Finding Most Compatible Phylogenetic Trees over Multi-State Characters

Tuukka Korhonen and Matti Järvisalo

Problem Definition -

- Input: Data about species: *n* × *m* matrix corresponding to *n* taxa with *m* characters
- Output: Evolutionary tree that is compatible with as many characters as possible (maximum compatibility problem)
- Testing if a tree compatible with all characters (**perfect phylogeny**) exists is NP-complete
- Graph-theoretic formulation -
- Input matrix corresponds to a colored graph where colors correspond to the characters
- Find a **triangulation** of the graph that breaks the least number of colors
- A color is broken if an edge is added between two vertices of the color
- **Bouchitté-Todinca algorithm** characterizes minimal triangulations and enables finding optimal triangulations

BT algorithm -

- Overview of BT algorithm:
 - 1. Enumerate potential maximal cliques $\Pi(G)$
 - 2. Find optimal triangulation by dynamic programming over *blocks* using PMCs in time $O(|\Pi(G)|poly(n))$
- Works for deciding if **all** characters are compatible and for maximum compatibility of **binary** characters
- Not directly applicable to maximum compatibility of **multi-state** characters. Reduction from vertex cover:

Results

Comparison to previous approaches:

- PBO [Miranda et al., 2014]
- Bin IP [Stevens and Gusfield, 2010]
- Minsep IP [Gysel and Gusfield, 2011]

The bottleneck is PMC enumeration:

Average time: (solved instances)

- PMC enumeration: 669s
- MaxSAT solving: 51s

Timeouts during:

- PMC enumeration: 828
- MaxSAT solving: 5

n = m: number of taxa and characters

- Contributions

- We show that Bouchitté-Todinca algorithm cannot be applied in multi-state maximum compatibility without superpolynomial overhead unless P = NP.
- We propose new hybrid approach, using potential maximal cliques of BT algorithm, but replacing dynamic programming with MaxSAT encoding.
- We experimentally compare to three prior approaches and outperform them.

BT + MaxSAT Hybrid -

- Encode phase 2 with decision variables X_1, \ldots, X_m about which colors to break
 - \Rightarrow *Horn-MaxSAT* encoding with size $O(|\Pi(G)|mk)$
- Full algorithm:
 - 1. Translate character-state matrix into a colored graph
 - 2. Enumerate $\Pi(G)$, the potential maximal cliques of the graph
 - 3. Encode BT dynamic programming via $\Pi(G)$
 - 4. Solve with MaxSAT solver to maximize $\sum X_i$

Trees UNIVERSITY OF HELSINKI