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Maximum Colored Path

Input: Vertex-colored undirected graph, vertices s and t , and an integer k .
Task: Find an s, t-path containing at least k different colors.

MAXIMUM COLORED s, t -PATH

s t

Here, such path exists when k ≤ 3

A path does not contain repeated vertices

A color may repeat multiple times in the path, and it can contain more than k colors
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Fixed-parameter tractability of Maximum Colored Path

Input: Vertex-colored undirected graph, vertices s and t , and an integer k .
Task: Find an s, t-path containing at least k different colors.

MAXIMUM COLORED s, t -PATH

Theorem

There is a 2knO(1) time randomized algorithm for maximum colored s, t-path.
Moreover, the algorithm returns the shortest solution.

(“and beyond” will come later)

This is the first FPT algorithm (time complexity f (k) · nO(1)) for this problem

Assuming set cover conjecture, no (2− ε)k nO(1) time algorithm for any ε > 0

s a1 br t

...
... · · ·

...

H1 H2 Hr

NP-hard for directed graphs already when k = 2
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Application: Longest path

Input: Undirected graph, vertices s and t , and an integer k .
Task: Find an s, t-path of length at least k .

LONGEST s, t -PATH

s

t

Longest s, t-path reduces to maximum colored s, t-path by coloring all vertices
with different colors

⇒ 2k nO(1) time algorithm for longest s, t-path
Previous best algorithm 4.884k nO(1) time [Fomin, Lokshtanov, Panolan, Saurabh,
Zehavi’18]
In contrast, there is a 1.66k nO(1) time algorithm for longest path [Björklund,
Husfeldt, Kaski, Koivisto’17]
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Application: T -cycle

Input: Undirected graph and a set of terminal vertices T .
Task: Find a cycle that visits each vertex in T .

T -CYCLE

2|T |nO(1) time algorithm for T -cycle [Björklund, Husfeldt, Taslaman’12]

T -cycle reduces to maximum colored s, t-path by coloring the vertices in T with
different colors, the rest with one color, and guessing one edge of the cycle

⇒ 2|T |nO(1) time algorithm also via our result

Allows for generalizations, e.g., arbitrarily large T
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Beyond Maximum Colored Path
Input:

Colored positive-integer weighted undirected graph

Two sets of vertices S and T
Integers p, k ,w

Task:
Find p vertex-disjoint paths starting in S and ending in T so that
the vertices of the paths contain a set X of size k , total weight w , and having
distinct colors
While minimizing the total length of the paths

8 9

7

9

2

6

4

5

6

3

2
23

2

Here, p = 2, k = 3, and w = 18.

Main theorem: Randomized algorithm with time complexity 2k+pnO(1)w .
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More applications

Longest T -cycle in time 2max(|T |,k)nO(1)

Bank robber’s path: Equipment for robbing k banks, know profit from each,
maximize the profit while minimizing the length of the path in time 2knO(1)

I and generalization to p robbers in time 2k+pnO(1)

Vehicle routing: k items, p vehicles, customers bid for items, find shortest
vertex-disjoint routing to deliver items to maximize profit in time 2p+knO(1)

Generalization from colored graphs to (graph, matroid) pairs represented over a

finite field of order q with a 2O(k2 log(q+p)) factor overhead
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The algorithm

The algorithm
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Outline

In this talk, we focus on:

Input: Vertex-colored undirected graph, vertices s and t , and an integer k .
Task: Find a k -colored s, t-path. (s, t-path with at least k different colors)

MAXIMUM COLORED s, t -PATH

s t

Algorithm based on algebraic approach, extending ideas that were developed by
[Björklund, Husfeldt, Taslaman’12], [Björklund’14], [Björklund, Husfeldt, Kaski,
Koivisto’17] for T -cycle, hamiltonicity, and k -path
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Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Algebraic approach

General idea:

Design a multivariate polynomial p(x1, . . . , xm) of total degree ≤ 4n over
GF(23+dlog ne) (finite field of order ≥ 8n and characteristic 2) so that

1. no-instance→ p(x1, . . . , xm) is identically zero polynomial

2. yes-instance→ p(x1, . . . , xm) is a non-zero polynomial

3. Given x1, . . . , xm, p(x1, . . . , xm) can be evaluated in 2k nO(1) time

By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2k nO(1)

time by evaluating p(x1, . . . , xm) for random x1, . . . , xm.

Characteristic 2?
I x + x = 0 for any x

Tuukka Korhonen Maximum Colored Path and Beyond 10 / 24



Design of the polynomial

Idea: Design a polynomial where monomials correspond to labeled walks

Evaluating a polynomial over walks is easier than over paths

Argue that monomials corresponding to non-path walks and paths with less than k
colors cancel out (by x + x = 0), and only the contribution of k -colored paths
remains
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Labeled walks

s a b

c d

e t

k = 2

(s, t)-walk of length ` is a sequence s = v1 . . . v` = t of ` adjacent vertices

I For example sabcdbet is an (s, t)-walk of length 8.

Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different
labels from [1, k ]

I For example sa
1
bc

2
dbet is a labeled (s, t)-walk (

1
b labeled with label 1 and

2
d

labeled with label 2)

I Intention of labels: Indicate k vertices with different colors

A labeled (s, t)-walk is labeled-digon-free if it has no subwalks of form a
1
ba
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Polynomial over labeled walks

s a b

c d

e t

k = 2

Definition:

For each edge uv associate variable fe(uv)

For each vertex w associate variable fv (w)

For each color-label pair (x , y) associate variable fc(x , y)

For a labeled walk W , associate monomial f (W ) that is product of edge variables,
vertex variables of labeled vertices, and color-label pair variables corresponding to
labeled vertices

f (sa
1
bc

2
dbet) = fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)fv (b)fv (d)fc(•, 1)fc(•, 2)

For integer `, let C` be the family of labeled-digon-free labeled (s, t)-walks of length `

Define f (C`) =
∑

W∈C`
f (W )
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Algebraic approach

Now we claim that:

1. Exists a k-colored (s, t)-path of length ` ⇒ f (C`) non-zero

2. No k -colored (s, t)-path of length ≤ ` ⇒ f (C`) identically zero

3. f (C`) can be evaluated in time 2k nO(1)
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Yes-instances

s a b

c d

e t

k = 2

(1) Exists a k -colored (s, t)-path of length ` ⇒ f (C`) non-zero

The labeled walk s
1
a

2
bet ∈ C5 contributes the monomial

fe(sa)fe(ab)fe(be)fe(et)fv (a)fv (b)fc(•, 1)fc(•, 2)

No other labeled walk in C5 contributes the same monomial

⇒ f (C5) is non-zero
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No-instances

(2) No k -colored (s, t)-path of length ≤ ` ⇒ f (C`) identically zero

Goal: Design a function φ : C` → C` so that for all W ∈ C`
f (W ) = f (φ(W ))

φ(W ) 6= W

φ(φ(W )) = W

⇒ Labeled walks in C` can be paired as {W , φ(W )}, implying everything cancels out
over fields of characteristic 2

Three different cancellation arguments as building blocks for φ:

Bijective-labeling based cancellation (from [Björklund’14], [Björklund, Husfeldt,
Kaski, Koivisto’17])

Cycle-reversal based cancellation (from [Björklund, Husfeldt, Taslaman’12])

Label-swap based cancellation
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Bijective-labeling based cancellation

s a b

c d

e t

k = 2

Consider labeled walks where two vertices of the same color are labeled

s
1
ab

2
et ∈ C5 contributes the monomial

fe(sa)fe(ab)fe(be)fe(et)fv (a)fv (e)fc(•, 1)fc(•, 2)

s
2
ab

1
et ∈ C5 is a different labeled walk, but contributes the same monomial

φ(s
1
ab

2
et) = s

2
ab

1
et and φ(s

2
ab

1
et) = s

1
ab

2
et

Now we can work with family C∗` ⊆ C` containing labeled walks where all labeled
vertices have different colors
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Cycle-reversal based cancellation

s a b

c d

e t

k = 2

Labeled walk s
1
ab

2
cdbet ∈ C∗7 contributes monomial

fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)fv (a)fv (c)fc(•, 1)fc(•, 2)

Reverse the cycle b
2
cdb

Now s
1
abd

2
cbet ∈ C∗7 is a different labeled walk but contributes the same monomial

φ(s
1
ab

2
cdbet) = s

1
abd

2
cbet and φ(s

1
abd

2
cbet) = s

1
ab

2
cdbet

This does not cleanly handle things, need more arguments and case analysis
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Label-swap based cancellation

Consider a labeled walk sabcd
1
abt (with only one label)

Reversing the cycle abcd
1
a would create sadcb

1
abt , containing labeled digon b

1
ab

Label swap operation: φ(sabcd
1
abt) = s

1
abcdabt and φ(s

1
abcdabt) = sabcd

1
abt

The label swap operation could also create labeled digons!
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Cancellation arguments

Bad news: Not clear when to apply cycle
reversal and when label swap

Good news: We managed to construct φ, but it
is very complicated

I Single-path version has 8 cases, multi-path
version 18 cases
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Evaluating f (C`)

(3) f (C`) can be evaluated in time 2k nO(1)

Dynamic programming that stores:
I The length of the walk

I The last and the second last vertex of the walk

I Whether the last vertex is labeled

I The set of used labels (2k factor)

⇒ By DeMillo–Lipton–Schwartz–Zippel lemma, 2k nO(1) time algorithm for k -colored
(s, t)-path that works with high probability
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Beyond maximum colored path

Extending from single path to multiple paths requires new ideas

I New cancellation argument of swapping the suffixes of two intersecting walks

Extending from colors to combination of weights and colors is easy
I Instead of weights, could ask for any property that can be efficiently evaluated

in DP
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Conclusion

We gave a 2k nO(1) time algorithm for finding an (s, t)-path with at least k colors

I and 2k+pnO(1) time algorithm for a more general setting with multiple paths and weights
and colors

The proof that if no solution exists then f (C`) is identically zero is the most
complicated part

Open problem: Is there an FPT-algorithm for maximum colored two disjoint paths?

Open problem: Is there a 1.99k nO(1) time algorithm for longest (s, t)-path?
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Thank you!

Thank you!
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