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Outline

Problem: Propositional model counting (#SAT): Given a CNF-formula,
count the number of solutions

Approach: Use tree decompositions in the decision heuristic of the model
counter SharpSAT

Results:
I Significant improvement over state-of-the-art on standard benchmark

I First places in 3 out of 4 tracks of model counting competition 2021



SharpSAT-TD

SharpSAT [Thurley ’06]
1. Preprocess

2. Count using #DPLL + clause
learning + component caching

SharpSAT-TD
1. Preprocess

2. Compute tree decomposition with
FlowCutter [Strasser ’17]

3. Integrate tree decomposition into
variable scores

4. Count using #DPLL + clause
learning + component caching
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Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition
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x2 = 1, x3 = 1, x5 = 1, x1 = 1
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Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.
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Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition
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Experimental setting

Set of 2424 instances merged from
http://www.cril.univ-artois.fr/KC/benchmarks.html and
https://github.com/dfremont/counting-benchmarks
Time limit of 7200 seconds
Memory limit of 16GB

900 seconds used for computing a tree decomposition with FlowCutter
(60 seconds would yield very similar results)
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Overall Comparison

Solvers with *-TD use tree decomposition from FlowCutter, others have default settings
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SharpSAT vs SharpSAT-TD
Comparison of SharpSAT and SharpSAT-TD grouped by the width of the used tree
decomposition. Time used in computing tree decomposition excluded.
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Component cache hit rate
Comparison of component cache hit % in SharpSAT and SharpSAT-TD
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Model Counting Competition 2021
Track 1, model counting:

Track 2, weighted model counting:

Track 4, approximate model counting:



The end

Thank you for your attention!



Comparison with gpusat and NestHDB
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