Fast FPT-Approximation of Branchwidth

Fedor V. Fomin, Tuukka Korhonen

Department of Informatics, University of Bergen, Norway

IBS Virtual Discrete Math Colloquium November 25, 2021

• Framework for designing fast FPT 2-approximation algorithms for branchwidth of symmetric submodular functions

- Framework for designing fast FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem There is a $2^{2^{O(k)}}n^2$ time 2-approximation algorithm for rankwidth.

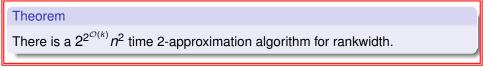
- Framework for designing fast FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:

Theorem There is a $2^{2^{O(k)}} n^2$ time 2-approximation algorithm for rankwidth.

Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

- Framework for designing fast FPT 2-approximation algorithms for branchwidth of symmetric submodular functions
- Applications:



Theorem

There is a $2^{\mathcal{O}(k)}n$ time 2-approximation algorithm for graph branchwidth.

Plan

- 1. Definitions and background
- 2. Overview of techniques for rankwidth
- 3. Combinatorial part of our framework
- 4. Algorithmic part of our framework

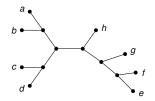
Plan

1. Definitions and background

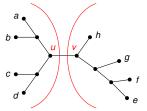
- 2. Overview of techniques for rankwidth
- 3. Combinatorial part of our framework
- 4. Algorithmic part of our framework

- Let *V* be a set and $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$

- Let *V* be a set and $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:

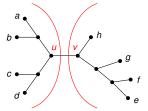


- Let *V* be a set and $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with *V* = {*a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*}:



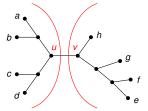
- Each edge of decomposition corresponds to a bipartition of V
- Example: *uv* corresponds to ({*a*, *b*, *c*, *d*}, {*e*, *f*, *g*, *h*})

- Let *V* be a set and $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with *V* = {*a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*}:



- Each edge of decomposition corresponds to a bipartition of V
- Example: *uv* corresponds to ({*a*, *b*, *c*, *d*}, {*e*, *f*, *g*, *h*})
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- The width of the decomposition is $\max_{uv \in E(T)} f(uv)$

- Let *V* be a set and $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ a symmetric set function.
 - Symmetric: For any $A \subseteq V$, it holds that $f(A) = f(\overline{A})$, where $\overline{A} = V \setminus A$
- Branch decomposition of f is a cubic tree whose leaves correspond to V
- Example with $V = \{a, b, c, d, e, f, g, h\}$:



- Each edge of decomposition corresponds to a bipartition of V
- Example: *uv* corresponds to ({*a*, *b*, *c*, *d*}, {*e*, *f*, *g*, *h*})
- We denote $f(uv) = f(\{a, b, c, d\}) = f(\{e, f, g, h\})$
- The width of the decomposition is $\max_{uv \in E(T)} f(uv)$
- The branchwidth of *f* is minimum width of a branch decomposition of *f*

Connectivity functions

- Function $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:
 - $f(A) = f(\overline{A})$ (symmetric)
 - $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Connectivity functions

• Function $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:

- $f(A) = f(\overline{A})$ (symmetric)
- $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of edge set: V = E(G), for any A ⊆ V, f(A) is the number of vertices adjacent to edges in both A and A
 - Branchwidth of G

Connectivity functions

• Function $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ is a connectivity function if for any $A, B \subseteq V$:

- $f(A) = f(\overline{A})$ (symmetric)
- $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ (submodular)

Examples:

- Border of edge set: V = E(G), for any A ⊆ V, f(A) is the number of vertices adjacent to edges in both A and A
 - Branchwidth of G
- Cut-rank: V = V(G), for any $A \subseteq V$, f(A) is the GF(2) rank of the $|A| \times |\overline{A}|$ matrix representing $G[A, \overline{A}]$
 - Rankwidth of G

 Cliquewidth – dense generalization of treewidth defined by [Courcelle, Engelfriet, and Rozenberg, 1993]

- Cliquewidth dense generalization of treewidth defined by [Courcelle, Engelfriet, and Rozenberg, 1993]
- Graph classes with bounded treewidth have bounded cliquewidth

- Cliquewidth dense generalization of treewidth defined by [Courcelle, Engelfriet, and Rozenberg, 1993]
- Graph classes with bounded treewidth have bounded cliquewidth
- But cliquewidth can be bounded also for dense graphs, for example:
 - cliques, cographs, distance hereditary graphs, k-leaf-powers...

- Cliquewidth dense generalization of treewidth defined by [Courcelle, Engelfriet, and Rozenberg, 1993]
- Graph classes with bounded treewidth have bounded cliquewidth
- But cliquewidth can be bounded also for dense graphs, for example:
 - cliques, cographs, distance hereditary graphs, k-leaf-powers...

"Courcelle's theorem" for cliquewidth [Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth $\leq k$, any **MSO**₁-definable graph problem can be solved in f(k)(n+m) time

- Cliquewidth dense generalization of treewidth defined by [Courcelle, Engelfriet, and Rozenberg, 1993]
- Graph classes with bounded treewidth have bounded cliquewidth
- But cliquewidth can be bounded also for dense graphs, for example:
 - cliques, cographs, distance hereditary graphs, k-leaf-powers...

"Courcelle's theorem" for cliquewidth [Courcelle, Makowsky, and Rotics, 2000]

Given a graph with a decomposition witnessing cliquewidth $\leq k$, any **MSO**₁-definable graph problem can be solved in f(k)(n + m) time

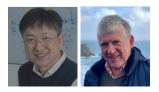
Given a graph of cliquewidth k, how to construct such decomposition?



[Oum and Seymour, 2006]: Use rankwidth!

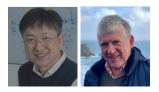
[Oum and Seymour, 2006]: Use rankwidth!

• $rw(G) \leq cwd(G) \leq 2^{rw(G)+1} - 1$



[Oum and Seymour, 2006]: Use rankwidth!

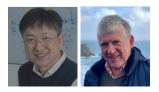
- $\operatorname{rw}(G) \leq \operatorname{cwd}(G) \leq 2^{\operatorname{rw}(G)+1} 1$
- $\mathcal{O}(8^k n^9 \log n)$ time 3-approximation algorithm for rankwidth



[Oum and Seymour, 2006]: Use rankwidth!

•
$$\operatorname{rw}(G) \leq \operatorname{cwd}(G) \leq 2^{\operatorname{rw}(G)+1} - 1$$

• $\mathcal{O}(8^k n^9 \log n)$ time 3-approximation algorithm for rankwidth $\Rightarrow (2^{3k+2} - 1)$ -approximation for cliquewidth



[Oum and Seymour, 2006]: Use rankwidth!

- $\operatorname{rw}(G) \leq \operatorname{cwd}(G) \leq 2^{\operatorname{rw}(G)+1} 1$
- $\mathcal{O}(8^k n^9 \log n)$ time 3-approximation algorithm for rankwidth
 - \Rightarrow (2^{3k+2} 1)-approximation for cliquewidth
 - \Rightarrow "Courcelle's theorem" for cliquewidth with time complexity $f(k)n^9 \log n$

History of rankwidth

Reference	APX	TIME	Remarks
Oum & Seymour, 2006	3 <i>k</i> + 1	8 ^k n ⁹ log n	Works for any connectivity function
Oum, 2008	3 <i>k</i> + 1	8 ^k n ⁴	
Oum, 2008	3 <i>k</i> – 1	f(k)n ³	Uses MSO
Courcelle & Oum, 2007	exact	f(k)n ³	Does not provide decomposition
Hlinený & Oum, 2008	exact	f(k)n ³	Uses forbidden minors
Jeong, Kim & Oum, 2021	exact	$2^{2^{O(k^2)}} n^3$	
This work	2k	$2^{2^{O(k)}} n^2$	

• After the algorithm of Oum and Seymour, there has been several improvements

History of rankwidth

Reference	APX	TIME	Remarks
Oum & Seymour, 2006	3 <i>k</i> + 1	8 ^k n ⁹ log n	Works for any connectivity function
Oum, 2008	3 <i>k</i> + 1	8 ^k n ⁴	
Oum, 2008	3 <i>k</i> – 1	f(k)n ³	Uses MSO
Courcelle & Oum, 2007	exact	f(k)n ³	Does not provide decomposition
Hlinený & Oum, 2008	exact	f(k)n ³	Uses forbidden minors
Jeong, Kim & Oum, 2021	exact	$2^{2^{O(k^2)}} n^3$	
This work	2k	$2^{2^{O(k)}}n^{2}$	

• After the algorithm of Oum and Seymour, there has been several improvements

• In this work, improvement on the dependency on *n* from n^3 to n^2

History of rankwidth

Reference	APX	TIME	Remarks
Oum & Seymour, 2006	3 <i>k</i> + 1	8 ^k n ⁹ log n	Works for any connectivity function
Oum, 2008	3 <i>k</i> + 1	8 ^k n ⁴	
Oum, 2008	3 <i>k</i> – 1	f(k)n ³	Uses MSO
Courcelle & Oum, 2007	exact	f(k)n ³	Does not provide decomposition
Hlinený & Oum, 2008	exact	$f(k)n^3$	Uses forbidden minors
Jeong, Kim & Oum, 2021	exact	$2^{2^{O(k^2)}} n^3$	
This work	2k	$2^{2^{O(k)}}n^{2}$	

• After the algorithm of Oum and Seymour, there has been several improvements

• In this work, improvement on the dependency on *n* from n^3 to n^2

 \Rightarrow "Courcelle's theorem" for cliquewidth with time complexity $f(k)n^2$

Plan

1. Definitions and background

2. Overview of techniques for rankwidth

- 3. Combinatorial part of our framework
- 4. Algorithmic part of our framework

Well-known technique: Iterative compression

 Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width ≤ 2rw(G)

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width ≤ 2rw(G)
- Insert one vertex in $2^{\mathcal{O}(rw(G))}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width ≤ 2rw(G)
- Insert one vertex in $2^{\mathcal{O}(\texttt{rw}(G))}n$ time
- Improve width to $\leq 2_{\text{TW}}(G)$ in $2^{2^{\mathcal{O}(\text{TW}(G))}}n$ time

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width ≤ 2rw(G)
- Insert one vertex in $2^{\mathcal{O}(rw(G))}n$ time
- Improve width to $\leq 2_{\text{TW}}(G)$ in $2^{2^{\mathcal{O}(\text{TW}(G))}}n$ time
- Repeat *n* times $\rightarrow 2^{2^{\mathcal{O}(IW(G))}} n^2$ time algorithm

Well-known technique: Iterative compression

- Insert vertices one-by-one, maintaining an "augmented" rank decomposition of width ≤ 2rw(G)
- Insert one vertex in $2^{\mathcal{O}(\texttt{rw}(G))}n$ time

• Improve width to $\leq 2_{\text{IW}}(G)$ in $2^{2^{\mathcal{O}(\text{IW}(G))}}n$ time

• Repeat *n* times $\rightarrow 2^{2^{\mathcal{O}(IW(G))}} n^2$ time algorithm

Input: Augmented rank decomposition of G of width k Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2_{IW}(G)$ Time complexity: $2^{2^{O(k)}}n$

Input: Augmented rank decomposition of G of width k Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2_{\text{TW}}(G)$ Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph *G* is already stored as adjacency matrix)

Input: Augmented rank decomposition of G of width k Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2_{\text{TW}}(G)$ Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph *G* is already stored as adjacency matrix)

Our algorithm

• Is not based on a Robertson-Seymour type idea of building the decomposition top-down

Input: Augmented rank decomposition of G of width k Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2_{\text{TW}}(G)$ Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations

Input: Augmented rank decomposition of G of width k Output: Augmented rank decomposition of G of width $\leq k-1$ or conclusion $k \leq 2_{\text{TW}}(G)$ Time complexity: $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations
- Combinatorial framework: For any connectivity function *f*, a branch decomposition of width > 2bw(*f*) can be improved by refinement operation

Input: Augmented rank decomposition of *G* of width k**Output:** Augmented rank decomposition of *G* of width $\leq k-1$ or conclusion $k \leq 2_{\text{TW}}(G)$ **Time complexity:** $2^{2^{\mathcal{O}(k)}}n$

(Assumes that the graph G is already stored as adjacency matrix)

Our algorithm

- Is not based on a Robertson-Seymour type idea of building the decomposition top-down
- Instead, iteratively improves the given rank decomposition by applying refinement operations
- Combinatorial framework: For any connectivity function *f*, a branch decomposition of width > 2bw(*f*) can be improved by refinement operation
- Algorithmic framework:
 - ▶ Direct computation of refinements by dynamic programming $\rightarrow 2^{2^{O(k)}} n^2$ time
 - Amortization techniques exploiting combinatorial results $\rightarrow 2^{2^{\mathcal{O}(k)}} n$ time

Plan

- 1. Definitions and background
- 2. Overview of techniques for rankwidth

3. Combinatorial part of our framework

4. Algorithmic part of our framework

General idea

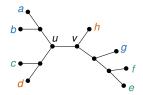
- Setting:
 - Let $f : 2^{V} \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - ▶ We have a branch decomposition *T* of *f* of width *k*
 - We want to either improve T or conclude $k \leq 2bw(f)$

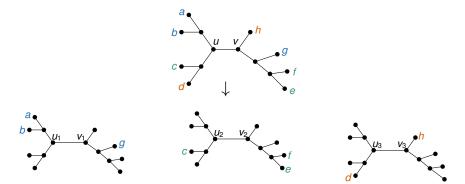
General idea

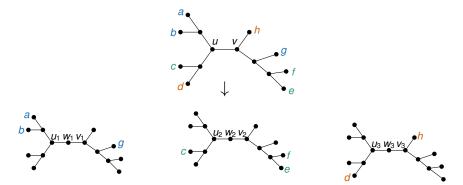
- Setting:
 - Let $f : 2^V \to \mathbb{Z}_{\geq 0}$ be a connectivity function
 - We have a branch decomposition T of f of width k
 - We want to either improve T or conclude $k \leq 2bw(f)$

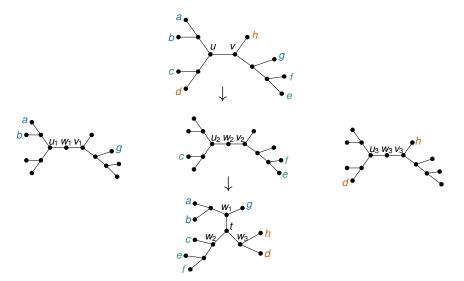
- Strategy:
 - Let h(T) be the number of edges of T of width $\geq k$ (heavy edges)
 - ► Either decrease h(T) by using a refinement operation, or conclude that k ≤ 2bw(f)

Specified by 4-tuple (r, C_1, C_2, C_3) , where $r \in E(T)$ and (C_1, C_2, C_3) tripartition of V









Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

• Observation 1: For each *i*, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

• Observation 1: For each *i*, there will be an edge $w_i t$ corresponding to $(C_i, \overline{C_i})$

(Except when C_i is empty)

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

Observation 1: For each *i*, there will be an edge w_it corresponding to (C_i, C_i)
 (Except when C_i is empty)

• Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

Observation 1: For each *i*, there will be an edge w_it corresponding to (C_i, C_i)
 (Except when C_i is empty)

- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Observation 2: For each *i*, there will be edges corresponding to (C_i ∩ W, C_i ∩ W) and (C_i ∩ W, C_i ∩ W)

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

• Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv

- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each *i*

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each *i*

Theorem

For any set $W \subseteq V$ with $f(W) > 2_{\mathbb{D}W}(f)$ there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap W) < f(W)$.

Local Improvement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

- Let $(W, \overline{W}) = (\{a, b, c, d\}, \{e, f, g, h\})$ be the cut of uv
- Combination of Observation 1 and 2:
 - ▶ The widths of edges "near the center" will be $f(C_i)$, $f(C_i \cap W)$, and $f(C_i \cap \overline{W})$ for each *i*

Theorem

For any set $W \subseteq V$ with $f(W) > 2_{\mathbb{D}W}(f)$ there exists tripartition (C_1, C_2, C_3) of V so that for each i it holds that $f(C_i) < f(W)/2$, $f(C_i \cap W) < f(W)$, and $f(C_i \cap W) < f(W)$.

 \Rightarrow If f(uv) > 2bw(f), there exists refinement with uv that locally improves T

• Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$ 2. $f(C_i \cap W) < f(W)$
 - 3. $f(C_i \cap \overline{W}) < f(W)$

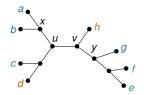
- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- *W*-improvement is any tripartition of (*C*₁, *C*₂, *C*₃) of *V* with
 1. *f*(*C_i*) < *f*(*W*)/2
 2. *f*(*C_i* ∩ *W*) < *f*(*W*)
 3. *f*(*C_i* ∩ *W*) < *f*(*W*)
- Recall: If $f(uv) > 2b_W(f)$, then W-improvement exists

- Let $uv \in E(T)$, (W, \overline{W}) the cut of uv, and f(uv) = k
- W-improvement is any tripartition of (C_1, C_2, C_3) of V with
 - 1. $f(C_i) < f(W)/2$ 2. $f(C_i \cap W) < f(W)$
 - 3. $f(C_i \cap \overline{W}) < f(W)$
- Recall: If f(uv) > 2bw(f), then W-improvement exists

Theorem

If there exists a *W*-improvement, then there exists a *W*-improvement (C_1 , C_2 , C_3) so that refinement with (uv, C_1 , C_2 , C_3) does not increase width and decreases number of edges of width *k*.

Global Improvement: Observation



- Consider *T* rooted at *r* = *uv*
- For a node $x \in V(T)$, denote by $T_r[x] \subseteq V$ the leaves in the subtree below x
 - Example: $T_r[x] = \{a, b\}$ and $T_r[y] = \{e, f, g\}$

Global Improvement: Observation

- Consider T rooted at r = uv
- For a node x ∈ V(T), denote by T_r[x] ⊆ V the leaves in the subtree below x
 Example: T_r[x] = {a, b} and T_r[y] = {e, f, g}
- Let T' be refinement of T with (r, C_1, C_2, C_3)
- Observation: Each edge of T' corresponds either to $(C_i, \overline{C_i})$ or to $(T_r[x] \cap C_i, \overline{T_r[x] \cap C_i})$ for some $x \in V(T)$

- A global *T*-improvement is a *W*-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

- A global *T*-improvement is a *W*-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a global *T*-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- A global *T*-improvement is a *W*-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a global *T*-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- Observation 1: For each edge e of T corresponding to $T_r[x]$,
 - each of the new edges corresponding to $T_r[x] \cap C_i$ has width at most f(e)

- A global *T*-improvement is a *W*-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a global *T*-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- Observation 1: For each edge *e* of *T* corresponding to $T_r[x]$,
 - each of the new edges corresponding to $T_r[x] \cap C_i$ has width at most f(e)
 - ▶ at most one of the new edges corresponding to $T_r[x] \cap C_i$ has width f(e)

- A global *T*-improvement is a *W*-improvement (C_1, C_2, C_3) that
 - 1. minimizes $\max(f(C_1), f(C_2), f(C_3))$ among W-improvements
 - 2. subject to (1), minimizes the number of non-empty C_i
 - 3. subject to (1,2), minimizes $f(C_1) + f(C_2) + f(C_3)$
 - 4. subject to (1,2,3), maximizes the number of nodes x such that $T_r[x] \subseteq C_i$ for some i

Theorem

Let (C_1, C_2, C_3) be a global *T*-improvement. For any $x \in V(T)$ it holds that $f(T_r[x] \cap C_i) \leq f(T_r[x])$, and moreover $f(T_r[x] \cap C_i) = f(T_r[x])$ only if $T_r[x] \subseteq C_i$.

- Observation 1: For each edge e of T corresponding to $T_r[x]$,
 - each of the new edges corresponding to $T_r[x] \cap C_i$ has width at most f(e)
 - ▶ at most one of the new edges corresponding to $T_r[x] \cap C_i$ has width f(e)
- Observation 2: For the edge uv, none of the new edges corresponding to it has width f(uv)

 \Rightarrow Strict improvement

Plan

- 1. Definitions and background
- 2. Overview of techniques for rankwidth
- 3. Combinatorial part of our framework

4. Algorithmic part of our framework

First Algorithm

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k

First Algorithm

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv

First Algorithm

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let *T* have width *k*, select edge uv with f(uv) = k
- 2. Root T at uv
- Use dynamic programming on *T* to compute a global *T*-improvement or conclude *k* ≤ 2bw(*f*)

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- Use dynamic programming on *T* to compute a global *T*-improvement or conclude *k* ≤ 2bw(*f*)
- 4. If global *T*-improvement found, refine *T* using it

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- Use dynamic programming on *T* to compute a global *T*-improvement or conclude *k* ≤ 2bw(*f*)
- 4. If global *T*-improvement found, refine *T* using it
- 5. Repeat until the width of T decreases (at most *n* iterations)

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- Use dynamic programming on *T* to compute a global *T*-improvement or conclude *k* ≤ 2bw(*f*)
- 4. If global *T*-improvement found, refine *T* using it
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming

- Now, we have a following generic algorithm for 2-approximating branchwidth of connectivity function
- 1. Let T have width k, select edge uv with f(uv) = k
- 2. Root T at uv
- Use dynamic programming on *T* to compute a global *T*-improvement or conclude k ≤ 2bw(f)
- 4. If global *T*-improvement found, refine *T* using it
- 5. Repeat until the width of *T* decreases (at most *n* iterations)
- \Rightarrow Total time complexity $t(k) \cdot n^2$, where t(k) time complexity of dynamic programming
 - Too slow! Target is $t(k) \cdot n$

Algorithmic Framework

• Let *f* be a connectivity function for which there exists dynamic programming data structure with time complexity *t*(*k*) per node, where *k* is the width of the decomposition

Algorithmic Framework

• Let *f* be a connectivity function for which there exists dynamic programming data structure with time complexity *t*(*k*) per node, where *k* is the width of the decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k, in time $t(k)2^{\mathcal{O}(k)}n$ either outputs a branch decomposition of width at most k - 1, or concludes $k \leq 2 \operatorname{bw}(f)$.

Algorithmic Framework

• Let *f* be a connectivity function for which there exists dynamic programming data structure with time complexity *t*(*k*) per node, where *k* is the width of the decomposition

Theorem

There is an algorithm, that given a branch decomposition of width k, in time $t(k)2^{\mathcal{O}(k)}n$ either outputs a branch decomposition of width at most k - 1, or concludes $k \leq 2 \operatorname{bw}(f)$.

- For rankwidth, $t(k) = 2^{2^{\mathcal{O}(k)}}$
- For graph branchwidth $t(k) = 2^{\mathcal{O}(k)}$

• Consider *T* rooted at *r* = *uv*

- Consider *T* rooted at *r* = *uv*
- Observation: If $T_r[x] \subseteq C_i$, then the subtree of x appears identically in refinement

Example with $(r, C_1, C_2, C_3) = (uv, \{a, b, g\}, \{c, e, f\}, \{d, h\})$

Consider T rooted at r = uv

Observation: If *T_r*[*x*] ⊆ *C_i*, then the subtree of *x* appears identically in refinement
 Example: *T_r*[*x*] = {*a*, *b*} ⊆ *C*₁ and *T_r*[*y*] = {*e*, *f*} ⊆ *C*₂

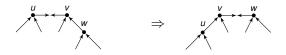
- Consider T rooted at r = uv
- Observation: If *T_r*[*x*] ⊆ *C_i*, then the subtree of *x* appears identically in refinement
 Example: *T_r*[*x*] = {*a*, *b*} ⊆ *C*₁ and *T_r*[*y*] = {*e*, *f*} ⊆ *C*₂
- Call the nodes for which this does not happen the edit set R of the refinement

- Consider *T* rooted at *r* = *uv*
- Observation: If *T_r*[*x*] ⊆ *C_i*, then the subtree of *x* appears identically in refinement
 Example: *T_r*[*x*] = {*a*, *b*} ⊆ *C*₁ and *T_r*[*y*] = {*e*, *f*} ⊆ *C*₂
- Call the nodes for which this does **not** happen the *edit set R* of the refinement
 - R forms a connected subtree around uv, and refinement can be implemented by removing R and inserting |R| nodes in its place

- Consider T rooted at r = uv
- Observation: If *T_r*[*x*] ⊆ *C_i*, then the subtree of *x* appears identically in refinement
 Example: *T_r*[*x*] = {*a*, *b*} ⊆ *C*₁ and *T_r*[*y*] = {*e*, *f*} ⊆ *C*₂
- Call the nodes for which this does **not** happen the *edit set R* of the refinement
 - R forms a connected subtree around uv, and refinement can be implemented by removing R and inserting |R| nodes in its place
 - Over sequence of refinements, it holds that $\sum |R| \leq \mathcal{O}(3^k \cdot k \cdot n)$

• Maintain dynamic programming tables towards a root edge r = uv

- Maintain dynamic programming tables towards a root edge r = uv
- When changing r = uv to an incident edge r' = vw, only the table of v needs to be recomputed



- Maintain dynamic programming tables towards a root edge r = uv
- When changing r = uv to an incident edge r' = vw, only the table of v needs to be recomputed



 Use DFS to traverse the tree and refine when necessary, total amount of re-computed DP-tables will be 2^{O(k)} n by refinement amortization

- Maintain dynamic programming tables towards a root edge r = uv
- When changing *r* = *uv* to an incident edge *r'* = *vw*, only the table of *v* needs to be recomputed



 Use DFS to traverse the tree and refine when necessary, total amount of re-computed DP-tables will be 2^{O(k)} n by refinement amortization

 \Rightarrow Total complexity $t(k)2^{\mathcal{O}(k)}n$

Conclusion

• Framework for 2-approximating branchwidth of connectivity functions

Conclusion

• Framework for 2-approximating branchwidth of connectivity functions

- Main application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - Solves the open problem of breaking the n^3 barrier for rankwidth

Conclusion

• Framework for 2-approximating branchwidth of connectivity functions

- Main application: $2^{2^{\mathcal{O}(k)}} n^2$ time 2-approximation algorithm for rankwidth
 - Solves the open problem of breaking the n^3 barrier for rankwidth

• Open problem: Is there a *f*(*k*)(*n* + *m*) time *g*(*k*)-approximation algorithm for rankwidth?

Thank you for your attention!