Fixed-Parameter Tractability of Maximum Colored Path and Beyond

Tuukka Korhonen

UNIVERSITY OF BERGEN

joint work with Fedor V. Fomin, Petr A. Golovach, Kirill Simonov¹, and Giannos Stamoulis²

¹TU Wien ² LIRMM, Universite de Montpellier, CNRS

Helsinki CS Theory Seminar

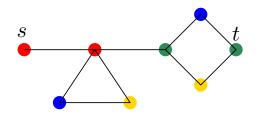
10 August 2022

Task:

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

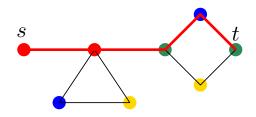
Find an s, t-path containing at least k different colors.



MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

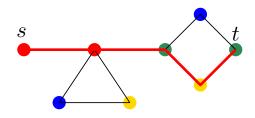


Here, such path exists when $k \leq 3$

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

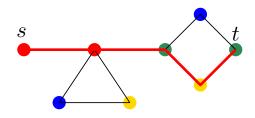


Here, such path exists when $k \leq 3$

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.



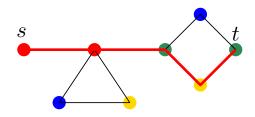
Here, such path exists when $k \leq 3$

A path does not contain repeated vertices

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.



Here, such path exists when $k \leq 3$

- A path does not contain repeated vertices
- A color may repeat multiple times in the path, and it can contain more than k colors

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

("and beyond" will come later)

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

("and beyond" will come later)

• This is the first FPT algorithm (time complexity $f(k) \cdot n^{\mathcal{O}(1)}$) for this problem

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

("and beyond" will come later)

- This is the first FPT algorithm (time complexity $f(k) \cdot n^{\mathcal{O}(1)}$) for this problem
- Assuming set cover conjecture, no $(2 \varepsilon)^k n^{O(1)}$ time algorithm for any $\varepsilon > 0$

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

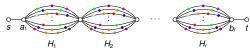
Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

("and beyond" will come later)

- This is the first FPT algorithm (time complexity $f(k) \cdot n^{\mathcal{O}(1)}$) for this problem
- Assuming set cover conjecture, no $(2 \varepsilon)^k n^{O(1)}$ time algorithm for any $\varepsilon > 0$



MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*.

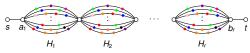
Task: Find an *s*, *t*-path containing at least *k* different colors.

Theorem

There is a $2^k n^{O(1)}$ time randomized algorithm for maximum colored *s*, *t*-path. Moreover, the algorithm returns the shortest solution.

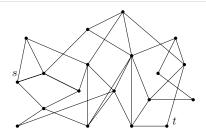
("and beyond" will come later)

- This is the first FPT algorithm (time complexity $f(k) \cdot n^{\mathcal{O}(1)}$) for this problem
- Assuming set cover conjecture, no $(2 \varepsilon)^k n^{O(1)}$ time algorithm for any $\varepsilon > 0$



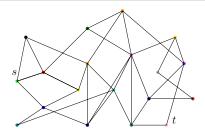
• NP-hard for directed graphs already when k = 2

Input: Undirected graph, vertices *s* and *t*, and an integer *k*.



Input: Undirected graph, vertices *s* and *t*, and an integer *k*.

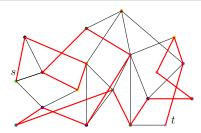
Task: Find an *s*, *t*-path of length at least *k*.



• Longest *s*, *t*-path reduces to maximum colored *s*, *t*-path by coloring all vertices with different colors

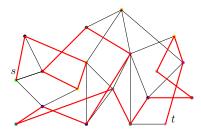
Input: Undirected graph, vertices *s* and *t*, and an integer *k*.

Task: Find an *s*, *t*-path of length at least *k*.



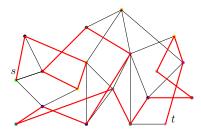
• Longest *s*, *t*-path reduces to maximum colored *s*, *t*-path by coloring all vertices with different colors

Input: Undirected graph, vertices *s* and *t*, and an integer *k*.



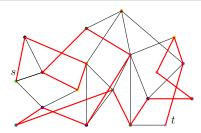
- Longest *s*, *t*-path reduces to maximum colored *s*, *t*-path by coloring all vertices with different colors
- $\Rightarrow 2^k n^{\mathcal{O}(1)}$ time algorithm for longest *s*, *t*-path

Input: Undirected graph, vertices *s* and *t*, and an integer *k*.



- Longest *s*, *t*-path reduces to maximum colored *s*, *t*-path by coloring all vertices with different colors
- $\Rightarrow 2^k n^{\mathcal{O}(1)}$ time algorithm for longest *s*, *t*-path
 - Previous best algorithm 4.884^k $n^{O(1)}$ time [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi'18]

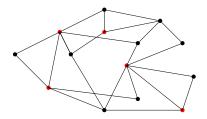
Input: Undirected graph, vertices *s* and *t*, and an integer *k*.



- Longest *s*, *t*-path reduces to maximum colored *s*, *t*-path by coloring all vertices with different colors
- $\Rightarrow 2^k n^{\mathcal{O}(1)}$ time algorithm for longest *s*, *t*-path
 - Previous best algorithm 4.884^k n^{O(1)} time [Fomin, Lokshtanov, Panolan, Saurabh, Zehavi'18]
 - In contrast, there is a 1.66^k n^{O(1)} time algorithm for longest path [Björklund, Husfeldt, Kaski, Koivisto'17]

T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.



T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.

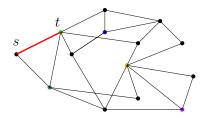
Task: Find a cycle that visits each vertex in *T*.



• $2^{|T|} n^{O(1)}$ time algorithm for *T*-cycle [Björklund, Husfeldt, Taslaman'12]

T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.



- 2^{|T|}n^{O(1)} time algorithm for *T*-cycle [Björklund, Husfeldt, Taslaman'12]
- *T*-cycle reduces to maximum colored *s*, *t*-path by coloring the vertices in *T* with different colors, the rest with one color, and guessing one edge of the cycle

T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.

- 2^{|T|}n^{O(1)} time algorithm for T-cycle [Björklund, Husfeldt, Taslaman'12]
- *T*-cycle reduces to maximum colored *s*, *t*-path by coloring the vertices in *T* with different colors, the rest with one color, and guessing one edge of the cycle

T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.

- 2^{|T|}n^{O(1)} time algorithm for T-cycle [Björklund, Husfeldt, Taslaman'12]
- *T*-cycle reduces to maximum colored *s*, *t*-path by coloring the vertices in *T* with different colors, the rest with one color, and guessing one edge of the cycle
- $\Rightarrow 2^{|T|} n^{\mathcal{O}(1)}$ time algorithm also via our result

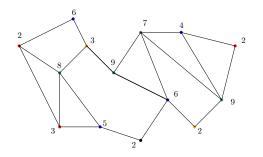
T-CYCLE

Input: Undirected graph and a set of terminal vertices *T*.

- 2^{|T|}n^{O(1)} time algorithm for T-cycle [Björklund, Husfeldt, Taslaman'12]
- *T*-cycle reduces to maximum colored *s*, *t*-path by coloring the vertices in *T* with different colors, the rest with one color, and guessing one edge of the cycle
- $\Rightarrow 2^{|T|} n^{\mathcal{O}(1)}$ time algorithm also via our result
 - Allows for generalizations, e.g., arbitrarily large T

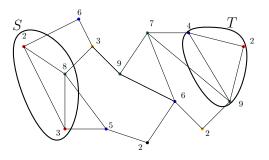
Input:

• Colored positive-integer weighted undirected graph



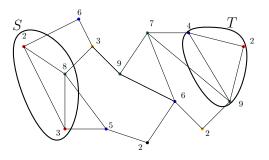
Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T



Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T
- Integers *p*, *k*, *w*

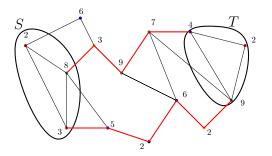


Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T
- Integers *p*, *k*, *w*

Task:

• Find *p* vertex-disjoint paths starting in *S* and ending in *T* so that



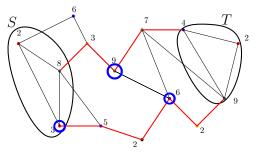
Here, p = 2

Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T
- Integers *p*, *k*, *w*

Task:

- Find *p* vertex-disjoint paths starting in *S* and ending in *T* so that
- the vertices of the paths contain a set *X* of size *k*, total weight *w*, and having distinct colors



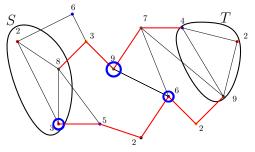
Here, p = 2, k = 3, and w = 18.

Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T
- Integers *p*, *k*, *w*

Task:

- Find *p* vertex-disjoint paths starting in *S* and ending in *T* so that
- the vertices of the paths contain a set *X* of size *k*, total weight *w*, and having distinct colors
- While minimizing the total length of the paths



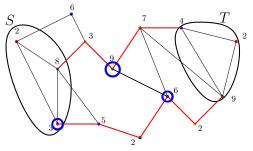
Here, p = 2, k = 3, and w = 18.

Input:

- Colored positive-integer weighted undirected graph
- Two sets of vertices S and T
- Integers *p*, *k*, *w*

Task:

- Find *p* vertex-disjoint paths starting in *S* and ending in *T* so that
- the vertices of the paths contain a set *X* of size *k*, total weight *w*, and having distinct colors
- While minimizing the total length of the paths



Here, p = 2, k = 3, and w = 18.

Main theorem: Randomized algorithm with time complexity $2^{k+p}n^{\mathcal{O}(1)}w$.

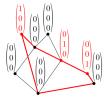
• Longest *T*-cycle in time $2^{\max(|T|,k)} n^{\mathcal{O}(1)}$

- Longest *T*-cycle in time $2^{\max(|T|,k)} n^{\mathcal{O}(1)}$
- Bank robber's path: Equipment for robbing k banks, know profit from each, maximize the profit while minimizing the length of the path in time 2^kn^{O(1)}

- Longest *T*-cycle in time $2^{\max(|T|,k)} n^{\mathcal{O}(1)}$
- Bank robber's path: Equipment for robbing k banks, know profit from each, maximize the profit while minimizing the length of the path in time 2^kn^{O(1)}
 - and generalization to *p* robbers in time $2^{k+p} n^{O(1)}$

- Longest *T*-cycle in time $2^{\max(|T|,k)} n^{\mathcal{O}(1)}$
- Bank robber's path: Equipment for robbing k banks, know profit from each, maximize the profit while minimizing the length of the path in time 2^kn^{O(1)}
 - and generalization to *p* robbers in time $2^{k+p} n^{O(1)}$
- Vehicle routing: k items, p vehicles, customers bid for items, find shortest vertex-disjoint routing to deliver items to maximize profit in time 2^{p+k}n^{O(1)}

- Longest *T*-cycle in time $2^{\max(|T|,k)} n^{\mathcal{O}(1)}$
- Bank robber's path: Equipment for robbing k banks, know profit from each, maximize the profit while minimizing the length of the path in time 2^kn^{O(1)}
 - and generalization to *p* robbers in time $2^{k+p} n^{O(1)}$
- Vehicle routing: k items, p vehicles, customers bid for items, find shortest vertex-disjoint routing to deliver items to maximize profit in time 2^{p+k}n^{O(1)}
- Generalization from colored graphs to (graph, matroid) pairs represented over a finite field of order q with a $2^{\mathcal{O}(k^2 \log(q+p))}$ factor overhead



The algorithm

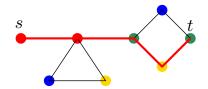
The algorithm

Outline

In this talk, we focus on:

- MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*. *Task:* Find a *k*-colored *s*, *t*-path. (*s*, *t*-path with at least *k* different colors)

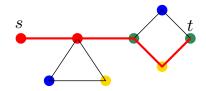


Outline

In this talk, we focus on:

MAXIMUM COLORED *s*, *t*-PATH

Input: Vertex-colored undirected graph, vertices *s* and *t*, and an integer *k*. *Task:* Find a *k*-colored *s*, *t*-path. (*s*, *t*-path with at least *k* different colors)



• Algorithm based on algebraic approach, extending ideas that were developed by [Björklund, Husfeldt, Taslaman'12], [Björklund'14], [Björklund, Husfeldt, Kaski, Koivisto'17] for *T*-cycle, hamiltonicity, and *k*-path

General idea:

• Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that

- Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that
 - 1. no-instance $\rightarrow p(x_1, \ldots, x_m)$ is identically zero polynomial

- Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that
 - 1. no-instance $\rightarrow p(x_1, \ldots, x_m)$ is identically zero polynomial
 - 2. yes-instance $\rightarrow p(x_1, \ldots, x_m)$ is a non-zero polynomial

- Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that
 - 1. no-instance $\rightarrow p(x_1, \ldots, x_m)$ is identically zero polynomial
 - 2. yes-instance $\rightarrow p(x_1, \ldots, x_m)$ is a non-zero polynomial
 - 3. Given $x_1, \ldots, x_m, p(x_1, \ldots, x_m)$ can be evaluated in $2^k n^{\mathcal{O}(1)}$ time

- Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that
 - 1. no-instance $\rightarrow p(x_1, \ldots, x_m)$ is identically zero polynomial
 - 2. yes-instance $\rightarrow p(x_1, \ldots, x_m)$ is a non-zero polynomial
 - 3. Given $x_1, \ldots, x_m, p(x_1, \ldots, x_m)$ can be evaluated in $2^k n^{\mathcal{O}(1)}$ time
- By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2^k n^{O(1)} time by evaluating p(x₁,..., x_m) for random x₁,..., x_m.

- Design a multivariate polynomial $p(x_1, ..., x_m)$ of total degree $\leq 4n$ over $GF(2^{3+\lceil \log n \rceil})$ (finite field of order $\geq 8n$ and characteristic 2) so that
 - 1. no-instance $\rightarrow p(x_1, \ldots, x_m)$ is identically zero polynomial
 - 2. yes-instance $\rightarrow p(x_1, \ldots, x_m)$ is a non-zero polynomial
 - 3. Given $x_1, \ldots, x_m, p(x_1, \ldots, x_m)$ can be evaluated in $2^k n^{\mathcal{O}(1)}$ time
- By DeMillo–Lipton–Schwartz–Zippel lemma, the problem is then solved in 2^k n^{O(1)} time by evaluating p(x₁,..., x_m) for random x₁,..., x_m.
- Characteristic 2?
 - x + x = 0 for any x

Design of the polynomial

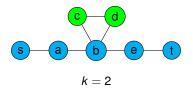
Idea: Design a polynomial where monomials correspond to labeled walks

Idea: Design a polynomial where monomials correspond to labeled walks

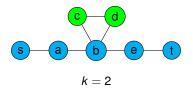
• Evaluating a polynomial over walks is easier than over paths

Idea: Design a polynomial where monomials correspond to labeled walks

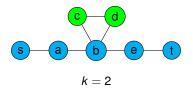
- Evaluating a polynomial over walks is easier than over paths
- Argue that monomials corresponding to non-path walks and paths with less than k colors cancel out (by x + x = 0), and only the contribution of k-colored paths remains



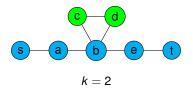
• (*s*, *t*)-walk of length ℓ is a sequence $s = v_1 \dots v_\ell = t$ of ℓ adjacent vertices



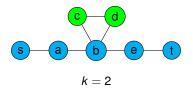
(s, t)-walk of length ℓ is a sequence s = v₁ ... v_ℓ = t of ℓ adjacent vertices
For example sabcdbet is an (s, t)-walk of length 8.



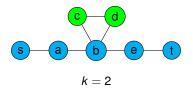
- (s, t)-walk of length ℓ is a sequence s = v₁...v_ℓ = t of ℓ adjacent vertices
 For example sabcdbet is an (s, t)-walk of length 8.
- Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different labels from [1, k]



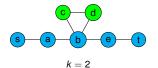
- (*s*, *t*)-walk of length ℓ is a sequence $s = v_1 \dots v_\ell = t$ of ℓ adjacent vertices
 - ► For example *sabcdbet* is an (*s*, *t*)-walk of length 8.
- Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different labels from [1, k]
 - For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d labeled with label 2)

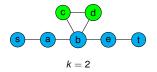


- (s, t)-walk of length ℓ is a sequence $s = v_1 \dots v_\ell = t$ of ℓ adjacent vertices
 - ► For example *sabcdbet* is an (*s*, *t*)-walk of length 8.
- Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different labels from [1, k]
 - For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d labeled with label 2)
 - Intention of labels: Indicate k vertices with different colors



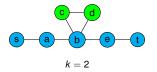
- (s, t)-walk of length ℓ is a sequence $s = v_1 \dots v_\ell = t$ of ℓ adjacent vertices
 - ► For example *sabcdbet* is an (*s*, *t*)-walk of length 8.
- Labeled (s, t)-walk is an (s, t)-walk where k indices are labeled with k different labels from [1, k]
 - For example sabcdbet is a labeled (s, t)-walk (b labeled with label 1 and d labeled with label 2)
 - Intention of labels: Indicate k vertices with different colors
- A labeled (s, t)-walk is labeled-digon-free if it has no subwalks of form aba





Definition:

- For each edge uv associate variable $f_e(uv)$
- For each vertex w associate variable $f_v(w)$
- For each color-label pair (x, y) associate variable $f_c(x, y)$

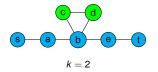


Definition:

- For each edge uv associate variable $f_e(uv)$
- For each vertex w associate variable $f_v(w)$
- For each color-label pair (x, y) associate variable $f_c(x, y)$

For a labeled walk W, associate monomial f(W) that is product of edge variables, vertex variables of labeled vertices, and color-label pair variables corresponding to labeled vertices

 $f(\overset{1}{sabcdbet}) = f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(b)f_v(d)f_c(\bullet,1)f_c(\bullet,2)$



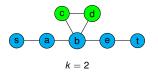
Definition:

- For each edge uv associate variable $f_e(uv)$
- For each vertex w associate variable $f_v(w)$
- For each color-label pair (x, y) associate variable $f_c(x, y)$

For a labeled walk W, associate monomial f(W) that is product of edge variables, vertex variables of labeled vertices, and color-label pair variables corresponding to labeled vertices

 $f(\overset{1}{sabcdbet}) = f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(b)f_v(d)f_c(\bullet, 1)f_c(\bullet, 2)$

For integer ℓ , let C_{ℓ} be the family of labeled-digon-free labeled (s, t)-walks of length ℓ



Definition:

- For each edge uv associate variable $f_e(uv)$
- For each vertex w associate variable $f_v(w)$
- For each color-label pair (x, y) associate variable $f_c(x, y)$

For a labeled walk W, associate monomial f(W) that is product of edge variables, vertex variables of labeled vertices, and color-label pair variables corresponding to labeled vertices

 $f(\overset{1}{sabcdbet}) = f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(b)f_v(d)f_c(\bullet,1)f_c(\bullet,2)$

For integer ℓ , let C_{ℓ} be the family of labeled-digon-free labeled (*s*, *t*)-walks of length ℓ

• Define
$$f(\mathcal{C}_{\ell}) = \sum_{W \in \mathcal{C}_{\ell}} f(W)$$

Now we claim that:

Now we claim that:

1. Exists a k-colored (s, t)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero

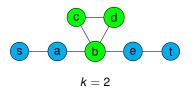
Now we claim that:

- 1. Exists a *k*-colored (s, t)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero
- 2. No *k*-colored (*s*, *t*)-path of length $\leq \ell \Rightarrow f(C_{\ell})$ identically zero

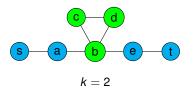
Now we claim that:

- 1. Exists a k-colored (s, t)-path of length ℓ
- 2. No k-colored (s, t)-path of length $\leq \ell$
- 3. $f(\mathcal{C}_{\ell})$ can be evaluated in time $2^k n^{\mathcal{O}(1)}$

- \Rightarrow $f(\mathcal{C}_{\ell})$ non-zero
- \Rightarrow $f(\mathcal{C}_{\ell})$ identically zero

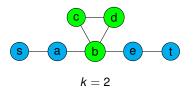


(1) Exists a k-colored (s, t)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero



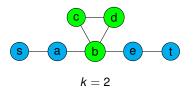
(1) Exists a k-colored (s, t)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero

• The labeled walk $sabet \in C_5$ contributes the monomial $f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(b)f_c(\bullet, 1)f_c(\bullet, 2)$



(1) Exists a *k*-colored (*s*, *t*)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero

- The labeled walk $sabet \in C_5$ contributes the monomial $f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(b)f_c(\bullet, 1)f_c(\bullet, 2)$
- No other labeled walk in \mathcal{C}_5 contributes the same monomial



(1) Exists a *k*-colored (*s*, *t*)-path of length $\ell \Rightarrow f(C_{\ell})$ non-zero

- The labeled walk $sabet \in C_5$ contributes the monomial $f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(b)f_c(\bullet, 1)f_c(\bullet, 2)$
- $\bullet\,$ No other labeled walk in \mathcal{C}_5 contributes the same monomial
- $\Rightarrow f(\mathcal{C}_5)$ is non-zero

(2) No *k*-colored (*s*, *t*)-path of length $\leq \ell \Rightarrow f(C_{\ell})$ identically zero

(2) No *k*-colored (*s*, *t*)-path of length $\leq \ell \Rightarrow f(C_{\ell})$ identically zero

Goal: Design a function $\phi : C_{\ell} \to C_{\ell}$ so that for all $W \in C_{\ell}$

- $f(W) = f(\phi(W))$
- $\phi(W) \neq W$
- $\phi(\phi(W)) = W$

(2) No *k*-colored (*s*, *t*)-path of length $\leq \ell \Rightarrow f(C_{\ell})$ identically zero

Goal: Design a function $\phi : C_{\ell} \to C_{\ell}$ so that for all $W \in C_{\ell}$

- $f(W) = f(\phi(W))$
- $\phi(W) \neq W$
- $\phi(\phi(W)) = W$

 \Rightarrow Labeled walks in C_{ℓ} can be paired as $\{W, \phi(W)\}$, implying everything cancels out over fields of characteristic 2

(2) No k-colored (s, t)-path of length $\leq \ell \Rightarrow f(C_{\ell})$ identically zero

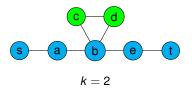
Goal: Design a function $\phi : C_{\ell} \to C_{\ell}$ so that for all $W \in C_{\ell}$

- $f(W) = f(\phi(W))$
- $\phi(W) \neq W$
- $\phi(\phi(W)) = W$

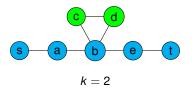
 \Rightarrow Labeled walks in C_{ℓ} can be paired as $\{W, \phi(W)\}$, implying everything cancels out over fields of characteristic 2

Three different cancellation arguments as building blocks for ϕ :

- Bijective-labeling based cancellation (from [Björklund'14], [Björklund, Husfeldt, Kaski, Koivisto'17])
- Cycle-reversal based cancellation (from [Björklund, Husfeldt, Taslaman'12])
- Label-swap based cancellation

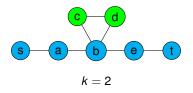


Consider labeled walks where two vertices of the same color are labeled



Consider labeled walks where two vertices of the same color are labeled

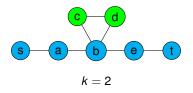
```
• sabet^{1} \in C_5 contributes the monomial f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(e)f_c(\bullet, 1)f_c(\bullet, 2)
```



Consider labeled walks where two vertices of the same color are labeled

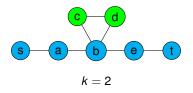
```
• sabet \in C_5 contributes the monomial f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(e)f_c(\bullet, 1)f_c(\bullet, 2)
```

• $sabet^2 \in C_5$ is a different labeled walk, but contributes the same monomial



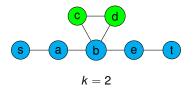
Consider labeled walks where two vertices of the same color are labeled

- $sabet \in C_5$ contributes the monomial $f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(e)f_c(\bullet, 1)f_c(\bullet, 2)$
- $sabet^2 \in C_5$ is a different labeled walk, but contributes the same monomial
- $\phi(\overset{1}{sabet}) = \overset{2}{sabet} \overset{1}{t}$ and $\phi(\overset{2}{sabet}) = \overset{1}{sabet}$

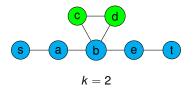


Consider labeled walks where two vertices of the same color are labeled

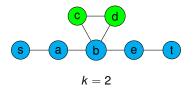
- $sabet \in C_5$ contributes the monomial $f_e(sa)f_e(ab)f_e(be)f_e(et)f_v(a)f_v(e)f_c(\bullet, 1)f_c(\bullet, 2)$
- $sabet \in C_5$ is a different labeled walk, but contributes the same monomial
- $\phi(\overset{1}{sabet}) = \overset{2}{sabet} \overset{1}{t}$ and $\phi(\overset{2}{sabet}) = \overset{1}{sabet}$
- Now we can work with family $C_\ell^* \subseteq C_\ell$ containing labeled walks where all labeled vertices have different colors



• Labeled walk $sabcdbet \in C_7^*$ contributes monomial $f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(a)f_v(c)f_c(\bullet, 1)f_c(\bullet, 2)$

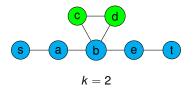


- Labeled walk $sabcdbet \in C_7^*$ contributes monomial $f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(a)f_v(c)f_c(\bullet, 1)f_c(\bullet, 2)$
- Reverse the cycle b^2_{cdb}



• Labeled walk $sabcdbet \in C_7^*$ contributes monomial $f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(a)f_v(c)f_c(\bullet, 1)f_c(\bullet, 2)$

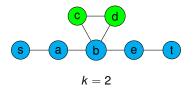
- Reverse the cycle b^2_{cdb}
- Now $sabd_{cbet}^{1} \in C_{7}^{*}$ is a different labeled walk but contributes the same monomial



• Labeled walk $sabcdbet \in C_7^*$ contributes monomial $f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(a)f_v(c)f_c(\bullet, 1)f_c(\bullet, 2)$

- Reverse the cycle b^2_{cdb}
- Now $sabd^2bet \in C_7^*$ is a different labeled walk but contributes the same monomial

• $\phi(sabcdbet) = sabdcbet$ and $\phi(sabdcbet) = sabcdbet$



• Labeled walk $sabcdbet \in C_7^*$ contributes monomial $f_e(sa)f_e(ab)f_e(bc)f_e(cd)f_e(db)f_e(be)f_e(et)f_v(a)f_v(c)f_c(\bullet, 1)f_c(\bullet, 2)$

- Reverse the cycle b^2_{cdb}
- Now $sabd^2bet \in C_7^*$ is a different labeled walk but contributes the same monomial
- $\phi(sabc2dbet) = sabc2bet$ and $\phi(sabc2bet) = sabc2dbet$
- This does not cleanly handle things, need more arguments and case analysis

• Consider a labeled walk *sabcdabt* (with only one label)

- Consider a labeled walk *sabcdabt* (with only one label)
- Reversing the cycle *abcd*¹/_a would create *sadcb*¹/_{abt}, containing labeled digon *b*¹/_{ab}

- Consider a labeled walk *sabcd abt* (with only one label)
- Reversing the cycle $abcd^{\frac{1}{a}}$ would create $sadcb^{\frac{1}{a}bt}$, containing labeled digon $b^{\frac{1}{a}b}$
- Label swap operation: $\phi(sabcdabt) = sabcdabt$ and $\phi(sabcdabt) = sabcdabt$

- Consider a labeled walk *sabcdabt* (with only one label)
- Reversing the cycle $abcd^{\frac{1}{a}}$ would create $sadcb^{\frac{1}{a}bt}$, containing labeled digon $b^{\frac{1}{a}b}$
- Label swap operation: $\phi(sabcdabt) = sabcdabt$ and $\phi(sabcdabt) = sabcdabt$
- The label swap operation could also create labeled digons!

Cancellation arguments

 Bad news: Not clear when to apply cycle reversal and when label swap

Cancellation arguments

- Bad news: Not clear when to apply cycle reversal and when label swap
- Good news: We managed to construct φ, but it is very complicated

Definition 3 (The function ϕ). Let $W = (W^1, ..., W^p)$ be a proper barren haledot walkage of order s. For each $i \in [p]$, denote $W^i = ((v_1^i, ..., v_{\ell_i}^j), (r_1^i, ..., r_{\ell_i}^j))$. The value $\phi(W)$ is defined, in some cases recursively, by selecting the first matching case (rom the following list:

A. if the vertex v¹₁ occurs only once in W:

1. if $\ell_1 \ge 2$, then $\phi(W) = W^1[1, 1] \circ \phi(W^1[2, \ell_1], W^2, ..., W^p)$. 2. otherwise (i.e., $\ell_1 = 1$), $\phi(W) = W^1 \sqcup \phi(W^2, ..., W^p)$.

- B. if the vertex v_1^1 occurs in all basis three different walks W^* : There must be at least two different walks W^* that contain v_2^1 but do not contain it as labeled. Let i, j be the was smallest induces so that look W^* and W^* contain v_1^1 but do not contain it as labeled. Let a be the index of the first occurrence of v_2^1 in W^* and b be the index of the first occurrence of v_1^1 in W^* . Now, $A(W) = W + v_2^*$.
- C. if the vertex v¹₂ occurs only in the walk W¹: By the case (A), the vertex v¹₂ occurs multiple times in W¹. Let b be the index of the last

occurrence of v_1^1 in W^1 and a be the index of the second last occurrence of v_1^1 in W^1 . Note that a = 1 if v_1^1 occurs only twice in W^1 , and note also that $1 \le a \le b - 2$.

1. if $r_1^1 = r_b^1 = 0$:

(a) if W¹[2, b − 1] is not a paindrome, then φ(W) = (W¹[2, b − 1], W²,..., W^p).
 (b) otherwise, if b < ℓ₁, then φ(W) = W¹[1, b] ◊ φ(W¹[b + 1, ℓ₁], W²,..., W^p).
 (c) otherwise (i.e., b = ℓ₁), φ(W) = W¹⊔φ(W²,..., W^p).

- if the index b is not a digon in W¹, then φ(W) = W ∩^{1,1}_{1,b}.
 Note: If neither case (1) nor (2) applies, then r¹₁ ≠ 0.
- if W¹[2, a 1] is not a palindrome, then φ(W) = (W¹[2, a 1], W²,..., W^p). Note: If a = 1, then W¹[2, a - 1] is the empty walk which is a palindrome.
- 4. if $v_{a+1}^1 = v_{b-1}^1$:

(a) if W¹[a+1,b-1] is not a palindrower, then φ(W) = (W¹[a+1,b-1], W²,..., W^p).
 (b) otherwise, φ(W) = W¹[1,b] ◦ φ(W¹[b+1, t₁], W²,..., W^p).
 Note: Here W¹[b+1, t₁] cannot be an empty walk because by case (C.2) b is a digon in W¹.

X. otherwise, $\phi(W) = W^1[1, a] \diamond \phi(W^1[a + 1, \ell_1], W^2, ..., W^p)$. Note: The case C.X will form a "common case" with the case D.X.

- D. if the vertex v_1^1 occurs in exactly two different walks: Let i be the index of the another walk W^1 in which v_1^1 occurs and let b be the index of the first occurrence of v_1^1 in W^1 .
 - 1. if $r_1^1 = r_b^i = 0$, then $\phi(W) = W \leftrightarrow_{1,b}^{1,i}$.
 - if the index b is not a digon in Wⁱ, then φ(W) = W −^{1,i}_{1,b}.
 Note: If neither case (1) nor (2) applies, then r¹₁ ≠ 0.
 - if v₁¹ occurs at least twice in Wⁱ, then let c be the index of its second occurrence and φ(W) = W ↔¹_{2,c+1}.

Note: It can happen that one of the suffixes in this case is empty. However, both of them cannot be empty at the same time because W^1 and W^1 have different ending vertices because W is proper.

Note: In the remaining cases, v_1^1 occurs exactly once in W^i , and this occurrence is a digon at index b.

Now, let a be the index of the last occurrence of v_1^1 in W^1 (if v_1^1 occurs only once in W^1 , then a = 1).

 if W¹[2, a − 1] is not a palindrome, then φ(W) = (W¹[2, a − 1], W², . . . , W^p). Note: If a = 1, then W¹[2, a − 1] is the empty walk which is a palindrome.

5. if $a = \ell_1$, then $\phi(W) = W^1 \sqcup \phi(W^2, ..., W^p)$.

- 6. if v¹_{n+1} = v¹_{b+1}, then φ(W) = W ↔¹_{n+1,b+1}. Note: By case (5) it holds that a < t₁ and by case (2) it holds that b < t_i.
- X. otherwise, $\phi(W) = W^1[1, a] \circ \phi(W^1[a + 1, \ell_1], W^2, \dots, W^p)$. Note: The case D X will form a "common case" with the case C X.

Cancellation arguments

- Bad news: Not clear when to apply cycle reversal and when label swap
- Good news: We managed to construct φ, but it is very complicated
 - Single-path version has 8 cases, multi-path version 18 cases

Definition 3 (The function ϕ_i . Let $W = (W^1, ..., W^r)$ be a proper barren ladeda wallage of order s. For each $i \in [p]$, denote $W^2 = ((v_1^1, ..., v_{k_i}^1), (r_1^i, ..., r_{k_i}^i))$. The value $\phi(W)$ is defined, in some cases recursively, by selecting the first matching case from the following last:

A. if the vertex v_1^1 occurs only once in W:

1. if $\ell_1 \ge 2$, then $\phi(W) = W^1[1, 1] \circ \phi(W^1[2, \ell_1], W^2, ..., W^p)$. 2. otherwise (i.e., $\ell_1 = 1$), $\phi(W) = W^1 \sqcup \phi(W^2, ..., W^p)$,

- B: if the vertex v_1^1 access in al-basit three different walks W^1 : There must be at least two different walks W^1 that contain v_1^1 but do not contain it as labeled. Let i, j be the two smallest indices so that both W^1 and W^2 contain v_1^1 but do not contain it as labeled. Let a be the index of the first occurrence of v_1^1 in W^2 and b be the index of the first occurrence of v_1^1 in W^2 . Now, $AW = W + v_1^2$, $W = W + v_2^2$.
- C. if the vertex v_1^1 occurs only in the walk W^1 : By the case (A), the vertex v_1^1 occurs multiple times in W^1 . Let b be the index of the last

occurrence of v_1^1 in W^1 and a be the index of the second last occurrence of v_1^1 in W^1 . Note that a = 1 if v_1^1 occurs only twice in W^1 , and note also that $1 \le a \le b - 2$.

1. if $r_1^1 = r_b^1 = 0$:

(a) if W¹[2, b − 1] is not a paindrome, then φ(W) = (W¹[2, b − 1], W²,..., W^p).
 (b) otherwise, if b < ℓ₁, then φ(W) = W¹[1, b] ◊ φ(W¹[b + 1, ℓ₁], W²,..., W^p).
 (c) otherwise (i.e., b = ℓ₁), φ(W) = W¹⊔φ(W²,..., W^p).

if the index b is not a digon in W¹, then φ(W) = W ∩^{1,1}_{1,b}.
 Note: If neither case (1) nor (2) applies, then r¹₁ ≠ 0.

```
    if W<sup>1</sup>[2, a - 1] is not a palindrome, then φ(W) = (W<sup>1</sup>[2, a - 1], W<sup>2</sup>,..., W<sup>p</sup>).
Note: If a = 1, then W<sup>1</sup>[2, a - 1] is the empty walk which is a palindrome.
```

4. if $v_{a+1}^1 = v_{b-1}^1$:

(a) if W¹[a+1,b-1] is not a palindrowse, then φ(W) = (W¹[a+1,b-1], W²,..., W^p).
 (b) otherwise, φ(W) = W¹[1,b] φ(W¹[b+1, t₁], W²,..., W^p).
 Note: Here W¹[b+1, t₁] cannot be an empty walk because by case (C.2) b is a digon in W¹

X. otherwise, $\phi(W) = W^1[1, a] \circ \phi(W^1[a + 1, t_1], W^2, ..., W^p)$. Note: The case C.X will form a "common case" with the case D.X.

D. if the vertex v¹₀ occurs in exactly two different walks: Let i be the index of the another walk Wⁿ in which v¹₁ occurs and let b be the index of the first occurrence of v¹₁ in Wⁿ.

- 1. if $r_1^1 = r_b^i = 0$, then $\phi(W) = W \leftrightarrow_{1,b}^{1,i}$.
- if the index b is not a digon in Wⁱ, then φ(W) = W ∩^{1,i}_{1,b}.
 Note: If neither case (1) nor (2) applies, then r¹₁ ≠ 0.
- if v₁¹ occurs at least twice in Wⁱ, then let c be the index of its second occurrence and φ(W) = W ↔¹_{2,c+1}.

Note: It can happen that one of the suffixes in this case is empty. However, both of them cannot be empty at the same time because W^1 and W^1 have different ending vertices because W is proper.

Note: In the remaining cases, v_1^1 occurs exactly once in W^i , and this occurrence is a digon at index b.

Now, let a be the index of the last occurrence of v_1^1 in W^1 (if v_1^1 occurs only once in W^1 , then a = 1).

 if W¹[2, a − 1] is not a palindrome, then φ(W) = (W¹[2, a − 1], W², . . . , W^p). Note: If a = 1, then W¹[2, a − 1] is the empty walk which is a palindrome.

5. if $a = \ell_1$, then $\phi(W) = W^1 \sqcup \phi(W^2, ..., W^p)$.

- 6. if v¹_{a+1} = v¹_{b+1}, then φ(W) = W ↔¹_{a+1,b+1}. Note: By case (5) it holds that a < t₁ and by case (2) it holds that b < t_i.
- X. otherwise, $\phi(W) = W^1[1, a] \circ \phi(W^1[a + 1, \ell_1], W^2, \dots, W^p)$. Note: The case D X will form a "common case" with the case C X.

(3) $f(\mathcal{C}_{\ell})$ can be evaluated in time $2^k n^{\mathcal{O}(1)}$

• Dynamic programming that stores:

- Dynamic programming that stores:
 - The length of the walk

- Dynamic programming that stores:
 - The length of the walk
 - The last and the second last vertex of the walk

Evaluating $f(\mathcal{C}_{\ell})$

- Dynamic programming that stores:
 - The length of the walk
 - The last and the second last vertex of the walk
 - Whether the last vertex is labeled

Evaluating $f(\mathcal{C}_{\ell})$

- Dynamic programming that stores:
 - The length of the walk
 - The last and the second last vertex of the walk
 - Whether the last vertex is labeled
 - The set of used labels (2^k factor)

Evaluating $f(\mathcal{C}_{\ell})$

- Dynamic programming that stores:
 - The length of the walk
 - The last and the second last vertex of the walk
 - Whether the last vertex is labeled
 - The set of used labels (2^k factor)
- ⇒ By DeMillo–Lipton–Schwartz–Zippel lemma, $2^k n^{O(1)}$ time algorithm for *k*-colored (*s*, *t*)-path that works with high probability

• Extending from single path to multiple paths requires new ideas

- Extending from single path to multiple paths requires new ideas
 - New cancellation argument of swapping the suffixes of two intersecting walks

Beyond maximum colored path

- Extending from single path to multiple paths requires new ideas
 - New cancellation argument of swapping the suffixes of two intersecting walks
- Extending from colors to combination of weights and colors is easy

Beyond maximum colored path

- Extending from single path to multiple paths requires new ideas
 - New cancellation argument of swapping the suffixes of two intersecting walks
- Extending from colors to combination of weights and colors is easy
 - Instead of weights, could ask for any property that can be efficiently evaluated in DP

• We gave a $2^k n^{O(1)}$ time algorithm for finding an (s, t)-path with at least k colors

- We gave a $2^k n^{O(1)}$ time algorithm for finding an (s, t)-path with at least k colors
 - ► and 2^{k+p}n^{O(1)} time algorithm for a more general setting with multiple paths and weights and colors

- We gave a $2^k n^{O(1)}$ time algorithm for finding an (s, t)-path with at least k colors
 - and 2^{k+p}n^{O(1)} time algorithm for a more general setting with multiple paths and weights and colors
- The proof that if no solution exists then *f*(C_ℓ) is identically zero is the most complicated part

- We gave a $2^k n^{\mathcal{O}(1)}$ time algorithm for finding an (s, t)-path with at least k colors
 - and 2^{k+p}n^{O(1)} time algorithm for a more general setting with multiple paths and weights and colors
- The proof that if no solution exists then *f*(C_ℓ) is identically zero is the most complicated part
- Open problem: Is there an FPT-algorithm for maximum colored two disjoint paths?

- We gave a $2^k n^{\mathcal{O}(1)}$ time algorithm for finding an (s, t)-path with at least k colors
 - and 2^{k+p}n^{O(1)} time algorithm for a more general setting with multiple paths and weights and colors
- The proof that if no solution exists then *f*(C_ℓ) is identically zero is the most complicated part
- Open problem: Is there an FPT-algorithm for maximum colored two disjoint paths?
- Open problem: Is there a $1.99^k n^{\mathcal{O}(1)}$ time algorithm for longest (s, t)-path?

Thank you!

Thank you!