortization

⇒ Total complexity t(k)2O(k)n

The Algorithm

Maintain dynamic programming tables towards a root edge r = uv

When changing r = uv to an incident edge r ′ = vw , only the table of v needs to
be recomputed

u v

w ⇒
v w

u

Use DFS to traverse the tree and refine when necessary, total amount of
re-computed DP-tables will be 2O(k)n by refinement amortization

⇒ Total complexity t(k)2O(k)n

The Algorithm

Maintain dynamic programming tables towards a root edge r = uv

When changing r = uv to an incident edge r ′ = vw , only the table of v needs to
be recomputed

u v

w ⇒
v w

u

Use DFS to traverse the tree and refine when necessary, total amount of
re-computed DP-tables will be 2O(k)n by refinement amortization

⇒ Total complexity t(k)2O(k)n

The Algorithm

Maintain dynamic programming tables towards a root edge r = uv

When changing r = uv to an incident edge r ′ = vw , only the table of v needs to
be recomputed

u v

w ⇒
v w

u

Use DFS to traverse the tree and refine when necessary, total amount of
re-computed DP-tables will be 2O(k)n by refinement amortization

⇒ Total complexity t(k)2O(k)n

Conclusion

Framework for 2-approximating branchwidth of connectivity functions

Main application: 22O(k)
n2 time 2-approximation algorithm for rankwidth

I Solves the open problem of breaking the n3 barrier for rankwidth

Open problem: Is there a f (k)(n + m) time g(k)-approximation algorithm
for rankwidth?

Conclusion

Framework for 2-approximating branchwidth of connectivity functions

Main application: 22O(k)
n2 time 2-approximation algorithm for rankwidth

I Solves the open problem of breaking the n3 barrier for rankwidth

Open problem: Is there a f (k)(n + m) time g(k)-approximation algorithm
for rankwidth?

Conclusion

Framework for 2-approximating branchwidth of connectivity functions

Main application: 22O(k)
n2 time 2-approximation algorithm for rankwidth

I Solves the open problem of breaking the n3 barrier for rankwidth

Open problem: Is there a f (k)(n + m) time g(k)-approximation algorithm
for rankwidth?

The end

Thank you for your attention!

