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A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v , the bags containing v should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]
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Treewidth of graphs
Some graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) outerplanar (tw ≤ 2)

Some graphs of large treewidth:

Clique (tw = n − 1) Expanders (tw = Θ(n)) n ×m-grid (tw = min(n,m))
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Why treewidth?

Algorithms for trees often generalize to algorithms for graphs
of small treewidth

Example: Maximum independent set in O(2k · n) time on
treewidth-k graphs

Courcelle’s theorem gives Ok (n) algorithms
for all problems definable in MSO-logic

Need the tree decomposition!

I Ok (n) time algorithm to compute an optimum-width tree
decomposition [Bodlaender ’96]
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Dynamic treewidth

Question [Bodlaender ’93, Dvořák, Kupec & Tůma ’14, Alman, Mnich & Vassilevska Williams ’20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
“Naive”: Ok (n) update time [Bodlaender ’96]

Treewidth-1: [Sleator & Tarjan ’83, Alstrup, Holm, de Lichtenberg & Thorup ’05...] O(log n) time

[Bodlaender ’93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in the incremental
setting

[Dvořák, Kupec & Tůma ’14]: Od (1) time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: O`(log n) amortized time for feedback vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate tree decomposition on
bounded-degree graphs. Not suitable for dynamic programming.

Tuukka Korhonen Dynamic Treewidth 5 / 13



Dynamic treewidth
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[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate tree decomposition on
bounded-degree graphs. Not suitable for dynamic programming.

Tuukka Korhonen Dynamic Treewidth 5 / 13



Dynamic treewidth
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[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate tree decomposition on
bounded-degree graphs. Not suitable for dynamic programming.
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Our result

Summary of previous results

No sublinear time fully dynamic algorithms for maintaining tree decompositions of widthOk (1) for graphs of
treewidth k ≥ 3.

Theorem (this work):
There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized timeOk (2
√
log n log log n) = Ok (no(1)) under the

promise that the treewidth of G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the decomposition within similar running time
(formalized by tree-automata)
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The algorithm

The algorithm
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High-level plan

Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth d = 2Ok (
√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root, and re-compute
dynamic programming tables in timeOk (d)
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What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 9 / 13



What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 9 / 13



What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 9 / 13



Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and the amortized running
time of the operation is Ok (|P|)

Builds on the improvement operation of [K. & Lokshtanov’23], also uses the dealternation lemma of
[Bojańczyk & Pilipczuk’22] and Bodlaender-Hagerup-lemma
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[Bojańczyk & Pilipczuk’22] and Bodlaender-Hagerup-lemma

Tuukka Korhonen Dynamic Treewidth 10 / 13



Refinement operation
Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and the amortized running
time of the operation is Ok (|P|)

Builds on the improvement operation of [K. & Lokshtanov’23], also uses the dealternation lemma of
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What can go wrong?

Refinement can increase the depth by O(log n)

Once depth is more than 2Ok (
√
log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation and a potential function
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Depth-reduction scheme

Potential function of form Φ(T ) =
∑

t∈V (T ) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t) factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√
log n log log n)

Argument that if depth is more than 2Ok (
√
log n log log n), then exists prefix P s.t.

I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T ) and
I runs in time Ok (Φ(T )− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√
log n log log n) time
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Conclusion

Ok(2
√
log n log log n) amortized update time for maintaining a tree decomposition of width at

most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree decomposition

Follow-up works:
I [K. & Sokołowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via

dynamic rankwidth

I [K., Pilipczuk & Stamoulis ’24+]: H-Minor Containment and k -Disjoint Paths in
almost-linear time

Open problems:
I Improve update time toOk(polylog n) (orOk(log n))
I Other applications?

Thank you!
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