
Dynamic Treewidth

Tuukka Korhonen

based on joint work with Konrad Majewski, Wojciech Nadara,
Michał Pilipczuk, and Marek Sokołowski from University of Warsaw

BARC talk

21 November 2023

Tuukka Korhonen Dynamic Treewidth 1 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2
1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2

1. Every vertex should be in a bag

2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag

3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree

4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G

Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1

5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1

5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G
Treewidth 2

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth
a

b c

de

f

g

h

i

j

k

l

m

n

o

Graph G
Treewidth 2

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

A tree decomposition of G
Width = 2

1. Every vertex should be in a bag
2. Every edge should be in a bag
3. Bags containing a vertex should form a connected subtree
4. Width = maximum bag size −1
5. Treewidth of G = minimum width of tree decomposition of G

[Robertson & Seymour’84, Arnborg & Proskurowski’89, Bertele & Brioschi’72, Halin’76]

Tuukka Korhonen Dynamic Treewidth 2 / 15

Treewidth of graphs
Some graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) k -outerplanar (tw ≤ 3k − 1)

Some graphs of large treewidth:

Clique (tw = n − 1) Expanders (tw = Θ(n)) n ×m-grid (tw = min(n,m))

Tuukka Korhonen Dynamic Treewidth 3 / 15

Treewidth of graphs
Some graphs of small treewidth:

Trees (tw ≤ 1) Series-parallel (tw ≤ 2) k -outerplanar (tw ≤ 3k − 1)

Some graphs of large treewidth:

Clique (tw = n − 1) Expanders (tw = Θ(n)) n ×m-grid (tw = min(n,m))

Tuukka Korhonen Dynamic Treewidth 3 / 15

Why treewidth?

Algorithms for trees often generalize to
algorithms for graphs of small treewidth

Example: Maximum independent set in
O(2k · n) time on treewidth-k graphs

Courcelle’s theorem gives f (k) · n algorithms
for all problems definable in MSO-logic

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Dynamic Treewidth 4 / 15

Why treewidth?

Algorithms for trees often generalize to
algorithms for graphs of small treewidth

Example: Maximum independent set in
O(2k · n) time on treewidth-k graphs

Courcelle’s theorem gives f (k) · n algorithms
for all problems definable in MSO-logic

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Dynamic Treewidth 4 / 15

Why treewidth?

Algorithms for trees often generalize to
algorithms for graphs of small treewidth

Example: Maximum independent set in
O(2k · n) time on treewidth-k graphs

Courcelle’s theorem gives f (k) · n algorithms
for all problems definable in MSO-logic

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Tuukka Korhonen Dynamic Treewidth 4 / 15

Computing treewidth

Most algorithms using treewidth need a tree
decomposition as an input

Optimum-width tree decomposition in 2O(k3)n
time [Bodlaender ’96]

2-approximation in 2O(k)n time [K. ’21]

O(
√

log k)-approximation in polynomial-time
[Feige, Hajiaghayi & Lee ’08]

Tuukka Korhonen Dynamic Treewidth 5 / 15

Computing treewidth

Most algorithms using treewidth need a tree
decomposition as an input

Optimum-width tree decomposition in 2O(k3)n
time [Bodlaender ’96]

2-approximation in 2O(k)n time [K. ’21]

O(
√

log k)-approximation in polynomial-time
[Feige, Hajiaghayi & Lee ’08]

Tuukka Korhonen Dynamic Treewidth 5 / 15

Computing treewidth

Most algorithms using treewidth need a tree
decomposition as an input

Optimum-width tree decomposition in 2O(k3)n
time [Bodlaender ’96]

2-approximation in 2O(k)n time [K. ’21]

O(
√

log k)-approximation in polynomial-time
[Feige, Hajiaghayi & Lee ’08]

Tuukka Korhonen Dynamic Treewidth 5 / 15

Computing treewidth

Most algorithms using treewidth need a tree
decomposition as an input

Optimum-width tree decomposition in 2O(k3)n
time [Bodlaender ’96]

2-approximation in 2O(k)n time [K. ’21]

O(
√

log k)-approximation in polynomial-time
[Feige, Hajiaghayi & Lee ’08]

Tuukka Korhonen Dynamic Treewidth 5 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:

[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting

and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Dynamic treewidth

Question
Can we maintain tree decompositions of dynamic graphs of bounded treewidth?

Would also like to maintain any “finite-state” dynamic programming scheme on the
tree decomposition (dynamic Courcelle’s theorem)

Previous work:
[Bodlaender ’93]: O(log n) worst-case time for treewidth-2 in the fully dynamic
setting and f (k) · log n for treewidth-k in the decremental setting

[Cohen, Sairam, Tamassia & Vitter ’93]: O(log n) amortized time for treewidth-3 in
the incremental setting

[Dvořák, Kupec & Tůma ’14]: f (d) worst-case time for treedepth-d

[Majewski, Pilipczuk & Sokołowski ’23]: f (`) · log n amortized time for feedback
vertex number `

[Goranci, Räcke, Saranurak & Tan ’21]: no(1) amortized time no(1)-approximate
tree decomposition on bounded-degree graphs. Not suitable for dynamic
programming.

Tuukka Korhonen Dynamic Treewidth 6 / 15

Our result

Summary of previous results

No sublinear dynamic algorithms for maintaining tree decompositions of width f (k) for
graphs of treewidth k ≥ 3 in the fully dynamic setting.

Theorem (this work):
There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time f (k) · 2
√

log n log log n

under the promise that the treewidth of G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the decomposition within
similar running time (formalized by tree-automata)

Tuukka Korhonen Dynamic Treewidth 7 / 15

Our result

Summary of previous results

No sublinear dynamic algorithms for maintaining tree decompositions of width f (k) for
graphs of treewidth k ≥ 3 in the fully dynamic setting.

Theorem (this work):
There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time f (k) · 2
√

log n log log n

under the promise that the treewidth of G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the decomposition within
similar running time (formalized by tree-automata)

Tuukka Korhonen Dynamic Treewidth 7 / 15

Our result

Summary of previous results

No sublinear dynamic algorithms for maintaining tree decompositions of width f (k) for
graphs of treewidth k ≥ 3 in the fully dynamic setting.

Theorem (this work):
There is data structure that

is initialized with integer k and empty n-vertex graph G

supports edge insertions and deletions in amortized time f (k) · 2
√

log n log log n

under the promise that the treewidth of G never exceeds k

maintains a tree decomposition of G of width at most 6k + 5

can also maintain any dynamic programming scheme on the decomposition within
similar running time (formalized by tree-automata)

Tuukka Korhonen Dynamic Treewidth 7 / 15

The algorithm

The algorithm

Tuukka Korhonen Dynamic Treewidth 8 / 15

High-level plan

Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

−uv

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

Tuukka Korhonen Dynamic Treewidth 9 / 15

High-level plan
Goal: Maintain a rooted binary tree decomposition of width 6k + 5 and depth
d = 2Ok (

√
log n log log n)

[Bodlaender & Hagerup ’98]: Any tree decomposition of width k can be turned into
rooted binary tree decomposition of depth O(log n) and width 3k + 2

Maintain also dynamic programming tables directed towards the root

Edge deletion: Re-compute dynamic programming tables in timeOk (d)

Edge insertion: Add u and v to all bags on the path from their subtrees to the root,
and re-compute dynamic programming tables in timeOk (d)

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 9 / 15

What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition
on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 10 / 15

What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition
on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 10 / 15

What can go wrong?

The width can become more than 6k + 5 on the green bags!

Solution: a Refinement operation to re-compute the tree decomposition
on these bags

u

u
u v

+u

+v

+v

+u, v

Tuukka Korhonen Dynamic Treewidth 10 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

Tuukka Korhonen Dynamic Treewidth 11 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

Tuukka Korhonen Dynamic Treewidth 11 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

→

Tuukka Korhonen Dynamic Treewidth 11 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

→

Tuukka Korhonen Dynamic Treewidth 11 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

→

Tuukka Korhonen Dynamic Treewidth 11 / 15

Refinement operation

Refinement operation is given a prefix P of tree decomposition that contains all
bags of width > 6k + 5

Re-arranges P into new prefix P′ of width ≤ 6k + 5 and depth ≤ O(log n)

Changes also other parts of the decomposition, but only improves the width, and
the amortized complexity of the operation is Ok (|P|)

Builds on the improvement operation of [K.&Lokshtanov’23], also uses the
dealternation lemma of [Bojańczyk&Pilipczuk’22] and Bodlaender-Hagerup-lemma

→

Tuukka Korhonen Dynamic Treewidth 11 / 15

What can go wrong?

Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√

log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function

Tuukka Korhonen Dynamic Treewidth 12 / 15

What can go wrong?
Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√

log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function

Tuukka Korhonen Dynamic Treewidth 12 / 15

What can go wrong?
Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√

log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function

Tuukka Korhonen Dynamic Treewidth 12 / 15

What can go wrong?
Refinement operation can increase the depth by O(log n)

Once depth becomes more than 2Ok (
√

log n log log n), need to reduce it

Solution: A depth-reduction scheme by using the refinement operation
and a potential function

Tuukka Korhonen Dynamic Treewidth 12 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Depth-reduction scheme

Potential function of form Φ(T) =
∑

t∈V (T) k10·|bag(t)| · height(t)

The k10·|bag(t)| factor is for amortized analysis of the refinement, the height(t)
factor for depth-reduction

Edge insertion increses potential by Ok (d2) = 2Ok (
√

log n log log n)

Wish to argue that if depth is more than 2Ok (
√

log n log log n), then exists prefix P s.t.
I refining on P produces decomposition T ′ with Φ(T ′) < Φ(T) and
I runs in time Ok (Φ(T)− Φ(T ′))

⇒ Can control the height in amortized 2Ok (
√

log n log log n) time

Tuukka Korhonen Dynamic Treewidth 13 / 15

Lemma on trees

Lemma
Let c ≥ 2 and T be a binary tree width n nodes. If the depth of T is at least
2Ω(
√

log n log c) then there exists a prefix P of T so that

c ·

|P|+ ∑
t∈App(P)

height(t)

 <
∑
t∈P

height(t),

where App(P) is the set of nodes not in P but with parent in P.

Tuukka Korhonen Dynamic Treewidth 14 / 15

Lemma on trees

Lemma
Let c ≥ 2 and T be a binary tree width n nodes. If the depth of T is at least
2Ω(
√

log n log c) then there exists a prefix P of T so that

c ·

|P|+ ∑
t∈App(P)

height(t)

 <
∑
t∈P

height(t),

where App(P) is the set of nodes not in P but with parent in P.

1 1

1
1

1 1 1 1

1

1

1
12

2

2 2

23

3 3

34

4 4

5 5

6 6

7

Tuukka Korhonen Dynamic Treewidth 14 / 15

Lemma on trees

Lemma
Let c ≥ 2 and T be a binary tree width n nodes. If the depth of T is at least
2Ω(
√

log n log c) then there exists a prefix P of T so that

c ·

|P|+ ∑
t∈App(P)

height(t)

 <
∑
t∈P

height(t),

where App(P) is the set of nodes not in P but with parent in P.

1 1

1
1

1 1 1 1

1

1

1
12

2

2 2

23

3 3

34

4 4

5 5

6 6

7

Tuukka Korhonen Dynamic Treewidth 14 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:

I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic
f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:

I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)

I More applications, for example: Dynamic k -DISJOINT PATHS on planar
graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!

Tuukka Korhonen Dynamic Treewidth 15 / 15

Conclusion

Ok(2
√

log n log log n) amortized update time for maintaining a tree decomposition
of width at most 6k + 5 of dynamic graph of treewidth ≤ k

I Can also maintain any dynamic programming on the tree
decomposition

Follow up works:
I [K., Nadara, Pilipczuk & Sokołowski ’24]: Dynamic Baker’s scheme: Dynamic

f (ε) · no(1) time (1 + ε)-approximations on planar graphs

I [K. & Sokołowski ’24+]: Dynamic rankwidth: Generalization of dynamic
treewidth to a “dense” generalization of treewidth called rankwidth

Open problems and directions:
I Improve to Ok (poly log n)
I More applications, for example: Dynamic k -DISJOINT PATHS on planar

graphs?

Thank you!
Tuukka Korhonen Dynamic Treewidth 15 / 15

