
Integrating Tree Decompositions into Decision Heuristics of
Propositional Model Counters

Tuukka Korhonen and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

CP 2021
Online

Outline

Problem: Propositional model counting (#SAT): Given a CNF-formula,
count the number of solutions

Approach: Use tree decompositions in the decision heuristic of the model
counter SharpSAT

Results:
I Significant improvement over state-of-the-art on standard benchmark

I First places in 3 out of 4 tracks of model counting competition 2021

SharpSAT-TD

SharpSAT [Thurley ’06]
1. Preprocess

2. Count using #DPLL + clause
learning + component caching

SharpSAT-TD
1. Preprocess

2. Compute tree decomposition with
FlowCutter [Strasser ’17]

3. Integrate tree decomposition into
variable scores

4. Count using #DPLL + clause
learning + component caching

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decompositions

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

x2 x3x1

x5 x6x4

Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Tree decomposition

Width of a tree decomposition: Size of the largest bag -1
Treewidth of a graph/CNF: Minimum width of a tree decomposition

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root x2, x3, x5

x2, x3, x5x2, x3, x5x2, x3, x5

x1, x2, x5

x1, x2, x5x1, x2, x5x1, x2, x5x1, x2, x5

x3, x5, x6

x3, x5, x6x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)

(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root

x2, x3, x5

x2, x3, x5

x2, x3, x5x2, x3, x5

x1, x2, x5

x1, x2, x5

x1, x2, x5x1, x2, x5x1, x2, x5

x3, x5, x6

x3, x5, x6x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1,

x3 = 1, x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)

(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5

x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5

x1, x2, x5

x1, x2, x5x1, x2, x5 x3, x5, x6

x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1,

x5 = 1, x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)

(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5x1, x2, x5

x1, x2, x5

x1, x2, x5 x3, x5, x6x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1,

x1 = 1

Tree Decomposition Guided Variable Selection

Select the variable of the active formula that appears the closest to the
root in the tree decomposition

(¬x2 ∨ x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x3) ∧ (x3 ∨ ¬x6) ∧ (x5 ∨ x6) ∧ (x1 ∨ x5) ∧ (x1 ∨ ¬x4)(x5 ∨ x6) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (x1 ∨ ¬x4)(x1 ∨ ¬x4)

root

x2, x3, x5x2, x3, x5x2, x3, x5

x2, x3, x5

x1, x2, x5x1, x2, x5x1, x2, x5x1, x2, x5

x1, x2, x5

x3, x5, x6x3, x5, x6

x3, x5, x6

x1, x4

x1, x4

Component analysis

x2 = 1, x3 = 1, x5 = 1, x1 = 1

Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

W
id

th

Instances

Track 1
Track 2

Theoretical Background

Proposition ([BDP03, Dar01])
Standard #DPLL algorithm, with component analysis and component caching, works in
2w poly(|φ|) time when using a tree decomposition of width w for variable selection.

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

W
id

th

Instances

Track 1
Track 2

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT

I C chosen per-instance based on the width of the tree decomposition

Implementation of Variable Selection

Variable x with highest score(x) is selected.

Standard SharpSAT:

score(x) = act(x) + freq(x)

SharpSAT-TD:

score(x) = act(x) + freq(x)− C · d(x)

Where

act(x) is VSIDS-like activity score

freq(x) is the number of occurrences of x in the current formula

d(x) is the distance from root of tree decomposition to closest bag containing x
C is some positive constant

I If C is large, selection is purely by tree decomposition
I If C is small, selection is same as in standard SharpSAT
I C chosen per-instance based on the width of the tree decomposition

Experimental setting

Set of 2424 instances merged from
http://www.cril.univ-artois.fr/KC/benchmarks.html and
https://github.com/dfremont/counting-benchmarks
Time limit of 7200 seconds
Memory limit of 16GB

900 seconds used for computing a tree decomposition with FlowCutter
(60 seconds would yield very similar results)

Experimental setting

Set of 2424 instances merged from
http://www.cril.univ-artois.fr/KC/benchmarks.html and
https://github.com/dfremont/counting-benchmarks
Time limit of 7200 seconds
Memory limit of 16GB
900 seconds used for computing a tree decomposition with FlowCutter

(60 seconds would yield very similar results)

Experimental setting

Set of 2424 instances merged from
http://www.cril.univ-artois.fr/KC/benchmarks.html and
https://github.com/dfremont/counting-benchmarks
Time limit of 7200 seconds
Memory limit of 16GB
900 seconds used for computing a tree decomposition with FlowCutter
(60 seconds would yield very similar results)

Overall Comparison

Solvers with *-TD use tree decomposition from FlowCutter, others have default settings

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1000 1200 1400 1600 1800 2000

Ti
m

e
 (

s)

Instances solved

SharpSAT-TD (1970)
GANAK-TD (1970)

D4 (1880)
c2d-TD (1831)

SharpSAT-Cen (1790)
c2d (1780)

DPMC-LG (1724)
SharpSAT (1664)

minic2d-TD (1648)
GANAK (1623)

DPMC-HTB (1609)
minic2d (1583)

SharpSAT vs SharpSAT-TD
Comparison of SharpSAT and SharpSAT-TD grouped by the width of the used tree
decomposition. Time used in computing tree decomposition excluded.

 1

 10

 100

 1000

 1 10 100 1000

S
h
a
rp

S
A
T-

T
D

SharpSAT

..30
31..150

151..

Width #Ins S S-TD
≤ 20 810 798 810
21. . .30 526 405 524
31. . .50 378 173 302
51. . .100 259 101 152
101. . .150 57 25 26
151. . .200 128 114 115
201. . .300 43 31 26
301≤ 223 17 15
Total 2424 1664 1970

Component cache hit rate
Comparison of component cache hit % in SharpSAT and SharpSAT-TD

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
h
a
rp

S
A
T-

T
D

SharpSAT

Model Counting Competition 2021
Track 1, model counting:

Track 2, weighted model counting:

Track 4, approximate model counting:

The end

Thank you for your attention!

Comparison with gpusat and NestHDB

Bibliography

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers.
In IJCAI, pages 399–404, 2009.

F. Bacchus, S. Dalmao, and T. Pitassi.

Algorithms and complexity results for #SAT and Bayesian inference.
In FOCS, pages 340–351. IEEE, 2003.

A. Darwiche.

Decomposable negation normal form.
J. ACM, 48(4):608–647, 2001.

J. Lagniez, E. Lonca, and P. Marquis.

Improving model counting by leveraging definability.
In IJCAI, pages 751–757. IJCAI/AAAI Press, 2016.

S. Sharma, S. Roy, M. Soos, and K. S. Meel.

GANAK: A scalable probabilistic exact model counter.
In IJCAI, pages 1169–1176. ijcai.org, 2019.

	Appendix

