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In this work

Framework for designing fast FPT 2-approximation algorithms for
branchwidth of symmetric submodular functions

Applications:

Theorem

There is a 22O(k)
n2 time 2-approximation algorithm for rankwidth.

Theorem

There is a 2O(k)n time 2-approximation algorithm for graph branchwidth.
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Branchwidth
Let V be a set and f : 2V → Z≥0 a symmetric set function.

I Symmetric: For any A ⊆ V , it holds that f (A) = f (A), where A = V \ A

Branch decomposition of f is a cubic tree whose leaves correspond to V

Example with V = {a, b, c, d , e, f , g, h}:

a

b

c

d

g

h

e

f

u v

Each edge of decomposition corresponds to a bipartition of V

Example: uv corresponds to ({a, b, c, d}, {e, f , g, h})

We denote f (uv) = f ({a, b, c, d}) = f ({e, f , g, h})

The width of the decomposition is max
uv∈E(T )

f (uv)

The branchwidth of f is minimum width of a branch decomposition of f
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Connectivity functions

Function f : 2V → Z≥0 is a connectivity function if for any A,B ⊆ V :
I f (A) = f (A) (symmetric)

I f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) (submodular)

Examples:

Border of edge set: V = E(G), for any A ⊆ V , f (A) is the number of vertices
adjacent to edges in both A and A

I Branchwidth of G

Cut-rank: V = V (G), for any A ⊆ V , f (A) is the GF(2) rank of the |A| × |A| matrix
representing G[A,A]

I Rankwidth of G
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History of rankwidth – Cliquewidth

Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet,
and Rozenberg, 1993]

Graph classes with bounded treewidth have bounded cliquewidth

But cliquewidth can be bounded also for dense graphs, for example:

I cliques, cographs, distance hereditary graphs, k -leaf-powers...

“Courcelle’s theorem” for cliquewidth
[Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth ≤ k , any MSO1-definable
graph problem can be solved in f (k)(n + m) time

Given a graph of cliquewidth k , how to construct such decomposition?
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History of rankwidth – How to approximate cliquewidth?

[Oum and Seymour, 2006]: Use rankwidth!

rw(G) ≤ cwd(G) ≤ 2rw(G)+1 − 1

O(8k n9 log n) time 3-approximation algorithm for rankwidth

⇒ (23k+2 − 1)-approximation for cliquewidth

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n9 log n
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History of rankwidth

Reference APX TIME Remarks
Oum & Seymour, 2006 3k + 1 8k n9 log n Works for any connectivity function

Oum, 2008 3k + 1 8k n4

Oum, 2008 3k − 1 f (k)n3 Uses MSO
Courcelle & Oum, 2007 exact f (k)n3 Does not provide decomposition
Hlinený & Oum, 2008 exact f (k)n3 Uses forbidden minors

Jeong, Kim & Oum, 2021 exact 22O(k2)
n3

This work 2k 22O(k)
n2

After the algorithm of Oum and Seymour, there has been several improvements

In this work, improvement on the dependency on n from n3 to n2

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n2
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Hlinený & Oum, 2008 exact f (k)n3 Uses forbidden minors

Jeong, Kim & Oum, 2021 exact 22O(k2)
n3

This work 2k 22O(k)
n2

After the algorithm of Oum and Seymour, there has been several improvements

In this work, improvement on the dependency on n from n3 to n2

⇒ “Courcelle’s theorem” for cliquewidth with time complexity f (k)n2



Plan

1. Definitions and background

2. Overview of techniques for rankwidth
3. Combinatorial part of our framework

4. Algorithmic part of our framework



Iterative compression

Well-known technique: Iterative compression

Insert vertices one-by-one, maintaining an “augmented” rank decomposition of
width ≤ 2rw(G)

Insert one vertex in 2O(rw(G))n time

Improve width to ≤ 2rw(G) in 22O(rw(G))
n time

Repeat n times→ 22O(rw(G))
n2 time algorithm
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Novel compression algorithm

Input: Augmented rank decomposition of G of width k
Output: Augmented rank decomposition of G of width≤ k−1 or conclusion k ≤ 2rw(G)

Time complexity: 22O(k)
n

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

Is not based on a Robertson-Seymour type idea of building the decomposition
top-down

Instead, iteratively improves the given rank decomposition by applying refinement
operations

Combinatorial framework: For any connectivity function f , a branch decomposition
of width > 2bw(f ) can be improved by refinement operation

Algorithmic framework:
I Direct computation of refinements by dynamic programming→ 22O(k)

n2 time
I Amortization techniques exploiting combinatorial results→ 22O(k)

n time
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General idea

Setting:

I Let f : 2V → Z≥0 be a connectivity function

I We have a branch decomposition T of f of width k

I We want to either improve T or conclude k ≤ 2bw(f )

Strategy:

I Let h(T ) be the number of edges of T of width ≥ k (heavy edges)

I Either decrease h(T ) by using a refinement operation, or conclude
that k ≤ 2bw(f )
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Refinement operation
Specified by 4-tuple (r ,C1,C2,C3), where r ∈ E(T ) and (C1,C2,C3) tripartition of V

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})
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Observations on Refinement

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})
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Observation 1: For each i , there will be an edge wi t corresponding to (Ci ,Ci)
I (Except when Ci is empty)

Let (W ,W ) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W )

and (Ci ∩W ,Ci ∩W )
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Observation 2: For each i , there will be edges corresponding to (Ci ∩W ,Ci ∩W )

and (Ci ∩W ,Ci ∩W )
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Local Improvement
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Let (W ,W ) = ({a, b, c, d}, {e, f , g, h}) be the cut of uv

Combination of Observation 1 and 2:
I The widths of edges “near the center” will be f (Ci ), f (Ci ∩W ), and f (Ci ∩W ) for each i

Theorem
For any set W ⊆ V with f (W ) > 2bw(f ) there exists tripartition (C1,C2,C3) of V so that
for each i it holds that f (Ci) < f (W )/2, f (Ci ∩W ) < f (W ), and f (Ci ∩W ) < f (W ).

⇒ If f (uv) > 2bw(f ), there exists refinement with uv that locally improves T
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Global Improvement

Let uv ∈ E(T ), (W ,W ) the cut of uv , and f (uv) = k

W -improvement is any tripartition of (C1,C2,C3) of V with
1. f (Ci ) < f (W )/2
2. f (Ci ∩W ) < f (W )

3. f (Ci ∩W ) < f (W )

Recall: If f (uv) > 2bw(f ), then W -improvement exists

Theorem
If there exists a W -improvement, then there exists a W -improvement (C1,C2,C3) so
that refinement with (uv ,C1,C2,C3) does not increase width and decreases number of
edges of width k .
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Consider T rooted at r = uv

For a node x ∈ V (T ), denote by Tr [x ] ⊆ V the leaves in the subtree below x
I Example: Tr [x ] = {a, b} and Tr [y ] = {e, f , g}

Let T ′ be refinement of T with (r ,C1,C2,C3)

Observation: Each edge of T ′ corresponds either to (Ci ,Ci) or to
(Tr [x ] ∩ Ci ,Tr [x ] ∩ Ci) for some x ∈ V (T )
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Global Improvement: Construction

A global T -improvement is a W -improvement (C1,C2,C3) that
1. minimizes max(f (C1), f (C2), f (C3)) among W -improvements
2. subject to (1), minimizes the number of non-empty Ci
3. subject to (1,2), minimizes f (C1) + f (C2) + f (C3)
4. subject to (1,2,3), maximizes the number of nodes x such that Tr [x ] ⊆ Ci for some i

Theorem
Let (C1,C2,C3) be a global T -improvement. For any x ∈ V (T ) it holds that
f (Tr [x ] ∩ Ci) ≤ f (Tr [x ]), and moreover f (Tr [x ] ∩ Ci) = f (Tr [x ]) only if Tr [x ] ⊆ Ci .

Observation 1: For each edge e of T corresponding to Tr [x ],
I each of the new edges corresponding to Tr [x ] ∩ Ci has width at most f (e)
I at most one of the new edges corresponding to Tr [x ] ∩ Ci has width f (e)

Observation 2: For the edge uv , none of the new edges corresponding to it has
width f (uv)
⇒ Strict improvement
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First Algorithm

Now, we have a following generic algorithm for 2-approximating branchwidth of
connectivity function

1. Let T have width k , select edge uv with f (uv) = k

2. Root T at uv

3. Use dynamic programming on T to compute a global T -improvement or conclude
k ≤ 2bw(f )

4. If global T -improvement found, refine T using it

5. Repeat until the width of T decreases (at most n iterations)

⇒ Total time complexity t(k) · n2, where t(k) time complexity of dynamic
programming

Too slow! Target is t(k) · n
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Algorithmic Framework

Let f be a connectivity function for which there exists dynamic programming data
structure with time complexity t(k) per node, where k is the width of the
decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k , in time t(k)2O(k)n
either outputs a branch decomposition of width at most k − 1, or concludes k ≤ 2bw(f ).

For rankwidth, t(k) = 22O(k)

For graph branchwidth t(k) = 2O(k)
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Amortization technique

Example with (r ,C1,C2,C3) = (uv , {a, b, g}, {c, e, f}, {d , h})
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Consider T rooted at r = uv

Observation: If Tr [x ] ⊆ Ci , then the subtree of x appears identically in refinement
I Example: Tr [x ] = {a, b} ⊆ C1 and Tr [y ] = {e, f} ⊆ C2

Call the nodes for which this does not happen the edit set R of the refinement
I R forms a connected subtree around uv , and refinement can be implemented by

removing R and inserting |R| nodes in its place

I Over sequence of refinements, it holds that
∑
|R| ≤ O(3k · k · n)
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The Algorithm

Maintain dynamic programming tables towards a root edge r = uv

When changing r = uv to an incident edge r ′ = vw , only the table of v needs to
be recomputed

u v

w ⇒
v w

u

Use DFS to traverse the tree and refine when necessary, total amount of
re-computed DP-tables will be 2O(k)n by refinement amortization

⇒ Total complexity t(k)2O(k)n
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Conclusion

Framework for 2-approximating branchwidth of connectivity functions

Main application: 22O(k)
n2 time 2-approximation algorithm for rankwidth

I Solves the open problem of breaking the n3 barrier for rankwidth

Open problem: Is there a f (k)(n + m) time g(k)-approximation algorithm
for rankwidth?
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The end

Thank you for your attention!


