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Minors of graphs

A graph H is a minor of a graph G if H can be obtained from G by
I Vertex deletions
I Edge deletions
I Edge contractions

Theorem (Kuratowski-Wagner, 1930, 1937)

A graph is planar if and only if it does not contain K5 or K3,3 as a minor.
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Theorem (Kuratowski-Wagner, 1930, 1937)
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The Graph Minor Theorem

Theorem (Robertson & Seymour, 1984-2004)

Let C be a minor-closed graph class. There exists a finite set of graphs H, s.t.
a graph G is in C if and only if G does not contain a graph from H as a minor.

Minor-closed: Every minor of a graph in C is in C

Examples:
I C = {the planar graphs}, H = {K5,K3,3}
I C = {graphs admitting a linkless embedding in 3D}, H = {Petersen family}
I C = {graphs that can be made forests by deleting at most 10 vertices}
I C = {graphs that can be embedded on a torus after deleting at most 5 edges}
I C = {graphs of treewidth at most 20}

Proved in the Graph Minors Series of Robertson & Seymour, spanning 23 papers in
1983–2012.
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Algorithms?

Theorem (Robertson & Seymour, 1984-2012)

There exists an f (H) · n3 time algorithm to test if a given graph H is a minor
of a given n-vertex graph G.

Combined with the Graph Minor Theorem, we get:

Corollary

For every minor-closed graph class C, there exists an O(n3) time algorithm to test if a given
n-vertex graph is in C.

⇒ O(n3) time algorithms for many graph problems, some of which were not even known to be
decidable before the Graph Minors Series

(non-constructive) f (k) · n3 time algorithms for parameterized problems
I Inspired the birth of Parameterized complexity in the late 80s

More generally, an f (H) · n3 time algorithm for Rooted Minor Containment
⇒ f (k) · n3 time algorithm for the k -Disjoint Paths problem
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Algorithms

The algorithm of Robertson & Seymour was improved to f (H) · n2 by [Kawarabayashi,
Kobayashi & Reed, 2012]

Linear-time algorithms for planar graphs by [Bodlaender, 1993] and [Reed, Robertson,
Schrijver & Seymour, 1993]

Theorem (K., Pilipczuk, Stamoulis, FOCS 2024)

There is an f (H) ·m1+o(1) time algorithm for Rooted Minor Containment

m = |V (G)|+ |E(G)| the number of vertices + edges of G

The function f (H) huge but computable.

Corollary

Every minor-closed graph class has an n1+o(1) time recognition algorithm

Corollary

There is an f (k) ·m1+o(1) time algorithm for the k -Disjoint Paths problem
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The Irrelevant Vertex technique

Treewidth of a graph: Parameter between 0
and n−1 measuring how tree-like the graph is

If treewidth of G is ≤ f (H), solve the problem
by dynamic programming in f (H) · n time

If treewidth is > f (H), detect and remove an
Irrelevant Vertex from G
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Width = 2

Robertson & Seymour: Detect irrelevant vertex in
f (H) · n2 time⇒ f (H) · n3 time algorithm

Kawarabayashi, Kobayashi & Reed: Detect irrelevant
vertex in f (H) · n time⇒ f (H) · n2 time algorithm
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Outline of our algorithm

1. Fast implementation of the irrelevant vertex technique on apex-minor-free graphs

I Using dynamic treewidth data structure of [K., Majewski, Nadara, Pilipczuk & Sokołowski,
2023]

2. Reducing unbreakable clique-minor-free graphs to apex-minor-free graphs

3. Reducing clique-minor-free graphs to unbreakable clique-minor-free graphs

I Fast implementation of the recursive understanding technique
I Using recent breakthroughs in almost-linear time graph algorithms: Isolating cuts [Li &

Panigrahi, 2020], almost-linear time (deterministic) max-flow [van den Brand, Chen, Kyng,
Liu, Peng, Probst Gutenberg, Sachdeva & Sidford, 2023], and mimicking networks of
[Saranurak & Yingchareonthawornchai, 2022]

4. Reducing general graphs to clique-minor-free graphs
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Algorithm for apex-minor-free graphs

1. Find an ordering v1, . . . , v` of G − X so that every suffix is connected

2. Contract v1, . . . , v` into a mega-vertex

3. Start uncontracting in the order v1, . . . , v`

4. When treewidth becomes large, find a flat wall whose compass does not contain the mega-vertex, and
delete an irrelevant vertex from it

5. Main idea: If the compass of the flat wall does not contain the mega-vertex, then it is the same in the
contracted and the original graph
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Conclusion

f (H) ·m1+o(1) time algorithm for Rooted Minor Containment

Fast irrelevant vertex technique for apex-minor-free graphs using dynamic treewidth

Reduction to apex-minor-free using fast recursive understanding

Future work:

Computing the Robertson-Seymour decomposition, topological minor containment

Replacing recursive understanding by recent almost-linear time algorithm for unbreakable
decomposition by [Anand, Lee, Li, Long & Saranurak, SODA’25]

Optimization to f (H) ·m polylog n?
I Important problem: Optimization of dynamic treewidth to f (k) · polylog n?
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