Dynamic Treewidth

Tuukka Korhonen', Konrad Majewski?, Wojciech Nadara?,
Michat Pilipczuk?, and Marek Sokotowski?

"University of Bergen, 2University of Warsaw

Presented at FOCS 2023

HALG 2024

5 June 2024

Tuukka Korhonen Dynamic Treewidth 1/13

Treewidth

Tuukka Korhonen Dynamic Treewidth

Treewidth

Graph G A tree decomposition of G

Tuukka Korhonen Dynamic Treewidth

Treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag

Tuukka Korhonen Dynamic Treewidth

Treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag
2. Every edge should be in a bag

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G A tree decomposition of G

1. Every vertex should be in a bag

2. Every edge should be in a bag

3. For every vertex v, the bags containing v should form a connected subtree
4. Width = maximum bag size —1

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G A tree decomposition of G
Width = 2
1. Every vertex should be in a bag

2. Every edge should be in a bag
3. For every vertex v, the bags containing v should form a connected subtree
4. Width = maximum bag size —1

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G

A tree decomposition of G
Width = 2
. Every vertex should be in a bag

. Every edge should be in a bag

. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1

. Treewidth of G = minimum width of tree decomposition of G

a b~ 0NN =

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G
Treewidth 2 Width = 2
. Every vertex should be in a bag
. Every edge should be in a bag
. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1
. Treewidth of G = minimum width of tree decomposition of G

A tree decomposition of G

a b~ 0NN =

Tuukka Korhonen Dynamic Treewidth 2/13

Treewidth

Graph G
Treewidth 2 Width = 2
. Every vertex should be in a bag
. Every edge should be in a bag
. For every vertex v, the bags containing v should form a connected subtree
. Width = maximum bag size —1
. Treewidth of G = minimum width of tree decomposition of G

A tree decomposition of G

a b~ 0NN =

[Robertson & Seymour’'84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Treewidth of graphs

Some graphs of small treewidth:

Ay, P

Trees (tw < 1) Series-parallel (tw < 2) outerplanar (tw < 2)

Tuukka Korhonen Dynamic Treewidth 3/13

Treewidth of graphs

Some graphs of small treewidth:

ﬂ%@@

Trees (tw < 1) Series-parallel (tw < 2) outerplanar (tw < 2)

Some graphs of large treewidth:

Clique (tw = n—1) Expanders (tw = ©(n)) n x m-grid (tw = min(n, m))

Tuukka Korhonen Dynamic Treewidth 3/13

Why treewidth?

e Algorithms for trees often generalize to algorithms for graphs
of small treewidth

Tuukka Korhonen Dynamic Treewidth 4/13

Why treewidth?

e Algorithms for trees often generalize to algorithms for graphs
of small treewidth

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs

Tuukka Korhonen Dynamic Treewidth 4/13

Why treewidth?

e Algorithms for trees often generalize to algorithms for graphs
of small treewidth

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs

e Courcelle’s theorem gives O(n) algorithms
for all problems definable in MSO-logic

Tuukka Korhonen Dynamic Treewidth 4/13

Why treewidth?

e Algorithms for trees often generalize to algorithms for graphs
of small treewidth

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs

e Courcelle’s theorem gives O(n) algorithms
for all problems definable in MSO-logic

o Need the tree decomposition!

Tuukka Korhonen Dynamic Treewidth 4/13

Why treewidth?

e Algorithms for trees often generalize to algorithms for graphs
of small treewidth

e Example: Maximum independent set in O(2% - n) time on
treewidth-k graphs

e Courcelle’s theorem gives O(n) algorithms
for all problems definable in MSO-logic

o Need the tree decomposition!

» Ok(n) time algorithm to compute an optimum-width tree
decomposition [Bodlaender '96]

Tuukka Korhonen Dynamic Treewidth 4/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

Tuukka Korhonen Dynamic Treewidth

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: O(n) update time [Bodlaender '96]

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: O(n) update time [Bodlaender '96]

@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

@ [Cohen, Sairam, Tamassia & Vitter '93]: O(log n) amortized time for treewidth-3 in the incremental
setting

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)
Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

@ [Cohen, Sairam, Tamassia & Vitter '93]: O(log n) amortized time for treewidth-3 in the incremental
setting

@ [Dvorak, Kupec & Tama '14]: Oy4(1) time for treedepth-d

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

@ [Cohen, Sairam, Tamassia & Vitter '93]: O(log n) amortized time for treewidth-3 in the incremental
setting

@ [Dvorak, Kupec & Tama '14]: Oy4(1) time for treedepth-d

@ [Majewski, Pilipczuk & Sokotowski 23]: O,(log n) amortized time for feedback vertex number ¢

Tuukka Korhonen Dynamic Treewidth 5/13

Dynamic treewidth

Question [Bodlaender ‘93, Dvorak, Kupec & Tlma 14, Alman, Mnich & Vassilevska Williams ’'20]
Can we efficiently maintain a tree decomposition of a dynamic graph with bounded treewidth? J

@ Would also like to maintain any “finite-state” dynamic programming scheme on the tree decomposition
(dynamic Courcelle’s theorem)

Previous work:
@ “Naive”: Ok(n) update time [Bodlaender '96]
@ Treewidth-1: [Sleator & Tarjan ‘83, Alstrup, Holm, de Lichtenberg & Thorup '05...] O(log n) time
@ [Bodlaender '93]: O(log n) time for treewidth-2, Ok (log n) for treewidth-k in the decremental setting

@ [Cohen, Sairam, Tamassia & Vitter '93]: O(log n) amortized time for treewidth-3 in the incremental
setting

@ [Dvorak, Kupec & Tama '14]: Oy4(1) time for treedepth-d
@ [Majewski, Pilipczuk & Sokotowski '23]: O,(log n) amortized time for feedback vertex number ¢

@ [Goranci, Racke, Saranurak & Tan ’21]: n°(") amortized time n°(1)-approximate tree decomposition on
bounded-degree graphs. Not suitable for dynamic programming.

Tuukka Korhonen Dynamic Treewidth 5/13

Our result

Summary of previous results

No sublinear time fully dynamic algorithms for maintaining tree decompositions of width Ok(1) for graphs of
treewidth kK > 3.

Tuukka Korhonen Dynamic Treewidth

Our result

Summary of previous results

No sublinear time fully dynamic algorithms for maintaining tree decompositions of width (’)k(1) for graphs of
treewidth kK > 3.

Theorem (this work):

There is data structure that
@ is initialized with integer k and empty n-vertex graph G

@ supports edge insertions and deletions in amortized time (0 (2V/'°8 1loglog) — (9;((n°(1)) under the
promise that the treewidth of G never exceeds k

@ maintains a tree decomposition of G of width at most 6k + 5

Tuukka Korhonen Dynamic Treewidth 6/13

Our result

Summary of previous results

No sublinear time fully dynamic algorithms for maintaining tree decompositions of width Ok(1) for graphs of
treewidth kK > 3.

Theorem (this work):

There is data structure that
@ is initialized with integer k and empty n-vertex graph G

@ supports edge insertions and deletions in amortized time (0 (2V/'°8 1loglog) — (9;((n°(1)) under the
promise that the treewidth of G never exceeds k

@ maintains a tree decomposition of G of width at most 6k + 5

@ can also maintain any dynamic programming scheme on the decomposition within similar running time
(formalized by tree-automata)

Tuukka Korhonen Dynamic Treewidth 6/13

The algorithm

The algorithm

Tuukka Korhonen Dynamic Treewidth

High-level plan

Tuukka Korhonen Dynamic Treewidth

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

Tuukka Korhonen Dynamic Treewidth

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

@ [Bodlaender & Hagerup '98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log) and width 3k + 2

Tuukka Korhonen Dynamic Treewidth 8/13

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

@ [Bodlaender & Hagerup '98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log 1) and width 3k + 2

@ Maintain also dynamic programming tables directed towards the root

Tuukka Korhonen Dynamic Treewidth 8/13

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

@ [Bodlaender & Hagerup '98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log 1) and width 3k + 2

@ Maintain also dynamic programming tables directed towards the root

@ Edge deletion: Re-compute dynamic programming tables in time Ok(d)

Tuukka Korhonen Dynamic Treewidth 8/13

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

@ [Bodlaender & Hagerup '98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log 1) and width 3k + 2

@ Maintain also dynamic programming tables directed towards the root

@ Edge deletion: Re-compute dynamic programming tables in time Ok(d)

Tuukka Korhonen Dynamic Treewidth 8/13

High-level plan
@ Goal: Maintain a rooted binary tree decomposition of width 6k -+ 5 and depth d = 27«(/log nloglog n)

@ [Bodlaender & Hagerup '98]: Any tree decomposition of width k can be turned into rooted binary tree
decomposition of depth O(log 1) and width 3k + 2

@ Maintain also dynamic programming tables directed towards the root
@ Edge deletion: Re-compute dynamic programming tables in time Ok(d)

@ Edge insertion: Add u and v to all bags on the path from their subtrees to the root, and re-compute

dynamic programming tables in time O (d)

Tuukka Korhonen Dynamic Treewidth 8/13

What can go wrong?

Tuukka Korhonen

Dynamic Treewidth

What can go wrong?

@ The width can become more than 6k + 5 on the green bags!

Tuukka Korhonen Dynamic Treewidth

What can go wrong?

@ The width can become more than 6k + 5 on the green bags!

@ Solution: a Refinement operation to re-compute the tree decomposition on these bags

Tuukka Korhonen Dynamic Treewidth 9/13

Refinement operation

Tuukka Korhonen Dynamic Treewidth

Refinement operation

@ Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5

Tuukka Korhonen Dynamic Treewidth 10/13

Refinement operation
@ Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5

@ Re-arranges P into new prefix P’ of width < 6k + 5 and depth < O(log n)

Tuukka Korhonen Dynamic Treewidth 10/13

Refinement operation

@ Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5

@ Re-arranges P into new prefix P’ of width < 6k + 5 and depth < O(log n)

Tuukka Korhonen Dynamic Treewidth 10/13

Refinement operation

@ Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5
@ Re-arranges P into new prefix P’ of width < 6k + 5 and depth < O(log n)

@ Changes also other parts of the decomposition, but only improves the width, and the amortized running
time of the operation is Ok(|P|)

Tuukka Korhonen Dynamic Treewidth 10/13

Refinement operation

@ Refinement operation is given a prefix P of tree decomposition that contains all bags of width > 6k + 5
@ Re-arranges P into new prefix P’ of width < 6k + 5 and depth < O(log n)

@ Changes also other parts of the decomposition, but only improves the width, and the amortized running
time of the operation is Ok(|P|)

@ Builds on the improvement operation of [K. & Lokshtanov’23], also uses the dealternation lemma of
[Bojanczyk & Pilipczuk’22] and Bodlaender-Hagerup-lemma

Tuukka Korhonen Dynamic Treewidth 10/13

What can go wrong?

Tuukka Korhonen Dynamic Treewidth

What can go wrong?
e Refinement can increase the depth by O(log n)

Tuukka Korhonen Dynamic Treewidth

What can go wrong?
e Refinement can increase the depth by O(log n)

e Once depth is more than 29«(Vlcenloeloen) "need to reduce it

Tuukka Korhonen Dynamic Treewidth 11/13

What can go wrong?
e Refinement can increase the depth by O(log n)

e Once depth is more than 29«(Vlcenloeloen) "need to reduce it

@ Solution: A depth-reduction scheme by using the refinement operation and a potential function

Tuukka Korhonen Dynamic Treewidth 11/13

Depth-reduction scheme

Tuukka Korhonen Dynamic Treewidth

Depth-reduction scheme

e Potential function of form ®(T) = >,y 7) k10:lbag(t)l . height(t)

Tuukka Korhonen Dynamic Treewidth

Depth-reduction scheme

e Potential function of form ®(T) = >,y 7) k10:lbag(t)l . height(t)

@ The k'9-1°ad(1)l factor is for amortized analysis of the refinement, the height(t) factor for depth-reduction

Tuukka Korhonen Dynamic Treewidth

Depth-reduction scheme

@ Potential function of form ®(T) = >,y (7) k10:lbag(t)l . height(t)

@ The k'9-1°ad(1)l factor is for amortized analysis of the refinement, the height(t) factor for depth-reduction

@ Edge insertion increses potential by Ox(0?) = 20«(Vicgnloglog n)

Tuukka Korhonen Dynamic Treewidth 12/13

Depth-reduction scheme

@ Potential function of form ®(T) = >,y (7) k101629(D)] . height(t)

@ The k'9-1°ad(1)l factor is for amortized analysis of the refinement, the height(t) factor for depth-reduction
e Edge insertion increses potential by Oy (d?) = 2Ck(VIog nloglogn)

@ Argument that if depth is more than 29«(Vicgnloglogn) then exists prefix P s.t.

» refining on P produces decomposition T’ with ®(T") < ®(T) and
» runs in time Ok (®(T) — &(T"))

Tuukka Korhonen Dynamic Treewidth 12/13

Depth-reduction scheme

@ Potential function of form ®(T) = >,y (7) k101629(D)] . height(t)
@ The k'9-1°ad(1)l factor is for amortized analysis of the refinement, the height(t) factor for depth-reduction
e Edge insertion increses potential by Oy (d?) = 2Ck(VIog nloglogn)
@ Argument that if depth is more than 29«(Vicgnloglogn) then exists prefix P s.t.
» refining on P produces decomposition T’ with ®(T") < ®(T) and

» runs in time O (®(T) — &(T"))

= Can control the height in amortized 27k(Vog nloglog) time

Tuukka Korhonen Dynamic Treewidth 12/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k

» Can also maintain any dynamic programming on the tree decomposition

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k
» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k

» Can also maintain any dynamic programming on the tree decomposition
o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion
o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k
» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k

» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

@ Open problems:

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion
o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k
» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

@ Open problems:
> Improve update time to O(polylog n)

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion
o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k
» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

@ Open problems:
> Improve update time to O (polylog 1) (or Ok(log n))

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion

o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k

» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:
» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

@ Open problems:
> Improve update time to O (polylog 1) (or Ok(log n))
» Other applications?

Tuukka Korhonen Dynamic Treewidth 13/13

Conclusion
o Oy (2Vlesnlogloe) amortized update time for maintaining a tree decomposition of width at
most 6k + 5 of dynamic graph of treewidth < k
» Can also maintain any dynamic programming on the tree decomposition

o Follow-up works:

» [K. & Sokotowski, STOC’24]: Almost-linear time parameterized algorithm for rankwidth via
dynamic rankwidth

» [K., Pilipczuk & Stamoulis '24+]: H-Minor Containment and k-Disjoint Paths in
almost-linear time

@ Open problems:
> Improve update time to O (polylog 1) (or Ok(log n))
» Other applications?

Thank you!

