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A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]
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Treewidth of graphs
Some graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) k -outerplanar (tw ≤ 3k − 1)

Some graphs of large treewidth:

Clique (tw = n − 1) Expanders (tw = Θ(n)) n ×m-grid (tw = min(n,m))
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Why treewidth?

Algorithms for trees often generalize to
algorithms for graphs of small treewidth

Example: Maximum independent set in
O(2k · n) time on treewidth-k graphs

Courcelle’s theorem gives f (k) · n algorithms
for all problems definable in MSO-logic
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Computing treewidth

Most algorithms using treewidth need a tree
decomposition as an input

Optimum-width tree decomposition in 2O(k3)n
time [Bodlaender ’96]

2-approximation in 2O(k)n time [K. ’21]

O(
√

log k)-approximation in polynomial-time
[Feige, Hajiaghayi & Lee ’08]
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Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.
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Our result

Summary of previous results

No sublinear dynamic algorithms for maintaining tree decompositions of width f (k) for
graphs of treewidth k ≥ 3 in the fully dynamic setting.

Theorem (this work):
There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time f (k) · 2
√

log n log log n

under the promise that the treewidth of G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the decomposition within
similar running time (formalized by tree-automata)
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The algorithm

The algorithm
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High-level plan

Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)
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What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition
on these bags
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Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma
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What can go wrong?

Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√

log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function
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Depth-reduction scheme

Potential function of form Φ(T ) =
∑

t∈V (T ) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T ) and
I runs in time Ok (Φ(T )− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time
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Lemma on trees

Lemma
Let c ≥ 2 and T be a binary tree width n nodes. If the depth of T is at least
2Ω(
√

log n log c) then there exists a prefix P of T so that

c ·

|P|+ ∑
t∈App(P)

height(t)

 <
∑
t∈P

height(t),

where App(P) is the set of nodes not in P but with parent in P.
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Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!
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