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Maximum Colored Path

MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and ¢, and an integer k.
Task: Find an s, t-path containing at least k different colors.
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Input: Vertex-colored undirected graph, vertices s and ¢, and an integer k.
Task: Find an s, t-path containing at least k different colors.
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Here, such path exists when k < 3

@ A path does not contain repeated vertices
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Maximum Colored Path

MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and ¢, and an integer k.
Task: Find an s, t-path containing at least k different colors.

S t

®

Here, such path exists when k < 3

@ A path does not contain repeated vertices
@ A color may repeat multiple times in the path, and it can contain more than k colors
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Fixed-parameter tractability of Maximum Colored Path
MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and t, and an integer k.
Task: Find an s, t-path containing at least k different colors.
Theorem

There is a 2Kn°(") time randomized algorithm for maximum colored s, t-path.
Moreover, the algorithm returns the shortest solution.
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Fixed-parameter tractability of Maximum Colored Path
MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and t, and an integer k.
Task: Find an s, t-path containing at least k different colors.
Theorem

There is a 2Kn°(") time randomized algorithm for maximum colored s, t-path.
Moreover, the algorithm returns the shortest solution.

(“and beyond” will come later)

@ This is the first FPT algorithm (time complexity (k) - n®(") for this problem

@ Assuming set cover conjecture, no (2 — £)*n®() time algorithm for any ¢ > 0
Z N\ & S
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@ NP-hard for directed graphs already when k = 2
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Application: Longest path
LONGEST s, t-PATH

Input: Undirected graph, vertices s and t, and an integer k.

Task: Find an s, t-path of length at least k.
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Application: Longest path
LONGEST s, t-PATH

Input: Undirected graph, vertices s and t, and an integer k.
Task: Find an s, t-path of length at least k.

t

@ Longest s, t-path reduces to maximum colored s, t-path by coloring all vertices
with different colors

= 2Kn®0) time algorithm for longest s, t-path
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Application: Longest path
LONGEST s, t-PATH

Input: Undirected graph, vertices s and t, and an integer k.
Task: Find an s, t-path of length at least k.

t

@ Longest s, t-path reduces to maximum colored s, t-path by coloring all vertices
with different colors
= 2Kn®0) time algorithm for longest s, t-path
@ Previous best algorithm 4.884%n°(") time [Fomin, Lokshtanov, Panolan, Saurabh,
Zehavi'18]
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Application: Longest path
LONGEST s, t-PATH
Input: Undirected graph, vertices s and t, and an integer k.
Task: Find an s, t-path of length at least k.

t

@ Longest s, t-path reduces to maximum colored s, t-path by coloring all vertices
with different colors

= 2Kn®0) time algorithm for longest s, t-path

@ Previous best algorithm 4.884%n°" time [Fomin, Lokshtanov, Panolan, Saurabh,
Zehavi'18]

@ In contrast, there is a 1.66Xn®(") time algorithm for longest path [Bjérklund,
Husfeldt, Kaski, Koivisto’17]
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Application: T-cycle

T-CYCLE
Input: Undirected graph and a set of terminal vertices T.
Task: Find a cycle that visits each vertex in T.
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Application: T-cycle

T-CYCLE
Input: Undirected graph and a set of terminal vertices T.
Task: Find a cycle that visits each vertex in T.

@ 2/TIn°0) time algorithm for T-cycle [Bjérklund, Husfeldt, Taslaman'12]

@ T-cycle reduces to maximum colored s, t-path by coloring the vertices in T with
different colors, the rest with one color, and guessing one edge of the cycle

= 2T p®M time algorithm also via our result

@ Allows for generalizations, e.g., arbitrarily large T
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Beyond Maximum Colored Path
Input:
@ Colored positive-integer weighted undirected graph
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Beyond Maximum Colored Path
Input:
@ Colored positive-integer weighted undirected graph
@ Two sets of vertices Sand T
@ Integers p, k, w
Task:
@ Find p vertex-disjoint paths starting in S and ending in T so that

Here,p=2
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Beyond Maximum Colored Path
Input:
@ Colored positive-integer weighted undirected graph
@ Two sets of vertices Sand T
@ Integers p, k, w
Task:
@ Find p vertex-disjoint paths starting in S and ending in T so that
@ the vertices of the paths contain a set X of size k, total weight w, and having
distinct colors

Here,p=2, k=3,and w = 18.
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Beyond Maximum Colored Path
Input:
@ Colored positive-integer weighted undirected graph
@ Two sets of vertices Sand T
@ Integers p, k, w
Task:
@ Find p vertex-disjoint paths starting in S and ending in T so that
@ the vertices of the paths contain a set X of size k, total weight w, and having
distinct colors
@ While minimizing the total length of the paths

Here,p=2, k=3,and w = 18.
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Beyond Maximum Colored Path
Input:
@ Colored positive-integer weighted undirected graph
@ Two sets of vertices Sand T
@ Integers p, k, w
Task:
@ Find p vertex-disjoint paths starting in S and ending in T so that
@ the vertices of the paths contain a set X of size k, total weight w, and having
distinct colors
@ While minimizing the total length of the paths

Here,p =2,k =3,and w = 18.
Main theorem: Randomized algorithm with time complexity 2K7Pn®(Mw.
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More applications

e Longest T-cycle in time 2Mx(I71:6) nO(1)
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More applications
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@ Bank robber’s path: Equipment for robbing k banks, know profit from each,
maximize the profit while minimizing the length of the path in time 2kpo)
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More applications

e Longest T-cycle in time 2Mx(I71:6) nO(1)

@ Bank robber’s path: Equipment for robbing k banks, know profit from each,
maximize the profit while minimizing the length of the path in time 2kpo)

» and generalization to p robbers in time 2k+ppo(1)

@ Vehicle routing: k items, p vehicles, customers bid for items, find shortest
vertex-disjoint routing to deliver items to maximize profit in time 2p+k no(1)

@ Generalization from colored graphs to (graph, matroid) pairs represented over a
2
finite field of order g with a 20k~ 108(3+P)) tactor overhead
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The algorithm

The algorithm
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Outline

In this talk, we focus on:

MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and t, and an integer k.
Task: Find a k-colored s, t-path. (s, f-path with at least k different colors)
S t

[
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Outline

In this talk, we focus on:

MAXIMUM COLORED s, t-PATH

Input: Vertex-colored undirected graph, vertices s and t, and an integer k.
Task: Find a k-colored s, t-path. (s, f-path with at least k different colors)
S t

[

@ Algorithm based on algebraic approach, extending ideas that were developed by
[Bjorklund, Husfeldt, Taslaman’12], [Bjoérklund’14], [Bjérklund, Husfeldt, Kaski,
Koivisto’17] for T-cycle, hamiltonicity, and k-path
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Algebraic approach

General idea:
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Algebraic approach

General idea:

@ Design a multivariate polynomial p(x1, ..., xm) of total degree < 4n over
GF(23*M"&n1) (finite field of order > 8n and characteristic 2) so that
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Algebraic approach

General idea:
@ Design a multivariate polynomial p(x1, ..., xm) of total degree < 4n over
GF(2%+M°e1) (finite field of order > 8n and characteristic 2) so that
1. no-instance — p(x1, ..., Xm) is identically zero polynomial
2. yes-instance — p(xi, ..., Xm) is @ non-zero polynomial
3. Given x1,...,Xm, P(Xi,...,Xm) can be evaluated in 2¢n°" time
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Algebraic approach

General idea:
@ Design a multivariate polynomial p(x1, ..., xm) of total degree < 4n over
GF(2%+M°e1) (finite field of order > 8n and characteristic 2) so that
1. no-instance — p(xi, ..., Xm) is identically zero polynomial
2. yes-instance — p(xi, ..., Xm) is @ non-zero polynomial
3. Given x1,...,Xm, P(Xi,...,Xm) can be evaluated in 2¢n°" time

@ By DeMillo—Lipton-Schwartz—Zippel lemma, the problem is then solved in 2¢n°(")
time by evaluating p(xi, . .., Xm) for random x1, ..., Xm.
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Algebraic approach

General idea:
@ Design a multivariate polynomial p(x1, ..., xm) of total degree < 4n over
GF(2%+M°e1) (finite field of order > 8n and characteristic 2) so that
1. no-instance — p(xi, ..., Xm) is identically zero polynomial
2. yes-instance — p(xi, ..., Xm) is @ non-zero polynomial
3. Given x1,...,Xm, P(Xi,...,Xm) can be evaluated in 2¢n°" time

@ By DeMillo—Lipton-Schwartz—Zippel lemma, the problem is then solved in 2¢n°(")
time by evaluating p(xi, . .., Xm) for random x1, ..., Xm.

@ Characteristic 2?
» x+ x =0 forany x
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Design of the polynomial

Idea: Design a polynomial where monomials correspond to labeled walks
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@ Evaluating a polynomial over walks is easier than over paths
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Design of the polynomial

Idea: Design a polynomial where monomials correspond to labeled walks
@ Evaluating a polynomial over walks is easier than over paths
@ Argue that monomials corresponding to non-path walks and paths with less than k

colors cancel out (by x + x = 0), and only the contribution of k-colored paths
remains
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Labeled walks

@ (s,t)-walk of length ¢ is a sequence s = vy ... v, = t of £ adjacent vertices
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@ (s,t)-walk of length ¢ is a sequence s = vy ... v, = t of £ adjacent vertices
» For example sabcdbet is an (s, t)-walk of length 8.
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@ (s,t)-walk of length ¢ is a sequence s = vy ... v, = t of £ adjacent vertices
» For example sabcdbet is an (s, t)-walk of length 8.

@ Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different
labels from [1, k]
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Labeled walks

@ (s,t)-walk of length ¢ is a sequence s = vy ... v, = t of £ adjacent vertices
» For example sabcdbet is an (s, t)-walk of length 8.

@ Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different
labels from [1, k]

1 2 1 2
» For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d
labeled with label 2)
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» For example sabcdbet is an (s, t)-walk of length 8.

@ Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different
labels from [1, k]

1 2 1 2
» For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d
labeled with label 2)
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Labeled walks

@ (s,t)-walk of length ¢ is a sequence s = vy ... v, = t of £ adjacent vertices
» For example sabcdbet is an (s, t)-walk of length 8.

@ Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different
labels from [1, k]

1 2 1 2
» For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d
labeled with label 2)

» Intention of labels: Indicate k vertices with different colors

;
@ Alabeled (s, t)-walk is labeled-digon-free if it has no subwalks of form aba
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Polynomial over labeled walks
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Polynomial over labeled walks

Definition:
@ For each edge uv associate variable fe(uv)
@ For each vertex w associate variable f,(w)
@ For each color-label pair (x, y) associate variable f:(x, y)
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Polynomial over labeled walks

Definition:
@ For each edge uv associate variable fe(uv)
@ For each vertex w associate variable f,(w)
@ For each color-label pair (x, y) associate variable f:(x, y)

For a labeled walk W, associate monomial f(W) that is product of edge variables,

vertex variables of labeled vertices, and color-label pair variables corresponding to
labeled vertices

f(sabodbet) = fs(sa)fa(ab)fs(bc)fs(cd)fo(ab)fa(bE)fs(et)fy (), (d)fo(e, 1)fu( e, 2)
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Polynomial over labeled walks

Definition:
@ For each edge uv associate variable f(uv)
@ For each vertex w associate variable f,(w)
@ For each color-label pair (x, y) associate variable f:(x, y)

For a labeled walk W, associate monomial f(W) that is product of edge variables,

vertex variables of labeled vertices, and color-label pair variables corresponding to
labeled vertices

f(sabodbet) = fs(sa)fa(ab)fs(bc)fs(cd)fo(ab)fa(bE)fs(et)fy (), (d)fo(e, 1)fu( e, 2)

For integer ¢, let C, be the family of labeled-digon-free labeled (s, t)-walks of length ¢
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Polynomial over labeled walks

Definition:
@ For each edge uv associate variable f(uv)
@ For each vertex w associate variable f,(w)
@ For each color-label pair (x, y) associate variable f:(x, y)

For a labeled walk W, associate monomial f(W) that is product of edge variables,

vertex variables of labeled vertices, and color-label pair variables corresponding to
labeled vertices

1 2
f(sabcdbet) = fo(sa)fs(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)f, (b)f, (d)fe(o, 1)f:(e, 2)
For integer ¢, let C, be the family of labeled-digon-free labeled (s, t)-walks of length ¢
o Define f(C¢) = > pyee, (W)
13/24



Algebraic approach

Now we claim that:
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Algebraic approach

Now we claim that:

1. Exists a k-colored (s, t)-path of length¢ = f(C¢) non-zero
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Algebraic approach

Now we claim that:

1. Exists a k-colored (s, t)-path of length¢ = f(C¢) non-zero

2. No k-colored (s, t)-path of length < ¢ = f(C,) identically zero
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Algebraic approach

Now we claim that:

1. Exists a k-colored (s, t)-path of length¢ = f(C¢) non-zero
2. No k-colored (s, t)-path of length < ¢ = f(C,) identically zero

3. f(C;) can be evaluated in time 2¥n°™
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Yes-instances

(1) Exists a k-colored (s, t)-path of length ¢ = f(C,) non-zero
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Yes-instances

(1) Exists a k-colored (s, t)-path of length ¢ = f(C,) non-zero

2
@ The labeled walk s1abet € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(b)fe(e, 1)f:(e, 2)
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Yes-instances

(1) Exists a k-colored (s, t)-path of length ¢ = f(C,) non-zero

2
@ The labeled walk s1abet € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(b)fe(e, 1)f:(e, 2)

@ No other labeled walk in Cs contributes the same monomial

Tuukka Korhonen Maximum Colored Path and Beyond 15/24



Yes-instances

(1) Exists a k-colored (s, t)-path of length ¢ = f(C,) non-zero

2
@ The labeled walk s1abet € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(b)fe(e, 1)f:(e, 2)

@ No other labeled walk in Cs contributes the same monomial

= f(Cs) is non-zero
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No-instances

(2) No k-colored (s, t)-path of length < ¢ = f(C,) identically zero
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No-instances
(2) No k-colored (s, t)-path of length < ¢ = f(C,) identically zero
Goal: Design a function ¢ : C; — C, so that for all W € C,

o f(W) = f(o(W))

o G(W)# W
o G(a(W)) = W
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No-instances
(2) No k-colored (s, t)-path of length < ¢ = f(C,) identically zero

Goal: Design a function ¢ : C; — C, so that for all W € C,
o f(W) = f(a(W))
° H(W) # W
° P(p(W)) =W

= Labeled walks in C, can be paired as { W, ¢(W)}, implying everything cancels out
over fields of characteristic 2
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No-instances
(2) No k-colored (s, t)-path of length < ¢ = £(C,) identically zero

Goal: Design a function ¢ : C; — C, so that for all W € C,
o f(W) = f(o(W))
o G(W)# W
° p(p(W)) =W

= Labeled walks in C, can be paired as { W, (W)}, implying everything cancels out
over fields of characteristic 2

Three different cancellation arguments as building blocks for ¢:

@ Bijective-labeling based cancellation (from [Bjorklund’14], [Bjorklund, Husfeldt,
Kaski, Koivisto'17])

@ Cycle-reversal based cancellation (from [Bjorklund, Husfeldt, Taslaman’12])
@ Label-swap based cancellation
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Bijective-labeling based cancellation

Consider labeled walks where two vertices of the same color are labeled
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Bijective-labeling based cancellation

ES
Il
n

Consider labeled walks where two vertices of the same color are labeled

° séb:zaz‘ € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(e)fe(o,1)f: (e, 2)
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Bijective-labeling based cancellation

ES
Il
n

Consider labeled walks where two vertices of the same color are labeled
o sébét € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(e)fe(o,1)f: (e, 2)

2 1
@ sabet € Cs is a different labeled walk, but contributes the same monomial
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Bijective-labeling based cancellation

ES
Il
n

Consider labeled walks where two vertices of the same color are labeled

° sébét € Cs contributes the monomial
fo(sa)fe(ab)fe(be)fe(et)f,(a)f,(e)fe(o,1)f: (e, 2)

2 1
@ sabet € Cs is a different labeled walk, but contributes the same monomial

° ¢(S¢13bét) — sabet and ¢(s§7bét) = sabet
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Bijective-labeling based cancellation

ES
Il
n

Consider labeled walks where two vertices of the same color are labeled

° s:abzzat € Cs contributes the monomial
fe(sa)fe(ab)fe(be)fe(et)f (a)f, (e)fc(o, 1)fc(o, 2)
o sabet € Cs is a different labeled walk, but contributes the same monomial
° ¢(sébgt) — sabet and ¢(s§1bét) — sabét
@ Now we can work with family C; C C, containing labeled walks where all labeled

vertices have different colors
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Cycle-reversal based cancellation

k=2

@ Labeled walk sébcz:dbet € C7 contributes monomial
fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)f (a)fy(C) (o, 1) fc(0, 2)
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Cycle-reversal based cancellation

k=2
@ Labeled walk sébcz:dbet € C7 contributes monomial
fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)f (a)fy(C) (o, 1) fc(0, 2)

@ Reverse the cycle bczzdb
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Cycle-reversal based cancellation

k=2

@ Labeled walk sébcz:dbet € C7 contributes monomial
fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)f (a)fy(C) (o, 1) fc(0, 2)

@ Reverse the cycle b<2:db

@ Now sébdébet € C7 is a different labeled walk but contributes the same monomial
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Cycle-reversal based cancellation

k=2
@ Labeled walk sébcz:dbet € C7 contributes monomial
fe(sa)fe(ab)fe(bc)fe(cd)fe(db)fe(be)fe(et)f (a)fy(C) (o, 1) fc(0, 2)
@ Reverse the cycle b<2:db

@ Now sébdébet € C7 is a different labeled walk but contributes the same monomial

o $(sabcdbet) = sabdcbet and ¢(sabdobet) = sabedbet
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Cycle-reversal based cancellation

k=2

@ Labeled walk sébcz:dbet € C7 contributes monomial
fe(sa)fe(ab)fe(be)fe(cd)fo(db)fe(be)fe(et)f, (a)f (C)fe (e, 1)fe(e, 2)

@ Reverse the cycle bc2:db

@ Now sébdébet € C7 is a different labeled walk but contributes the same monomial

o $(sabcdbet) = sabdcbet and ¢(sabdobet) = sabedbet

@ This does not cleanly handle things, need more arguments and case analysis
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Label-swap based cancellation

@ Consider a labeled walk sabcdl:ibt (with only one label)
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Label-swap based cancellation

@ Consider a labeled walk sabcdjabt (with only one label)

@ Reversing the cycle abcd1a would create sadcblsibt, containing labeled digon b1ab
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Label-swap based cancellation

o Consider a labeled walk sabcdabt (with only one label)
@ Reversing the cycle abcd1a would create sadcblsibt, containing labeled digon b1ab

@ Label swap operation: qb(sabcdébt) — sabcdabt and ¢>(sébodab1‘) — sabcdabt
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Label-swap based cancellation

o Consider a labeled walk sabcdabt (with only one label)
@ Reversing the cycle abcd1a would create sadcb.1abt, containing labeled digon b1ab

@ Label swap operation: qb(sabcdébt) — sabcdabt and ¢>(sébodab1‘) — sabcdabt

@ The label swap operation could also create labeled digons!
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Cancellation arguments

@ Bad news: Not clear when to apply cycle
reversal and when label swap
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Cancellation arguments

Definition 3 (The function @) Let W = (W, We) e aproper barren labeted waikage of orvier
» For each i € g, akrote W* = (v}, 1]). (Ao ). The suluc S0W) és define, in some
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VL o s 0] WE )
2o = WhgWE, W
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Cancellation arguments

Definition 3 (The fanction ). Let W = (W 1V#) e aproper barren lebeled waikage of ordder
5. For cach i € [, dbrote W° = ((v},..., 17 ). (A, ). The vebuc &(W) is define, in some
ases recarsively, by selecting the first matching o from the folioving lit:
A if the wrtex vt occurs ol ance in W-
0022, then (W) = WL 1 o (W 2,0
9. wheruise fie., £y = 1], $0W) = W Lg(W2

B if the vertex v occurs i at doast theee diff

Tiere v b oot ts iffeent il 1+ Chot contin o bt dor ot comtain & o L
ntain ot but da net contain it
wnnd b e the index o the firsi

ntw

occurren: of v} i WP Now, $(W) = W+,

C. if the wertex v} occurs anly in the walk W
By the case (A), the vertez vl occurs mubiple times in W1, Letb be the index of the last

/ e ] et e 1l W
(ol if W'2,b= 1] is not o palindmme, then o{W) = M“rTr—TI.H" PPN g}
@ Bad news: Not clear when to apply cycle oo gl o S
reversal and when label swap ke T e (1) e 2 o 1 20

8 f WHLa— 1] is not drome, then S{W) = RN
Note: Ifa = 1, then W 2,a — 1] & the empty walk which is a palindrore
4 i =y

@ Good news: We managed to construct ¢, but it (o 1ttt < 06 TR 0

. . ) otherwse, N»w =Wy es b LWL
is very complicated it e
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Evaluating f(Cy)

(3) f(C¢) can be evaluated in time 2¥p°™
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Evaluating f(Cy)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
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Evaluating f(Cy)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
» The length of the walk
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Evaluating f(Cy)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
» The length of the walk

» The last and the second last vertex of the walk
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Evaluating f(Cy)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
» The length of the walk

» The last and the second last vertex of the walk
» Whether the last vertex is labeled
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Evaluating 7(C/)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
» The length of the walk

» The last and the second last vertex of the walk
» Whether the last vertex is labeled
» The set of used labels (2* factor)

Tuukka Korhonen Maximum Colored Path and Beyond 21/24



Evaluating 7(C/)

(3) f(C¢) can be evaluated in time 2¥n°™

@ Dynamic programming that stores:
» The length of the walk

» The last and the second last vertex of the walk
» Whether the last vertex is labeled
» The set of used labels (2* factor)

= By DeMillo-Lipton-Schwartz—Zippel lemma, 2n®™" time algorithm for k-colored
(s, t)-path that works with high probability
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Beyond maximum colored path

e Extending from single path to multiple paths requires new ideas
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Beyond maximum colored path

e Extending from single path to multiple paths requires new ideas
» New cancellation argument of swapping the suffixes of two intersecting walks
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Beyond maximum colored path

e Extending from single path to multiple paths requires new ideas
» New cancellation argument of swapping the suffixes of two intersecting walks

e Extending from colors to combination of weights and colors is easy
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Beyond maximum colored path

e Extending from single path to multiple paths requires new ideas
» New cancellation argument of swapping the suffixes of two intersecting walks

e Extending from colors to combination of weights and colors is easy

» Instead of weights, could ask for any property that can be efficiently evaluated
in DP

Tuukka Korhonen Maximum Colored Path and Beyond 22/24



Conclusion

@ We gave a 2n°" time algorithm for finding an (s, t)-path with at least k colors
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Conclusion

@ We gave a 2n°" time algorithm for finding an (s, t)-path with at least k colors

» and 2k+PpO(") time algorithm for a more general setting with multiple paths and weights
and colors
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Conclusion

@ We gave a 2n°" time algorithm for finding an (s, t)-path with at least k colors

» and 2k+PpO(") time algorithm for a more general setting with multiple paths and weights
and colors

@ The proof that if no solution exists then f(C,) is identically zero is the most
complicated part
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Conclusion

@ We gave a 2n°" time algorithm for finding an (s, t)-path with at least k colors

» and 2K+Pn®(1) time algorithm for a more general setting with multiple paths and weights
and colors

@ The proof that if no solution exists then f(C,) is identically zero is the most
complicated part

@ Open problem: Is there an FPT-algorithm for maximum colored two disjoint paths?
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Conclusion

@ We gave a 2n°" time algorithm for finding an (s, t)-path with at least k colors

» and 2K+Pn®(1) time algorithm for a more general setting with multiple paths and weights
and colors

@ The proof that if no solution exists then f(C,) is identically zero is the most
complicated part

@ Open problem: Is there an FPT-algorithm for maximum colored two disjoint paths?

@ Open problem: Is there a 1.99¥n°(") time algorithm for longest (s, t)-path?
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Thank you!

Thank you!
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