Integrating Tree Decompositions into Decision Heuristics of Propositional Model Counters

Tuukka Korhonen and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

CP 2021 Online

Outline

• Problem: Propositional model counting (#SAT): Given a CNF-formula, count the number of solutions

• Approach: Use tree decompositions in the decision heuristic of the model counter SharpSAT

- Results:
 - Significant improvement over state-of-the-art on standard benchmark
 - First places in 3 out of 4 tracks of model counting competition 2021

SharpSAT-TD

SharpSAT [Thurley '06]

- 1. Preprocess
- 2. Count using #DPLL + clause learning + component caching

SharpSAT-TD

- 1. Preprocess
- 2. Compute tree decomposition with FlowCutter [Strasser '17]
- 3. Integrate tree decomposition into variable scores
- 4. Count using #DPLL + clause learning + component caching

Tree Decompositions

$$(\neg x_2 \lor x_3) \land (x_3 \lor \neg x_6) \land (x_5 \lor x_6) \land (x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor \neg x_4)$$

Primal graph

Tree Decompositions

$$(\neg x_2 \lor x_3) \land (x_3 \lor \neg x_6) \land (x_5 \lor x_6) \land (x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor \neg x_4)$$

Tree decomposition

Tree Decompositions

$$(\neg x_2 \lor x_3) \land (x_3 \lor \neg x_6) \land (x_5 \lor x_6) \land (x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor \neg x_4)$$

Tree decomposition

- Width of a tree decomposition: Size of the largest bag -1
- Treewidth of a graph/CNF: Minimum width of a tree decomposition

 Select the variable of the active formula that appears the closest to the root in the tree decomposition

 $(\neg x_2 \lor x_3) \land (x_3 \lor \neg x_6) \land (x_5 \lor x_6) \land (x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor \neg x_4)$

 Select the variable of the active formula that appears the closest to the root in the tree decomposition

$$(x_3) \wedge (x_3 \vee \neg x_6) \wedge (x_5 \vee x_6) \wedge (x_1 \vee x_5) \wedge (x_1 \vee \neg x_4)$$

$$x_2 = 1$$
,

 Select the variable of the active formula that appears the closest to the root in the tree decomposition

$$(x_5 \lor x_6) \land (x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor \neg x_4)$$

$$x_2 = 1, x_3 = 1,$$

 Select the variable of the active formula that appears the closest to the root in the tree decomposition

 $(x_1 \vee \neg x_4)$

*X*₂, *X*₃, *X*₅ root Component analysis X_1, X_2, X_5 X_3, X_5, X_6 X_1, X_4 $x_2 = 1$, $x_3 = 1$, $x_5 = 1$.

 Select the variable of the active formula that appears the closest to the root in the tree decomposition

Theoretical Background

Proposition ([BDP03, Dar01])

Standard #DPLL algorithm, with component analysis and component caching, works in 2^{w} poly($|\phi|$) time when using a tree decomposition of width *w* for variable selection.

Theoretical Background

Proposition ([BDP03, Dar01])

Standard #DPLL algorithm, with component analysis and component caching, works in 2^{w} poly($|\phi|$) time when using a tree decomposition of width *w* for variable selection.

Width

Variable x with highest score(x) is selected.

Standard SharpSAT:

$$score(x) = act(x) + freq(x)$$

- act(x) is VSIDS-like activity score
- freq(x) is the number of occurrences of x in the current formula

Variable x with highest score(x) is selected.

Standard SharpSAT:

$$score(x) = act(x) + freq(x)$$

SharpSAT-TD:

$$score(x) = act(x) + freq(x) - C \cdot d(x)$$

- act(x) is VSIDS-like activity score
- freq(x) is the number of occurrences of x in the current formula
- d(x) is the distance from root of tree decomposition to closest bag containing x
- C is some positive constant

Variable x with highest score(x) is selected.

Standard SharpSAT:

$$score(x) = act(x) + freq(x)$$

SharpSAT-TD:

$$score(x) = act(x) + freq(x) - C \cdot d(x)$$

- act(x) is VSIDS-like activity score
- freq(x) is the number of occurrences of x in the current formula
- d(x) is the distance from root of tree decomposition to closest bag containing x
- C is some positive constant
 - ▶ If *C* is large, selection is purely by tree decomposition
 - If C is small, selection is same as in standard SharpSAT

Variable x with highest score(x) is selected.

Standard SharpSAT:

$$score(x) = act(x) + freq(x)$$

SharpSAT-TD:

$$score(x) = act(x) + freq(x) - C \cdot d(x)$$

- act(x) is VSIDS-like activity score
- freq(x) is the number of occurrences of x in the current formula
- d(x) is the distance from root of tree decomposition to closest bag containing x
- C is some positive constant
 - ▶ If *C* is large, selection is purely by tree decomposition
 - If C is small, selection is same as in standard SharpSAT
 - C chosen per-instance based on the width of the tree decomposition

Experimental setting

- Set of 2424 instances merged from http://www.cril.univ-artois.fr/KC/benchmarks.html and https://github.com/dfremont/counting-benchmarks
- Time limit of 7200 seconds
- Memory limit of 16GB

Experimental setting

- Set of 2424 instances merged from http://www.cril.univ-artois.fr/KC/benchmarks.html and https://github.com/dfremont/counting-benchmarks
- Time limit of 7200 seconds
- Memory limit of 16GB
- 900 seconds used for computing a tree decomposition with FlowCutter

Experimental setting

- Set of 2424 instances merged from http://www.cril.univ-artois.fr/KC/benchmarks.html and https://github.com/dfremont/counting-benchmarks
- Time limit of 7200 seconds
- Memory limit of 16GB
- 900 seconds used for computing a tree decomposition with FlowCutter
- (60 seconds would yield very similar results)

Overall Comparison

Solvers with *-TD use tree decomposition from FlowCutter, others have default settings

SharpSAT vs SharpSAT-TD

Comparison of SharpSAT and SharpSAT-TD grouped by the width of the used tree decomposition. Time used in computing tree decomposition excluded.

#Ins	S	S-TD
810	798	810
526	405	524
378	173	302
259	101	152
57	25	26
128	114	115
43	31	26
223	17	15
2424	1664	1970
	#Ins 810 526 378 259 57 128 43 223 2424	#Ins S 810 798 526 405 378 173 259 101 57 25 128 114 43 31 223 17 2424 1664

Component cache hit rate

Comparison of component cache hit % in SharpSAT and SharpSAT-TD

Model Counting Competition 2021

Track 1, model counting:

#	Submission	Authors From		solved
1	SharpSAT-TD	Tuukka Korhonen Matti Järvisalo Helsinki		78
2	nus-narasimha (2021)	Sharma, Lai, Xu, Roy, Yap, Soos, Meel	Singapore, Kanpur, Changchun	61
3	d4 (2021)	Jean-Marie Lagniez Pierre Marquis	Lens	51

Track 2, weighted model counting:

#	Submission	Authors	From	solved
1	SharpSAT-TD	Tuukka Korhonen Matti Järvisalo	Helsinki	90
2	d4 (v2021)	Jean-Marie Lagniez Pierre Marquis	Lens	80
3	c2d (v3.0.0 MC2021)	Adnan Darwiche	LA	79

Track 4, approximate model counting:

#	Submission	From	solved
1	SharpSAT-TD	Helsinki	68
2	Nus-narasimha (2021)	Singapore, Kanpur, Changchun	65
3	d4 (2021)	Lens	53

Thank you for your attention!

Comparison with gpusat and NestHDB

Width	#Ins	VBS	gpusat	NestHDB	SharpSAT-TD
≤ 30	1232	1232	1232	1232	1232
3150	21	14	1	10	14
51100	15	10	0	7	9
101200	18	16	0	16	16
201266	21	11	0	8	10
$267 \leq$	187	0	0	0	0
Total	1494	1283	1233	1273	1281

Bibliography

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers. In *IJCAI*, pages 399–404, 2009.

F. Bacchus, S. Dalmao, and T. Pitassi.

Algorithms and complexity results for #SAT and Bayesian inference. In FOCS, pages 340–351. IEEE, 2003.

A. Darwiche.

Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.

J. Lagniez, E. Lonca, and P. Marquis.

Improving model counting by leveraging definability. In IJCAI, pages 751–757. IJCAI/AAAI Press, 2016.

S. Sharma, S. Roy, M. Soos, and K. S. Meel.

GANAK: A scalable probabilistic exact model counter. In *IJCAI*, pages 1169–1176. ijcai.org, 2019.