
Computing Width Parameters of Graphs

Tuukka Korhonen

Thesis for the degree of Philosophiae Doctor (PhD)
at the University of Bergen

Scientific environment

The research leading to the results presented in this thesis was mainly carried out
at the Department of Informatics at the University of Bergen. Parts of the research
were conducted when the author was performing mandatory non-military service at the
Department of Computer Science at the University of Helsinki before his PhD studies.
Also, some parts of the research were done during research visits at the Institute of
Informatics at the University of Warsaw and at the Department of Computer Science at
the University of California Santa Barbara.

The PhD studies of the author were funded by the Research Council of Norway (RCN)
project “Beyond Worst-Case Analysis in Algorithms”, grant number 314528. The author
was also supported by the Meltzer Research Fund. At the University of Helsinki, the
author was supported by the Academy of Finland, grant number 322869. The research
visits to the University of Warsaw were partly supported by the European Research
Council (ERC), grant number 948057.

ii Scientific environment

Acknowledgements

First, I would like to thank my advisor Fedor V. Fomin, for all his guidance and wisdom,
and for the enthusiastic attitude he always brings. I have had a lot of fun discussing
various topics and solving algorithmic problems with Fedor. I also thank my co-advisor
Petr A. Golovach for his vast knowledge he has shared with me, often being the first to
provide answers to my questions, and the good times we have had working together. I’m
thankful to both Fedor and Petr for providing an excellent environment for me to grow
as a researcher.

I am grateful to Daniel Lokshtanov for our many fruitful collaborations and for hosting
me in Santa Barbara. Similarly, I thank Michał Pilipczuk for inviting me many times to
Warsaw, always leading to cool new algorithms. I also thank Parinya Chalermsook, Maria
Chudnovsky, and Mikkel Thorup for having me for research visits. Furthermore, I would
like to thank Saket Saurabh and Jan Arne Telle for numerous interesting discussions and
the guidance they have given to me.

I thank Matti Järvisalo for introducing me to the world of research, for all his advice
during our years working together, and for encouraging me to pursue my research interests.
Thanks also to Jeremias Berg for his help at the start of my research journey, and to
Mikko Koivisto for his generous advice. I thank Antti Laaksonen and the rest of the
Finnish competitive programming community for sparking my interest in algorithms and
teaching me so much about them, with special thanks to Otte Heinävaara, Olli Hirviniemi,
Kalle Luopajärvi, and Topi Talvitie.

In addition to Fedor, Daniel, and Michał, I would like to thank Konrad Majewski,
Wojciech Nadara, and Marek Sokołowski for collaborating on the research presented in
this thesis.

I thank the evaluation committee of this thesis in advance, Hans L. Bodlaender and
Archontia C. Giannopoulou for assessing the thesis, and Torstein J. F. Strømme for
agreeing to be the committee leader.

iv Acknowledgements

I then thank all of my co-authors, Matthias Bentert, Jeremias Berg, Benjamin
Bergougnoux, Édouard Bonnet, Parinya Chalermsook, Clément Dallard, Pål Grønås
Drange, Fedor V. Fomin, Peter Gartland, Petr A. Golovach, Thekla Hamm, Jedrzej
Hodor, Matti Järvisalo, Daniel Lokshtanov, Konrad Majewski, Tomás Masarík, Martin
Milanič, Wojciech Nadara, Jesper Nederlof, Ly Orgo, Pekka Parviainen, Michał Pilipczuk,
Igor Razgon, Paul Saikko, Kirill Simonov, Marek Sokołowski, and Giannos Stamoulis. I
also thank everyone who I have worked with but not yet published, as well as all those
with who I’ve had insightful discussions at conferences, workshops, during research visits,
and by email.

I thank everyone at the Algorithms Group and around it at the University of Bergen,
including Benjamin, Boris, both Emmanuels, Erlend, Farhad, Kenneth, Lars, Magnus,
Matthias, Petra, Pål, Sayan, Svein, Tanmay, William, and Wim, for all of the lunches,
Friday seminars, winter schools, and beers we’ve had together. Special thanks to Svein
Høgemo for helping with the Norwegian abstract of this thesis.

I also wish to thank all of my friends in Finland, for the fun times when I’m around and
for the encouragement during my PhD, with special thanks to Vili.

I am thankful to my parents and family for all of the encouragement throughout my life
and studies.

Finally, I thank Liisa for all of her love and support. Without you I wouldn’t have
done this.

Abstract

The treewidth of a graph describes its tree-likeness by how well it can be decomposed by
small separators. It is defined as the minimum width of a tree decomposition of the graph.
When a graph is given together with a tree decomposition of small width, many problems
that are NP-hard in general can be solved efficiently. This motivates the problem where
we are given a graph G, and our task is to either compute a tree decomposition of G of
small width or to determine that the treewidth of G is large. A similar situation holds
also for other width parameters of graphs, in particular, the rankwidth.

In this thesis, we introduce a new algorithmic technique for computing width parameters
of graphs and the decompositions associated with them. Our method is inspired by proofs
about the existence of lean tree decompositions from the graph theory literature. The new
technique allows us to address several open questions from the literature on treewidth
and rankwidth. Specifically, we give two new algorithms for computing treewidth, a
dynamic data structure for maintaining tree decompositions, and a new algorithm for
computing rankwidth.

Our first contribution, where we introduce the technique, is a 2-approximation algorithm
for treewidth running in time 2O(k)n, where k is the treewidth and n the number of
vertices. This improves upon a previous work about 5-approximating treewidth within
the same running time.

As our second contribution, we extend our technique to compute treewidth exactly in
2O(k2)n4 time. This answers a long-standing open question in the literature about whether
there exists a 2o(k

3)nO(1) time exact algorithm for treewidth.

Our third contribution is a data structure for maintaining a tree decomposition of a
dynamic graph G that is updated by edge insertions and deletions. Our data structure
maintains a tree decomposition of width at most 6k+5, given a promise that the treewidth
of G is at most k. The amortized update time is 2k

O(1)
√

logn log logn, which is subpolynomial
in n for a fixed k. This partially answers an open question from the literature.

vi Abstract

As the fourth contribution of this thesis, we extend our technique from treewidth to
rankwidth, giving a 22O(k)

n2 time 2-approximation algorithm for rankwidth. The question
of whether rankwidth could be approximated in subcubic time in n, for a fixed k, was
another open question in the literature.

Abstract in Norwegian

Trebredden til en graf beskriver dens likhet med trær ved hvor godt den kan dekom-
poneres ved hjelp av små separatorer. Den er definert som minimumsbredden av en
tre-dekomponering av grafen. Når en graf er gitt sammen med en tre-dekomponering
av liten bredde, kan mange problemer som generelt er NP-harde løses effektivt. Dette
gir grunn for å granske problemet hvor vi er gitt en graf G, og vår oppgave er å enten
beregne en tredekomponering av G med liten bredde eller å avgjøre at trebredden til G
er stor. En lignende situasjon gjelder også for andre breddeparametre av grafer, spesielt
rangbredden.

I denne avhandlingen introduserer vi en ny algoritmisk teknikk for å beregne bredde-
parametre av grafer og dekomponeringene assosiert med dem. Metoden vår er inspirert
av bevis fra grafteorilitteraturen om eksistensen av slanke tredekomponeringer. Den
nye teknikken gjør oss i stand til å takle flere åpne spørsmål fra litteraturen om tre-
bredde og rangbredde. Især gir vi to nye algoritmer for å beregne trebredde, en dynamisk
datastruktur for å vedlikeholde tre-dekomponeringer, og en ny algoritme for å beregne
rangbredde.

Vårt første bidrag, der vi introduserer teknikken, er en 2-tilnærmingsalgoritme for
trebredde med kjøretid 2O(k)n, der k er trebredden og n er antall noder. Dette er en
forbedring over tidligere arbeid, som gir en 5-tilnærming av trebredde innen samme
kjøretid.

I vårt andre bidrag utvider vi teknikken vår for å eksakt beregne trebredde i 2O(k2)n4 tid.
Dette gir svar på et gammelt åpent spørsmål i litteraturen om hvorvidt det eksisterer en
2o(k

3)nO(1)-tid eksakt algoritme for trebredde.

Vårt tredje bidrag er en datastruktur for å vedlikeholde en tredekomponering av en
dynamisk graf G som oppdateres ved innsetting og sletting av kanter. Datastrukturen
vedlikeholder en tredekomponering med bredde på maks 6k + 5, gitt et løfte om at
trebredden til G er maks k. Den amortiserte oppdateringstiden er 2k

O(1)
√

logn log logn, som

viii Abstract in Norwegian

er subpolynomisk i n for fastliggende k. Dette gir delvis svar på et åpent spørsmål fra
litteraturen.

I det fjerde bidraget av denne avhandlingen, utvider vi teknikken vår fra trebredde
til rangbredde, og gir en 2-tilnærmingsalgoritme for rangbredde med kjøretid 22O(k)

n2.
Spørsmålet om hvorvidt rangbredde kunne tilnærmes i subkubisk tid i n for fastliggende
k, var et annet åpent spørsmål i litteraturen.

List of publications

This thesis is based on the following four published articles and contains text copied
verbatim from them. In particular, Chapters 4, 5, 6, and 7 are based on Articles 1, 2, 3,
and 4, respectively. The order of authors is alphabetical, as is customary in theoretical
computer science.

1. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for
treewidth. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS 2021), pages 184–192. IEEE. To appear in SIAM Journal
on Computing. Full version: https://arxiv.org/abs/2104.07463.

2. Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm
for treewidth. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing (STOC 2023), pages 528–541. ACM. Full version: https://arxiv.
org/abs/2211.07154.

3. Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and
Marek Sokołowski. Dynamic treewidth. In Proceedings of the 64th Annual Sympo-
sium on Foundations of Computer Science (FOCS 2023), pages 1734–1744. IEEE.
Full version: https://arxiv.org/abs/2304.01744.

4. Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. In
Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC
2022), pages 886–899. ACM. Full version: https://arxiv.org/abs/2111.03492.

We remark that this is not the complete list of the author’s publications. The complete list
can be found online on the personal page of the author (https://tuukkakorhonen.com/)
and in services such as dblp and Google Scholar.

https://arxiv.org/abs/2104.07463
https://arxiv.org/abs/2211.07154
https://arxiv.org/abs/2211.07154
https://arxiv.org/abs/2304.01744
https://arxiv.org/abs/2111.03492
https://tuukkakorhonen.com/

x List of publications

Contents

Scientific environment i

Acknowledgements iii

Abstract v

Abstract in Norwegian vii

List of publications ix

I Introduction and preliminaries 1

1 Introduction 3

1.1 Computing treewidth . 6

1.2 Dynamic treewidth . 11

1.3 Rankwidth, branchwidth, and cliquewidth 14

1.3.1 Computing rankwidth . 15

1.3.2 Computing branchwidth of graphs 18

2 Definitions and preliminary results 21

2.1 Basic notation . 21

xii CONTENTS

2.2 Graphs . 22

2.2.1 Separators and linkedness . 24

2.2.2 Trees . 25

2.3 Width parameters . 27

2.3.1 Treewidth . 27

2.3.2 Branchwidth of connectivity functions 33

2.3.3 Branchwidth of graphs . 34

2.3.4 Rankwidth . 35

2.3.5 Cliquewidth . 36

2.4 Computational complexity . 37

3 Survey of the literature 41

3.1 Robertson-Seymour algorithm . 41

3.1.1 The algorithm . 42

3.1.2 Related literature . 46

3.2 Bodlaender’s algorithm . 48

3.2.1 Bodlaender-Kloks dynamic programming 49

3.2.2 Bodlaender’s self-reduction scheme 52

3.2.3 Related literature . 56

3.3 Applications . 57

3.3.1 Graph Minors . 58

3.3.2 Monadic second-order logic of graphs 61

3.3.3 Algorithms . 65

3.3.4 Complexity . 73

CONTENTS xiii

3.4 Lean tree decompositions . 78

3.4.1 The proof . 79

3.4.2 Discussion . 83

II Contributions 85

4 Fast 2-approximation algorithm for treewidth 87

4.1 Overview . 87

4.2 Improving a tree decomposition . 88

4.2.1 Splittable sets of vertices . 88

4.2.2 The improvement operation . 89

4.3 Amortized local improvement . 93

4.3.1 Pruned improvement operation 94

4.3.2 Amortization . 97

4.4 Implementation in linear time . 98

4.4.1 Overview . 99

4.4.2 The data structure . 100

4.4.3 The algorithm . 104

4.4.4 Analysis of the 2O(k) factor . 107

5 Exact and (1 + ε)-approximation algorithms for treewidth 109

5.1 Subset Treewidth . 110

5.2 Computing treewidth via Subset Treewidth 111

5.2.1 Overview . 112

5.2.2 Pulling Lemma . 113

xiv CONTENTS

5.2.3 Improving a tree decomposition 115

5.2.4 Reducing treewidth to Subset Treewidth 120

5.3 Important separators . 122

5.4 Algorithm for Partitioned Subset Treewidth 127

5.4.1 Overview . 128

5.4.2 Flow potential . 131

5.4.3 Safe separations . 132

5.4.4 Branching . 137

5.4.5 The algorithm . 141

5.4.6 Running time analysis . 143

5.5 Faster algorithm for Subset Treewidth 147

5.5.1 Terminal covers and degenerate separations 148

5.5.2 Maintaining valid instances . 155

5.5.3 Branching . 157

5.5.4 The algorithm . 160

5.5.5 Running time analysis . 164

6 Dynamic treewidth 173

6.1 Overview . 173

6.1.1 High-level description . 174

6.1.2 The refinement operation . 176

6.1.3 Height reduction . 180

6.2 Dynamic dynamic programming . 183

6.2.1 Prefix-rebuilding data structures 183

CONTENTS xv

6.2.2 Tree decomposition automata . 187

6.2.3 Automata constructions . 190

6.2.4 Dynamic maintenance of automata runs 192

6.3 Closures . 194

6.3.1 Small closures . 194

6.3.2 Linked closures . 200

6.3.3 Blockages and explored nodes . 203

6.4 Computing closures . 203

6.4.1 Closure automaton . 204

6.4.2 Data structure for closures . 207

6.5 Refinement operation . 213

6.5.1 Potential function . 214

6.5.2 Refinement of components . 215

6.5.3 Combining the components . 224

6.5.4 Refinement operation . 231

6.6 Height improvement . 237

6.6.1 Unbalanced binary trees . 238

6.6.2 Reducing the height . 240

6.7 Putting things together . 242

6.7.1 Maintaining a tree decomposition 242

6.7.2 Additional features . 246

7 Fast 2-approximation algorithms for rankwidth and branchwidth 251

7.1 Notation on branch decompositions . 252

xvi CONTENTS

7.2 Combinatorial framework . 253

7.2.1 Improvement operation . 253

7.2.2 Improving with splits . 255

7.2.3 Existence of a split . 257

7.2.4 Improving globally . 259

7.3 Algorithmic framework . 261

7.3.1 Amortized analysis . 262

7.3.2 Improvement data structure . 266

7.3.3 General algorithm . 267

7.4 Approximating rankwidth . 270

7.4.1 Definitions on rank decompositions 271

7.4.2 Augmented rank decompositions 272

7.4.3 Improvement data structure for rankwidth 273

7.4.4 Dynamic programming . 274

7.4.5 The data structure . 285

7.5 Approximating branchwidth of graphs 290

7.5.1 Augmented branch decompositions 291

7.5.2 Borders of tripartitions . 292

7.5.3 Improvement data structure for graph branch decompositions . . 294

8 Conclusions 299

8.1 Summary of contributions . 299

8.2 Follow-up work . 303

8.3 Future directions and open problems . 303

Part I

Introduction and preliminaries

Chapter 1

Introduction

Treewidth and tree decompositions, defined by Robertson and Seymour [1986a] and
introduced independently under various names by Bertele and Brioschi [1973], Halin [1976],
and Arnborg and Proskurowski [1989], have been influential in the fields of algorithms
and graph theory over the last 40 years. The treewidth of a graph measures how well
the graph can be decomposed by small separators. It describes the tree-likeness of the
graph in the sense that trees can be decomposed by separators of cardinality 1, while
graphs of treewidth k can be decomposed by separators of cardinality k. More precisely,
the treewidth of a graph is defined as the minimum width of a tree decomposition of it,
which is a certain way of arranging the vertices of the graph into a tree-shaped structure.
See Figure 1.1 for an illustration of a graph and a tree decomposition of it.

Formally, a tree decomposition of a graph G is a pair (T, bag), where T is a tree and bag

is a function bag : V (T)→ 2V (G) that maps nodes of T to sets of vertices of G called bags
so that (1) for every edge uv ∈ E(G), there exists a node t ∈ V (T) with {u, v} ⊆ bag(t),
and (2) for every vertex v ∈ V (G), the set of nodes of T whose bags contain v forms a
non-empty connected subtree of T . The width of (T, bag) is the maximum size of a bag
minus one1, and the treewidth of G is the minimum width of a tree decomposition of G.

The main significance of treewidth in algorithms is that many algorithmic problems that
are hard in general can be solved efficiently if the input graph has small treewidth [Arnborg
and Proskurowski, 1989; Courcelle, 1990]. Many classical NP-hard graph problems, such
as 3-coloring, maximum independent set, and Hamiltonicity, admit algorithms running
in time 2O(k)n, where n is the number of vertices and k is the width of a given tree
decomposition of the input graph [Bodlaender, 1988; Bodlaender et al., 2015; Telle and
Proskurowski, 1997]. These algorithms work by bottom-up dynamic programming on

1The purpose of “minus one” is to make the treewidth of a tree to be at most 1.

4 Introduction

a

b c

de

f

g

h

i

j

k

l

m

n

o

a, b, c

b, c, d

b, d, e

d, e, f

e, f, i

e, g, i

f, i, k

i, j

h, i, j

i, j, k f, k, m

k, l, m l, m, n

l, n, o

Figure 1.1: A graph G whose vertices V (G) are indexed by the letters a, . . . , o (left), and
a tree decomposition of G of width 3− 1 = 2 (right). The tree decomposition shows that
the treewidth of G is at most 2. The treewidth of G is in fact exactly 2, because only
forests have treewidth less than 2.

the given tree decomposition, similar to dynamic programming algorithms for solving
problems on trees. The celebrated meta-theorem of Courcelle [1990] (see also [Arnborg
et al., 1991; Borie et al., 1992]) states that such dynamic programming algorithms,
running in time f(k) · n for some function f , exist for all graph problems expressible in
the so-called “counting monadic second-order logic” (CMSO2).2

The applications of treewidth are not limited only to graph problems, but extend to
various settings by associating the input with a graph that describes its structure in
an appropriate way [Chekuri and Rajaraman, 2000; Dechter and Pearl, 1989; Fomin
et al., 2018; Lauritzen and Spiegelhalter, 1988; Markov and Shi, 2008; Thorup, 1998].
Furthermore, algorithms for graphs of small treewidth are not only useful when solving
problems for inputs of small treewidth, but are frequently used as subroutines for solving
problems on planar graphs [Baker, 1994; Bodlaender et al., 2016b], minor-free graphs
[Demaine et al., 2005a; Flum and Grohe, 2001], and even on general graphs [Robertson
and Seymour, 1995]. We will review different applications of treewidth in Section 3.3.

What makes treewidth fundamental is not only its applications in algorithm design, but
also the fact that in many contexts treewidth describes exactly the boundary between easy
and hard inputs: Inputs with small treewidth can be solved efficiently, while all inputs
with large treewidth are hard [Grohe et al., 2001; Kreutzer and Tazari, 2010b; Robertson
and Seymour, 1986b; Seese, 1991].3 Even in situations where this is not the case,
treewidth serves as an important base case upon which alternative structural parameters
are designed.

2We will define CMSO2 in Subsection 3.3.2.
3Of course, stating that all inputs with large treewidth are “hard” usually comes with some technical

assumptions. We discuss these results in more detail in Subsection 3.3.4.

5

One of these alternative structural parameters is the rankwidth of a graph, introduced
by Oum and Seymour [2006] in order to approximate a parameter called cliquewidth,
introduced earlier by Courcelle et al. [1993] (more explicitly in [Courcelle, 1995]).
Cliquewidth and rankwidth are more general parameters than treewidth in the sense
that they can be upper bounded by functions of treewidth. In particular, graphs of
treewidth k have cliquewidth at most 3 · 2k−1 and rankwidth at most k + 1 [Corneil and
Rotics, 2005; Oum, 2008a]. Unlike treewidth, cliquewidth and rankwidth can be small
also on dense graphs, for example, their values on complete graphs and complete bipar-
tite graphs are at most 2, while treewidth grows unboundedly. Many algorithmic results
have been generalized from the setting of treewidth to that of cliquewidth and rankwidth
[Courcelle et al., 2000, 2001; Kobler and Rotics, 2003], and indeed the original motivation
behind cliquewidth was to capture the “tree-like” graphs from the viewpoint of a variant
of CMSO2 called CMSO1 [Courcelle, 1995].

Most of the algorithms designed for graphs of small treewidth, or for graphs of small
rankwidth or cliquewidth, need the graph to be given together with a decomposition of
small width. In particular, the running times of the algorithms are not parameterized by
the widths of the input graphs, but instead by the widths of the given decompositions. This
makes the problem of computing small-width decompositions central in the algorithmic
theory of graph width parameters.

Contributions and outline of the thesis

In this thesis, we make multiple contributions to algorithms for computing graph width
parameters and associated decompositions of graphs, solving several open problems from
the literature. Our contributions are based on a new technique for computing graph width
parameters that we introduce in this thesis. Roughly speaking, our new technique allows
to improve decompositions by successive “local improvements”, which can be implemented
efficiently with the use of appropriate data structures. The graph-theoretic aspects of this
technique are inspired by proofs about the existence of so-called “lean tree decompositions”
by Thomas [1990] and Bellenbaum and Diestel [2002], although significantly generalized
in this thesis. The algorithmic aspects of the technique are completely new.

We introduce our technique in Chapter 4 by giving a new parameterized 2-approximation
algorithm for treewidth. In Chapter 5 we further generalize this technique, obtaining
parameterized exact and (1 + ε)-approximation algorithms for computing treewidth.
We discuss the literature of treewidth computation and our algorithms for computing
treewidth in Section 1.1 of this introduction chapter. In Chapter 6 we apply our technique
to design a data structure for efficiently maintaining small-width tree decompositions

6 Introduction

of dynamic graphs. This dynamic algorithm and the related literature are discussed in
Section 1.2. Finally, in Chapter 7 we give a parameterized algorithm for approximat-
ing rankwidth and cliquewidth. This, together with the literature on rankwidth and
cliquewidth is discussed in Section 1.3. Further introductory material related to the top-
ics of this thesis will be presented in Chapters 2 and 3. In Chapter 2 we present formal
definitions and preliminary results. We survey some introductory topics in detail in Chap-
ter 3, reviewing two previous algorithms for computing treewidth, applications of graph
width parameters, and the proof of [Bellenbaum and Diestel, 2002; Thomas, 1990] that
inspired our new technique. This thesis is concluded in Chapter 8 with open problems
and directions for future research.

1.1 Computing treewidth

Due to its importance, the problem of computing treewidth and tree decompositions has
a long and rich history. We summarize it in Table 1.1 and in words below.

Before diving into the literature, let us remark that for the purpose of using small-width
tree decompositions in applications, it is not necessary to compute an optimum-width
tree decomposition, but an approximately optimal decomposition is also suitable. For
example, if we are interested in using an algorithm that has a running time of 2O(k)n

when given a tree decomposition of width k, it still attains the same running time bound
even when given a tree decomposition of width 5k. However, the algorithm becomes
slower as the width grows, so minimizing the approximation ratio is a desirable goal.
Furthermore, as the algorithms making use of tree decompositions often run in time at
least exponential in the width k, it makes sense to allow similar running times also for
algorithms computing tree decompositions.

When Robertson and Seymour [1986a] introduced treewidth, they showed that for every
fixed constant k there exists a polynomial-time algorithm for testing if a given graph has
treewidth at most k. Curiously, their proof yielded only the existence of an algorithm,
without actually constructing it.4 However, concurrently with them, Arnborg et al. [1987]
gave an algorithm that computes a tree decomposition of width k, if one exists, in
time O(nk+2), where n is the number of vertices. Arnborg et al. also showed that for
unbounded k, the problem of deciding if a given graph has treewidth at most k is NP-hard.

4To construct the algorithm, one needs the set of minimal graphs of treewidth k + 1 under the graph
minor relation. This set was shown to be finite by Robertson and Seymour [1990], but without any upper
bound on its size. Upper bounds were given later by [Lagergren, 1998; Lagergren and Arnborg, 1991].

1.1 Computing treewidth 7

Reference Appx. α(k) Time
Robertson and Seymour [1986a] exact nf1(k)

Arnborg et al. [1987] exact nk+2

Robertson and Seymour [1995] 4k + 3 33k · k2 · n2

Robertson and Seymour [1995] exact f2(k) · n2

Matoušek and Thomas [1991] 6k + 5 kO(k) · n log2 n
Lagergren [1996] 8k + 7 kO(k) · n log2 n

Reed [1992] 8k + 7 kO(k) · n log n

Bodlaender [1996] exact 2O(k3) · n
Bodlaender et al. [1995] O(k log n) nO(1)

Amir [2010] 4.5k 23k · k3/2 · n2

Amir [2010] O(k log k) k log k · n4

Feige et al. [2008] O(k
√

log k) nO(1)

Fomin et al. [2015] exact 1.7347n

Fomin et al. [2018] O(k2) k7 · n log n
Bodlaender et al. [2016a] 3k + 4 2O(k) · n log n
Bodlaender et al. [2016a] 5k + 4 2O(k) · n
Belbasi and Fürer [2022] 5k + 4 27.7k · n log n
Belbasi and Fürer [2021] 5k + 4 26.8k · n log n
Chapter 4 of this thesis 2k + 1 2O(k) · n
Chapter 5 of this thesis exact 2O(k2) · n4

Chapter 5 of this thesis (1 + ε)k kO(k/ε) · n4

Table 1.1: Overview of algorithms for computing treewidth with running time O(Time),
where n is the number of vertices and k the treewidth. All of the algorithms listed
expect the exact algorithms of [Robertson and Seymour, 1986a] and [Robertson and
Seymour, 1995] either output a tree decomposition of width at most α(k) or determine
that the treewidth of the input graph is larger than k. The exact algorithms of [Robertson
and Seymour, 1986a] and [Robertson and Seymour, 1995] determine whether the treewidth
of the input graph is at most k. The functions f1(k) and f2(k) are fast growing functions
depending on the set of minor-minimal graphs of treewidth k + 1. Many rows of this
table are based on a similar table given by Bodlaender et al. [2016a].

In the terminology of parameterized complexity, the algorithms of Robertson and Sey-
mour [1986a] and Arnborg et al. [1987] are slice-wise polynomial (XP), meaning that
their running times are polynomial for every fixed value of the parameter k. In these al-
gorithms, the degree of the polynomial depends on k. Algorithms that run in polynomial
time for every fixed k, without the degree of the polynomial depending on k, are called
fixed-parameter algorithms (FPT algorithms).

The first FPT algorithms for treewidth were given by Robertson and Seymour [1995].
They gave an algorithm that in time O(33kk2n2) either outputs a tree decomposition of
width at most 4k+3, or determines that the treewidth of the input graph is more than k.5

We will review this algorithm in Section 3.1. By making use of this 4-approximation
5The algorithm of Robertson and Seymour [1995] was actually given as a 3-approximation algorithm

for a parameter called “branchwidth” which is closely related to treewidth and will be discussed in

8 Introduction

algorithm, Robertson and Seymour [1995] also showed that for every fixed constant k
there exists a O(n2) time algorithm for testing if the treewidth of a given graph is at
most k.6

In the start of the 1990s, Matoušek and Thomas [1991], Lagergren [1996], and Reed [1992]
built upon the ideas of the 4-approximation algorithm of Robertson and Seymour [1995]
to improve its running time to be near-linear as a function of n. The algorithms of
Matoušek and Thomas [1991] and Lagergren [1996] run in time kO(k)n log2 n, and output
tree decompositions of width at most 6k + 5 and 8k + 7, respectively. The algorithm
of Reed [1992] runs in time kO(k)n log n and outputs a tree decomposition of width at
most 8k + 7. The algorithm of Lagergren [1996] is given as a parallel algorithm with
kO(k) log3 n running time on O(k2n) processors.

A direct, constructive FPT algorithm for computing treewidth exactly was given by
Bodlaender and Kloks [1996] and Lagergren and Arnborg [1991] (the conference versions
of both appearing concurrently at ICALP 19917). They showed that when given a tree
decomposition of width `, one can use dynamic programming to decide if treewidth is at
most k in time 2O((k+log `)·`2)n, and in the affirmative case output a tree decomposition of
width at most k. At the time in 1991, this implied a 2O(k3)n log2 n time exact algorithm
for computing an optimum-width tree decomposition, by first running the algorithm
of Lagergren [1996] (first appeared in [Lagergren, 1990]) to obtain an 8-approximate
tree decomposition in time kO(k)n log2 n, and then running the dynamic programming
algorithm on this 8-approximate tree decomposition.

Bodlaender [1996] showed that instead of using a separate approximation algorithm
for obtaining the tree decomposition to run dynamic programming on, one can use a
clever self-reduction scheme to assume that an approximately optimal tree decomposition
is always available. This led to a linear 2O(k3)n time algorithm for computing tree
decompositions of optimum width. We will review this algorithm in Section 3.2.

As for polynomial-time approximation of treewidth, Bodlaender et al. [1995] showed that
techniques introduced by Leighton and Rao [1999] can be used to O(log n)-approximate
treewidth in polynomial-time. Amir [2010] improved the approximation ratio of this
algorithm (again using the techniques of Leighton and Rao [1999]) toO(log k). Later, Feige
et al. [2008] gave a polynomial-time O(

√
log k)-approximation algorithm for treewidth,

which remains the best approximation ratio achieved in polynomial-time. Wu et al. [2014]

Section 1.3, but in the literature it has been interpreted as a 4-approximation algorithm for treewidth by
e.g. [Reed, 1992], [Kleinberg and Tardos, 2005, Chapter 10], and [Cygan et al., 2015, Chapter 7].

6This algorithm had the same caveat of needing the list of minor-minimal graphs of treewidth k+1 to
construct it as discussed above. See [Bodlaender, 1994; Fellows and Langston, 1994] for further discussion
and partial lifting of the constructivity issues in this algorithm.

7The conference version of [Bodlaender and Kloks, 1996] is [Bodlaender and Kloks, 1991].

1.1 Computing treewidth 9

showed that assuming the “Small Set Expansion” conjecture, approximating treewidth is
NP-hard for any constant approximation ratio. The Small Set Expansion conjecture was
introduced by Raghavendra and Steurer [2010] and is a stronger version of the Unique
Games conjecture of Khot [2002].

We then return to FPT algorithms for treewidth, soon getting to the contributions of
this thesis. After the algorithm of Bodlaender [1996], the main question left about
FPT algorithms for treewidth was about the dependence on k. In particular, most of
the classical dynamic programming algorithms run in time 2O(k)n when given a tree
decomposition of width k, but no matching algorithm for constant-factor approximating
treewidth was known. This situation was remedied by Bodlaender et al. [2016a], who
gave a 2O(k)n time 5-approximation algorithm for treewidth. They used techniques that
combine ideas of Reed [1992] with additional data structures based on logarithmic-depth
tree decompositions [Bodlaender and Hagerup, 1998], the dynamic programming of
[Bodlaender and Kloks, 1996; Lagergren and Arnborg, 1991], and the self-reduction
scheme of Bodlaender [1996]. With these techniques, they also obtained a 2O(k)n log n

time 3-approximation algorithm for treewidth.

As the first contribution of this thesis, we give in Chapter 4 an algorithm that improves
upon both of the algorithms given by Bodlaender et al. [2016a].

Theorem 1.1. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k)n either outputs a tree decomposition of G of width at most 2k + 1 or
determines that the treewidth of G is larger than k.

Perhaps more interesting than the theorem statement are the techniques behind the
algorithm of Theorem 1.1. The previous approximation algorithms for treewidth running
in time 2O(k)nO(1) are based on constructing a tree decomposition in a top-down manner,
as pioneered by Robertson and Seymour [1995]. The algorithm of Theorem 1.1 is instead
based on improving a tree decomposition by iterative “local improvements”, inspired by
the proofs of [Bellenbaum and Diestel, 2002; Thomas, 1990].

Compared to the algorithm of Bodlaender et al. [2016a], the algorithm of Theorem 1.1
has also faster running time as a function of k, being roughly 210.8k as opposed to more
than 290k. It is also arguably simpler, being significantly shorter to describe and avoiding
tricks such as algorithm selection based on the relation of n and k. Most significantly,
the new techniques we introduce for Theorem 1.1 lead, after further development, to the
other contributions of this thesis.

It was asked by Downey and Fellows in their monograph [Downey and Fellows, 1999,
Chapter 6.3] whether the dependence on k in Bodlaender’s algorithm for computing

10 Introduction

treewidth exactly could be improved from 2O(k3) to 2O(k). Later, Telle [Bodlaender
et al., 2006, Problem 2.7.1] asked the less ambitious question of whether there is any
FPT algorithm for treewidth whose running time as a function of k is better than 2O(k3).
The problem of obtaining a 2o(k

3)nO(1) time algorithm for treewidth was also asked by
Bodlaender et al. [2016a] and called a “long-standing open problem” by Bodlaender
et al. [2023]. We resolve this problem in Chapter 5 by further developing the techniques
introduced for Theorem 1.1.

Theorem 1.2. There is an algorithm that, given an n-vertex graph G and an integer k,
in time 2O(k2)n4 either outputs a tree decomposition of G of width at most k or determines
that the treewidth of G is larger than k. Moreover, the algorithm runs in space nO(1).

An interesting feature of the algorithm of Theorem 1.2 is that it does not use dynamic
programming on tree decompositions in any way, and in particular, runs in space
polynomial in n. The previous parameterized algorithms for computing treewidth exactly
are based on dynamic programming and use space at least exponential in k.

The proof of Theorem 1.2 has two parts. First, we introduce a problem called “Subset
Treewidth”, and show that by solving Subset Treewidth, one can use “local improvements”,
akin to those of Theorem 1.1 but significantly generalized, to improve tree decompositions
until they attain the optimum width. In the second part of the proof we give an algorithm
for solving the Subset Treewidth problem by branching, therefore avoiding dynamic
programming.

The techniques we introduce for Theorem 1.2 allow trading off the width of the re-
sulting tree decomposition for the running time, and result also in the following FPT
approximation scheme for treewidth, presented also in Chapter 5.

Theorem 1.3. There is an algorithm that, given an n-vertex graph G, an integer k, and
a rational ε with 0 < ε < 1, in time kO(k/ε)n4 either outputs a tree decomposition of G of
width at most (1 + ε)k or determines that the treewidth of G is larger than k. Moreover,
the algorithm runs in space nO(1).

In fact, the algorithm of Theorem 1.3 is the more natural and simpler one of the two
algorithms of Theorems 1.2 and 1.3, and results in a 2O(k2 log k)n4 time exact algorithm by
setting ε = 1/(k + 1), which already resolves the open problem of computing treewidth
in 2o(k

3)nO(1) time.

We will discuss future directions and open problems related to computing treewidth in
Chapter 8.

1.2 Dynamic treewidth 11

1.2 Dynamic treewidth

The field of dynamic graph algorithms studies whether solutions to graph problems can
be maintained, under updates to graphs, faster than recomputing from scratch on every
update. Dynamic algorithms are useful not only for processing the constantly changing
real-world data, but also as subroutines for designing faster static algorithms [Sleator
and Tarjan, 1981].

We consider the following dynamic treewidth problem. We have a dynamic graph G that
is updated by insertions and deletions of edges, one edge at a time. We are furthermore
given at the initialization a parameter k and a promise that the treewidth of G will never
exceed k. The task is to maintain a tree decomposition of G of width bounded by a
function of k. Ideally, we would also like to maintain arbitrary dynamic programming
procedures on the tree decomposition, in order to maintain solutions to various problems
about G.

A common formalization used in the literature for the feature of maintaining any dynamic
programming procedure on a tree decomposition is that of maintaining whether G
satisfies a fixed property ϕ expressible in CMSO2. By the theorem of Courcelle [1990],
such properties of G can be decided by dynamic programming on a tree decomposition
of G, and in a certain sense, all properties decided by finite-state dynamic programming
on tree decompositions can be expressed in CMSO2 [Bojanczyk and Pilipczuk, 2016].
Examples of CMSO2-expressible properties include 3-colorability and Hamiltonicity.

A trivial solution to the dynamic treewidth problem is given by recomputing the tree
decomposition after every update with the linear-time algorithm of Bodlaender [1996] (or
of Bodlaender et al. [2016a], or of Theorem 1.1). Then, the tree decomposition is updated
in O(n) time for fixed k, and we can run Courcelle’s dynamic programming on it in linear
time after each update. In this light, the interesting challenge of dynamic treewidth is
to develop algorithms that run in time sublinear in n per update, or ideally, in time
O(log n) per update, for fixed k, matching the running times of various data structures
for dynamic trees [Alstrup et al., 2005; Frederickson, 1997; Sleator and Tarjan, 1981].

This question about dynamic algorithms for treewidth was first asked by Bodlaender [1993],
and then repeated by Dvořák et al. [2014], Alman et al. [2020], Chen et al. [2021], and
Majewski et al. [2023]. Before going to our contribution, let us review the existing
literature about the dynamic treewidth problem.

Bodlaender [1993] showed that for dynamic graphs of treewidth at most 2, tree decom-
positions of width at most 11 can be maintained with worst-case update time O(log n).

12 Introduction

The data structure also supports maintaining whether the graph satisfies any fixed
CMSO2-expressible property. The approach of Bodlaender relies on a specific structural
theorem for graphs of treewidth 2, which does not carry over to larger values of treewidth.
Bodlaender [1993] also observed that for every fixed k > 2, an update time of O(log n)

can be achieved in the setting when no edge insertions are allowed. But this setting is sig-
nificantly simpler, as no rebuilding of the tree decomposition is necessary. Independently
of Bodlaender, Cohen et al. [1993]8 gave a O(log2 n) worst-case update time dynamic
algorithm for maintaining tree decompositions of graphs of treewidth at most 2, and a
O(log n) update time dynamic algorithm for graphs of treewidth at most 3 in the setting
when no edge deletions are allowed.

After that, Frederickson [1998] and Hagerup [2000] studied the dynamic treewidth problem
for arbitrary fixed treewidth bound k, but in settings where either the updates to the
tree decomposition are supplied in the input, or the tree decomposition is never updated.
This sidesteps the main difficulty, namely, maintaining the tree decomposition itself.

With no further success in dynamic treewidth, several authors turned into more restrictive
graph parameters, in particular, to the parameters “treedepth” and “feedback vertex
number” that are both always at least treewidth minus one. Dvořák et al. [2014] showed
that CMSO2-expressible properties can be maintained on dynamic graphs of bounded
treedepth with constant (depending on treedepth and the property) time per update. The
running time of their data structure (the dependence on treedepth) was improved by Chen
et al. [2021]. Building upon the work of Alman et al. [2020] on dynamic feedback vertex
set, Majewski et al. [2023] showed that CMSO2-expressible properties can be maintained
in O(log n) time on dynamic graphs with bounded feedback vertex number.

Let us then return to dynamic treewidth. Goranci et al. [2021] gave the first sublinear time
dynamic algorithm for the general dynamic treewidth problem. They showed that tree
decompositions with no(1)-approximately optimal width can be maintained with amortized
update time no(1), under the assumption that the graph has bounded maximum degree.
The running time of their algorithm does not depend on the treewidth bound k. However,
because the width of the maintained tree decomposition can be superlogarithmic in n
even for graphs of bounded treewidth, their algorithm is not very useful in applications of
treewidth for solving NP-hard problems by dynamic programming on tree decompositions.
In particular, running even the simplest dynamic programming algorithms on a tree
decomposition maintained by their algorithm results in a superpolynomial running time
in n even when k is fixed.

8The author was not able to access the article [Cohen et al., 1993], and therefore our description of it
is based on that of Bodlaender [1993].

1.2 Dynamic treewidth 13

In Chapter 6 of this thesis, we give the first solution for dynamic treewidth with amortized
update time sublinear in n for fixed k that maintains a tree decomposition whose width is
bounded by a function of k. In fact, the amortized update time of our dynamic treewidth
data structure is subpolynomial in n (no(1)) for any fixed treewidth bound k.

Theorem 1.4. There is a data structure that is initialized with an initially edgeless
n-vertex dynamic graph G and a parameter k. The data structure supports updating G by
edge insertions and deletions, and maintains a tree decomposition of G of width at most
6k+ 5 whenever the treewidth of G is at most k. When the treewidth of G is more than k,
the data structure contains a marker “Treewidth too large”. The amortized initialization
time is 2k

O(1)
n and the amortized update time is 2k

O(1)
√

logn log logn.

Moreover, the data structure can be provided a CMSO2 sentence ϕ upon initialization,
in which case it maintains whether ϕ is true in G whenever the marker “Treewidth too
large” is not present. In this case, the amortized initialization time is f(k, ϕ) · n and the
amortized update time is f(k, ϕ) · 2kO(1)

√
logn log logn, where f is a computable function.

A few remarks are in order. First, we note that the update time function 2k
O(1)
√

logn log logn

can be rewritten as 22k
O(1)

· 2
√

logn log logn if one wishes it to have a more traditional
FPT appearance. Second, in the statement of Theorem 1.4 we formalize the feature of
maintaining dynamic programming by maintaining CMSO2-expressible properties, but in
Chapter 6 we also give a framework of “prefix-rebuilding updates” that allows to plug
in any reasonable dynamic programming procedure on tree decompositions to the data
structure. Therefore, Theorem 1.4 directly extends to, for example, maintaining the
cardinality of the maximum independent set of G, and in that case, the running time
overhead over the basic maintenance of the decomposition is only 2O(k) instead of f(k, ϕ).
We also remark that the data structure of Theorem 1.4 persists even when the treewidth
of G exceeds k, in that case displaying the “Treewidth too large” marker, although this is
achieved by a standard trick of Eppstein et al. [1996].

The techniques in the proof of Theorem 1.4 build upon and extend the techniques
introduced for proving Theorems 1.1 to 1.3. In particular, at the heart of the dynamic
algorithm is a “refinement operation” that is used to improve and re-arrange the maintained
tree decomposition efficiently. It is used for controlling both the width and the depth of the
decomposition, of which the latter is ultimately is the key for achieving the subpolynomial
in n running time. The refinement operation extends the general version of the “local
improvement” method introduced for Theorems 1.2 and 1.3, but also uses techniques
from the proof of Theorem 1.1 for its efficient implementation. In addition to these
techniques, we also use several other techniques from the literature of treewidth computing

14 Introduction

as ingredients, for example the results of [Bodlaender and Hagerup, 1998; Bodlaender
and Kloks, 1996; Bojańczyk and Pilipczuk, 2022].

We will discuss (potential) applications of Theorem 1.4 and future directions related to
dynamic treewidth in Chapter 8.

1.3 Rankwidth, branchwidth, and cliquewidth

We then turn to graph width parameters other than treewidth, namely, rankwidth,
branchwidth, and cliquewidth. The branchwidth of graphs was introduced by Robertson
and Seymour [1991], and extended to a general framework of branchwidth of connectivity
functions by Oum and Seymour [2006]9. As the main application of this framework, Oum
and Seymour introduced also the parameter rankwidth. Let us start by presenting the
general definition of branchwidth of connectivity functions, and then work down to the
concrete instantiations.

Let V be a set. A function f : 2V → Z≥0 from the subsets of V to non-negative integers is
a connectivity function if (1) it is submodular, that is, f(A)+f(B) ≥ f(A∩B)+f(A∪B)

for all A,B ⊆ V , (2) it is symmetric, that is, f(A) = f(V \ A) for all A ⊆ V , and
(3) f(∅) = f(V) = 0.10

A branch decomposition of a connectivity function f : 2V → Z≥0 is a pair (T, λ), where T
is a tree whose nodes have degree either 3 or 1, and λ is a bijection from V to the leaves
of T (see Figure 1.2). Every edge xy of T can be associated with a bipartition (A,B) of
V by partitioning the elements v ∈ V based on which connected component of T \ {xy}
the leaf λ(v) is. Then, the width of the edge xy is defined as f(A), which is equal to f(B)

because of the symmetry of f , and the width of (T, λ) is the maximum width of an edge
of T . The branchwidth of f is the minimum width of a branch decomposition of f .

When Oum and Seymour [2006] introduced branchwidth of connectivity functions, they
showed that if the function f can be evaluated in time γ(n), where n = |V |, then there is
an algorithm that in time O(8k · n7 · γ(n) · log n) either outputs a branch decomposition
of f of width at most 3k + 1, or concludes that the branchwidth of f is more than k.
Oum and Seymour [2007] also showed that an optimum-width branch decomposition of
f can be computed in time O(n8k+6 · γ(n) · log n).

9Branchwidth of connectivity functions could be argued to already be implicitly considered by
Robertson and Seymour [1991].

10We remark that the assumptions that f is non-negative and f(∅) = f(V) = 0 are not significant
restrictions. If f : 2V → Z satisfies (1) and (2), then f−f(∅) satisfies (1), (2), and (3), and is non-negative.

1.3 Rankwidth, branchwidth, and cliquewidth 15

a

b

c

d

g

h

e

f

Figure 1.2: A branch decomposition of a function f : 2V → Z≥0, where V = {a, b, c, . . . , h}.

In Chapter 7 we introduce a general framework for obtaining FPT 2-approximation
algorithms for different instantiations of branchwidth of connectivity functions. Unlike the
algorithms of Oum and Seymour, our framework does not work for arbitrary connectivity
functions, but requires the branch decompositions of the connectivity function to support,
informally speaking, “efficient dynamic programming” for computing certain objects.
Essentially, our framework states that all of the techniques from the proof of Theorem 1.1
can be extended to the setting of branchwidth of connectivity functions, but in order to
implement them efficiently, we need to be able to perform dynamic programming on the
branch decomposition.

The most significant applications of both our framework and the algorithm of Oum and
Seymour [2006] are about computing rankwidth, so let us next define rankwidth and
review literature about it.

1.3.1 Computing rankwidth

For a graph G and a set of vertices A ⊆ V (G), we defineMG(A) to be the |A|×|V (G)\A|
matrix that describes the edges of G between A and V (G) \ A by zeros and ones.
Then, denote by cutrkG(A) the rank of MG(A) over the binary field GF(2). Oum and
Seymour [2006] showed that the function cutrkG : 2V (G) → Z≥0 is a connectivity function,
and defined the rankwidth of G as the branchwidth of cutrkG and a rank decomposition
of G as a branch decomposition of cutrkG.

Rankwidth was introduced by Oum and Seymour [2006] to approximate a width parameter
called cliquewidth, which was introduced by Courcelle et al. [1993] in their study of logic
and automata on graphs, and defined in its present form by Courcelle [1995]. We postpone
the formal definition of cliquewidth to Subsection 2.3.5, but for this discussion it suffices
to know that Oum and Seymour [2006] showed that rankwidth (rw) and cliquewidth

16 Introduction

(cw) are functionally equivalent in the sense that rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 for all
graphs G. A good, and correct up to a constant factor, way of thinking about cliquewidth
is that it is like rankwidth, but instead of measuring the rank of MG(A) it simply counts
the number of different rows and columns of MG(A).11 A parameter closely related to
cliquewidth, called NLC-width, was also investigated by Wanke [1994].

The motivation behind cliquewidth is that it is a generalization of treewidth that is
suitable also for dense graphs. In particular, graphs of treewidth k have cliquewidth at
most 3 · 2k−1 [Corneil and Rotics, 2005], but there exists many classes of dense graphs
that have cliquewidth bounded by a constant but unbounded treewidth, for example,
complete graphs and complete bipartite graphs, and more generally cographs [Courcelle
and Olariu, 2000]. Graphs of treewidth k have at most kn edges, so dense graphs can
never have small treewidth.

Courcelle et al. [2000] showed that various dynamic programming algorithms for graphs
of small treewidth can be generalized to graphs of small cliquewidth, if the graph is
given together with a suitable decomposition witnessing that its cliquewidth is at most k,
called a k-expression. In particular, they gave algorithms working in time f(k) · n, when
given a k-expression, for solving problems such as maximum independent set, minimum
dominating set, and 3-coloring.12

However, at the time no algorithms for computing k-expressions were known, which
was the motivation of Oum and Seymour [2006] for introducing rankwidth and giving
the algorithm for approximating branchwidth of connectivity functions. They applied
this to give an algorithm for approximating rankwidth, which they in turn applied
for approximating cliquewidth. In particular, using their algorithm for branchwidth of
connectivity functions, Oum and Seymour [2006] obtained a O(8kn9 log n) time algorithm
for computing a rank decomposition of width at most 3k+1 or determining that rw(G) > k.
By a constructive version of the inequalities rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1, this implied
an algorithm that within the same running time either computes a (23k+2− 1)-expression,
or determines that cw(G) > k.

The result of Oum and Seymour [2006] implied f(k) · n9 log n time algorithms for solving
problems on graphs of cliquewidth k even when a k-expression is not given. Not long after,
Oum [2008b] improved this by giving O(8kn4) time and f(k) · n3 time 3-approximation
algorithms for rankwidth (where f(k) is a huge but computable function). The latter of
these algorithms combines ideas of Oum and Seymour with ideas that Hliněný [2005]
used for approximating branchwidth of matroids. Courcelle and Oum [2007] gave a

11A cut function defined like this is not submodular, which is the motivation for defining rankwidth.
12The graph can have more edges than f(k) · n, but it is described succinctly only by the k-expression.

1.3 Rankwidth, branchwidth, and cliquewidth 17

Reference Appx. α(k) Time
Oum and Seymour [2006] 3k + 1 8k · n9 · log n
Oum and Seymour [2007] exact n8k+12 · log n

Oum [2008b] 3k + 1 8k · n4

Oum [2008b] 3k − 1 f1(k) · n3

Courcelle and Oum [2007] exact f2(k) · n3

Hliněný and Oum [2008] exact f3(k) · n3

Jeong et al. [2021] exact f4(k) · n3

Chapter 7 of this thesis 2k 22O(k) · n2

Chapter 7 of this thesis exact f5(k) · n2

Korhonen and Sokołowski [2024] exact f6(k) · n · 2
√

logn log logn +O(m)

Table 1.2: Overview of algorithms for computing rankwidth. Here n is the number of
vertices, m is the number of edges, and k is the rankwidth of the input graph. All of
the algorithms, except the algorithm of Courcelle and Oum [2007], either output in time
O(Time) a rank decomposition of width at most α(k) or determine that the rankwidth
is more than k. The algorithm of Courcelle and Oum [2007] only determines if the
rankwidth is at most k. All of the functions fi(k) are at least double-exponential but
computable. The algorithm of [Korhonen and Sokołowski, 2024] will be discussed in
Chapter 8.

f(k) ·n3 time algorithm for computing rankwidth exactly, which however did not output a
decomposition. This caveat was remedied by Hliněný and Oum [2008]. Much later, Jeong
et al. [2021] gave an alternative f(k) · n3 time algorithm for computing optimum-width
rank decompositions. Their algorithm works in fact for computing branchwidth of any
connectivity function that can be described in a certain linear-algebraic way, and can be
seen as a generalization of the algorithm of Bodlaender and Kloks [1996] to that setting.
Algorithms for computing rankwidth are summarized in Table 1.2.

It was asked as an open problem by [Oum, 2017, Question 3] whether there exists an
algorithm with functions f(k), g(k), and a constant c < 3 that finds a rank decomposition
of width at most f(k) or determines that the rankwidth of the input graph is more than
k in time g(k) · nc. As the main application of our framework for FPT 2-approximation
algorithms for branchwidth of connectivity functions, we solve this problem in Chapter 7.

Theorem 1.5. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 22O(k)

n2 either outputs a rank decomposition of G of width at most 2k or
determines that the rankwidth of G is larger than k.

Our algorithm can be combined with the algorithm of Oum and Seymour [2006] for
translating rank decompositions into k-expressions, to output within the same running
time, also a (22k+1 − 1)-expression for the cliquewidth of G. This improves the running
times of most of the FPT algorithms parameterized by cliquewidth from f(k)·n3 to f(k)·n2.

18 Introduction

By combining the algorithm of Theorem 1.5 with the dynamic programming algorithm for
computing optimum-width rank decompositions given by Jeong et al. [2021], we obtain
also the following corollary about computing rankwidth exactly.

Corollary 1.6. There is an algorithm that, given an n-vertex graph G and an integer k,
in time f(k) · n2, for some computable function f , either outputs a rank decomposition of
G of width at most k or determines that the rankwidth of G is larger than k.

Graphs of rankwidth 1 are the “distance-hereditary graphs” [Oum, 2005], and for them a
(non-trivial) linear-time recognition algorithm is known [Damiand et al., 2001]. However,
to the best of our knowledge, already for rankwidth 2 no recognition algorithms faster
than O(n3) were known before Corollary 1.6.

1.3.2 Computing branchwidth of graphs

We then turn to branchwidth of graphs, which was introduced by Robertson and Sey-
mour [1991] as an alternative for treewidth that is more suitable in some settings, in
their case, that of “tangles”. Let us define branchwidth of graphs as a special case of
branchwidth of connectivity functions.

For a subset A ⊆ E(G) of edges of a graph G, we define the border δG(A) ⊆ V (G) of A
as the set of vertices that are incident both to an edge in A and to an edge in E(G) \ A.
It was observed by Robertson and Seymour [1991] that the function |δG| : 2E(G) → Z≥0

that maps sets of edges to cardinalities of their borders is a connectivity function. The
branchwidth of a graph G is then defined as the branchwidth of the function |δG|, and a
branch decomposition of G is a branch decomposition of |δG|. Note that here, it is the
edges of G that are mapped to the leaves of the branch decomposition.

Branchwidth (bw) is closely related to treewidth (tw), as the pair of inequalities bw(G) ≤
tw(G) + 1 ≤ max(3

2
· bw(G), 2) holds for all graphs G [Robertson and Seymour, 1991].

Although branchwidth and treewidth are in this sense almost equivalent, and algorithms
using treewidth have certainly received more attention than algorithms using branchwidth,
it has been argued that in some applications branchwidth is the more useful one of the two
parameters [Cook and Seymour, 2003; Fast and Hicks, 2017; Fomin and Thilikos, 2006].

As for computing branchwidth, we note that by the aforementioned relation with
treewidth (and the fact that it can be constructively implemented in kO(1)n time),
all α-approximation algorithms for treewidth can be turned into 3

2
α-approximations for

branchwidth, so all results for treewidth in Table 1.1 translate into results for branchwidth.
For algorithms specifically designed for branchwidth, we mention the 3-approximation

1.3 Rankwidth, branchwidth, and cliquewidth 19

algorithm of Robertson and Seymour [1995] with running time 2O(k)n2, and the exact
algorithm of Bodlaender and Thilikos [1997] with running time f(k) · n, for some com-
putable function f . Also, Seymour and Thomas [1994] showed that branchwidth of planar
graphs can be computed in polynomial time.

In Chapter 7, we apply our framework for branchwidth of connectivity functions to obtain
the following algorithm for 2-approximating branchwidth of graphs.

Theorem 1.7. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k)n either outputs a branch decomposition of G of width at most 2k or
determines that the branchwidth of G is larger than k.

This improves upon the 3-approximation algorithm with the same running time that
follows from Theorem 1.1. Compared to results prior to this thesis, the previous best
approximation ratio for branchwidth in time 2O(k)n was 7.5, which follows from the result
of Bodlaender et al. [2016a].

We will discuss open problems and potential applications of our framework to further
width parameters in Chapter 8.

20 Introduction

Chapter 2

Definitions and preliminary results

In this chapter we review the formal definitions and notation used in this thesis. We also
present some well-known auxiliary results about graph theory, algorithms, and width
parameters, which will be used in this thesis.

2.1 Basic notation

Before going into graphs, let us fix the basic mathematical notation we will use.

We denote the set of integers by Z, the set of non-negative integers by Z≥0, and the set of
positive integers by Z≥1. For two integers a and b, [a, b] = {x ∈ Z | a ≤ x ≤ b} denotes
the set of integers between a and b, including a and b. The set [a, b] is empty if b < a.
For an integer n, we denote by [n] the set [1, n], which is empty if n < 1.

We fix the convention that log denotes the base-2 logarithm. We also fix that ⊂ denotes
a strict subset and ⊆ a not-necessarily-strict subset. When we say that a set is maximal
we mean inclusion-wise maximality, and by minimal we mean inclusion-wise minimality.

A partition of a set X is a set C of disjoint non-empty subsets of X so that X =
⋃
C∈C C.

Note that in this definition the parts of a partition are not allowed to be empty, and they
are not indexed. We will later introduce additional definitions to talk about partitions
that allow empty sets and are indexed.

For a set X, we denote by
(
X
2

)
the set of all unordered pairs of distinct elements of X.

In particular, |
(
X
2

)
| =

(|X|
2

)
= |X|(|X| − 1)/2, where

(
n
k

)
denotes binomial coefficients.

22 Definitions and preliminary results

For a function f : X → Y and a set Z ⊆ X, we denote the restriction of f to Z by f�Z .
In particular, f�Z is the function f�Z : Z → Y with f�Z(x) = f(x) for all x ∈ Z.

2.2 Graphs

We denote the set of vertices of a graph G by V (G) and the set of edges by E(G). The
edges of a graph are unordered pairs of distinct vertices, i.e., E(G) ⊆

(
V (G)

2

)
. In particular,

all graphs in this thesis are simple, i.e., are undirected, have no parallel edges, and no
self-loops. We say that vertices u, v ∈ V (G) are adjacent if uv ∈ E(G) and a vertex
u ∈ V (G) is incident to an edge e ∈ E(G) if e = uv for some v ∈ V (G).

Unless otherwise stated, we denote by n the number of vertices |V (G)| and by m the
number of edges |E(G)| of a graph G. In the context of running times of algorithms,
m means |V (G)|+ |E(G)| unless otherwise stated. This can also be interpreted as the
assumption that input graphs do not contain isolated vertices, as then |V (G)|+ |E(G)| =
O(m). We assume that graphs are represented in the adjacency list format, in which we
store for each vertex the list of all vertices adjacent to it. We will also use the adjacency
matrix format in Chapter 7, in which an n× n matrix represents the adjacencies. We
assume that vertices of graphs come from a totally ordered countable set, i.e., V (G) ⊂ Z≥1,
and they can be manipulated in constant time, as is standard in the word RAM model.

For a vertex v ∈ V (G), its neighborhood is NG(v) = {u | uv ∈ E(G)} and closed
neighborhood NG[v] = NG(v) ∪ {v}. For a set of vertices X ⊆ V (G), its neighborhood is
NG(X) =

⋃
v∈X NG(v) \X and closed neighborhood NG[X] = NG(X) ∪X. We drop the

subscript if the graph G is clear from the context. The degree of a vertex is the number
of neighbors of it, and a graph is subcubic if its maximum degree is at most 3.

We denote the subgraph of G induced by a set of vertices X ⊆ V (G) by G[X]. We also
use the notation G \X = G[V (G) \X]. A cut of a graph G is a pair (A,B) of disjoint
subsets of vertices A,B ⊆ V (G) so that A∪B = V (G). The graph G is bipartite if it has
a cut (A,B) so that the graphs G[A] and G[B] are edgeless, in which case we may say
that (A,B) is a bipartitioning cut of G. When G is a graph and A,B ⊆ V (G) are two
disjoint sets of vertices, we denote by G[A,B] the bipartite graph with the set of vertices
V (G[A,B]) = A ∪B and with E(G[A,B]) containing the edges of G with one endpoint
in A and one in B.

An independent set in a graph G is a set of vertices I ⊆ V (G) so that no two vertices in
I are adjacent to each other. A clique is a set W ⊆ V (G) so that

(
W
2

)
⊆ E(G). A vertex

cover of G is a set X ⊆ V (G) so that every edge of G is incident to at least one vertex in

2.2 Graphs 23

X. A matching in G is a set of edges M ⊆ E(G) so that every vertex of G is incident to
at most one edge in M .

We use the convention that a connected component of a graph G is a maximal set of
vertices C ⊆ V (G) so that G[C] is connected. We denote the set of connected components
of G by cc(G).

A path in a graph G is a sequence P = v1, v2, . . . , v` of distinct vertices of G so that
vi and vi+1 are adjacent in G for every i ∈ [` − 1]. The endpoints of P are v1 and v`,
and P may be called a v1-v`-path. For two sets of vertices A,B ⊆ V (G), the path P

may be called an A-B-path if v1 ∈ A and v` ∈ B. The intermediate vertices of P are
v2, . . . , v`−1. An edge is on the path P if it is the edge vivi+1 for some i ∈ [`− 1]. The
distance between vertices u and v is the least number of edges on an u-v-path, or infinite
if no u-v-path exists. We denote the set of vertices on P by V (P) = {v1, . . . , v`}.

Let G be a graph and X ⊆ V (G). The graph torsoG(X) has vertices V (torsoG(X)) = X

and has uv ∈ E(torsoG(X)) if u, v ∈ X and there is a path from u to v whose all internal
vertices (if any) are in V (G) \ X. In particular, torsoG(X) is obtained from G[X] by
making NG(C) into a clique for every component C ∈ cc(G \X). We may omit G from
the subscript if it is clear from the context.

The contraction of an edge uv of a graph G means the operation that replaces the vertices
u and v by a new vertex w so that w is adjacent to every vertex of G to which u or v
were adjacent to (except for u and v themselves). All graphs in this thesis are simple, so
contraction does not create self-loops or parallel edges. If v is a degree-2 vertex of a graph
G, then suppressing v means the operation that adds an edge between the two neighbors
of v (if it does not already exist) and then deletes v. Note that the graph resulting from
suppressing v is isomorphic to the graph resulting from contracting either of the edges
incident to v. Subdividing an edge uv means adding a vertex w and edges wu and wv,
and then removing the edge uv. A graph H is a minor of a graph G if H is obtained
from G by vertex deletions, edge deletions, and edge contractions.

We sometimes say that G contains H as a minor if H is a minor of G. We say that G
is H-minor-free or excludes H as a minor if G does not contain H as a minor. A class
of graphs is H-minor-free if all graphs in it are H-minor-free, and simply minor-free if
there exists a graph H so that the class is H-minor-free. Slightly abusing the notation,
we may say that a graph G is minor-free, meaning that the statement about G should be
interpreted as concerning all graphs G in any fixed minor-free graph class.

A graph is planar if it can be drawn on the plane without crossings. By a theorem of
Kuratowski [1930], a graph G is planar if and only if it is K5-minor-free and K3,3-minor-

24 Definitions and preliminary results

free, where Kt denotes the complete graph on t vertices, and Ks,t the complete bipartite
graph with s vertices on one side and t on the other.

2.2.1 Separators and linkedness

Let A,B ⊆ V (G) be two sets of vertices in a graph G. We say that a set S ⊆ V (G)

separates A from B if every A-B-path contains a vertex from S. In this case S is called
an (A,B)-separator. If no A-B-path exists in G (for example, if A or B is empty), then
every set S ⊆ V (G), including the empty set, is an (A,B)-separator. We note that the
sets A and B are allowed to intersect in this definition, but for every (A,B)-separator S
it holds that A ∩ B ⊆ S, as otherwise there would be a trivial single-vertex A-B-path
avoiding S.

A separation of a graph G is a triple (A, S,B) of subsets of V (G) so that A, S, and B
are disjoint, V (G) = A ∪ S ∪ B, and there are no edges between A and B. The order
of a separation (A, S,B) is |S|. Note that if X, Y ⊆ V (G) and S is an (X, Y)-separator,
then there exists A,B ⊆ V (G) so that (A, S,B) is a separation of G, X ⊆ A ∪ S, and
Y ⊆ S ∪B.

For two sets of vertices A,B ⊆ V (G), we denote by flowG(A,B) the size of a smallest
(A,B)-separator in G, dropping the subscript if it is clear form the context. Calling this
flow is motivated by the following classical theorem of Menger.

Theorem 2.1 (Menger [1927]). The size of a smallest (A,B)-separator is equal to the
maximum size of a collection of vertex-disjoint A-B-paths.

Here, a collection of vertex-disjoint A-B-paths means a collection P = {P1, . . . , P`} of
A-B-paths, so that every vertex of G is on at most one of the paths. In particular, also
the endpoints of the paths in P are pairwise disjoint.

By Theorem 2.1, for any two sets A,B ⊆ V (G), there exists a collection of flow(A,B)

vertex-disjoint A-B-paths. We will use the following algorithmic version of this fact.

Theorem 2.2 (Ford and Fulkerson [1956]). There is an algorithm, that given a graph G,
two sets of vertices A,B ⊆ V (G), and an integer k, in time O(k ·m) outputs either

• an (A,B)-separator of size at most k, or

• a collection of k vertex-disjoint A-B-paths.

2.2 Graphs 25

We note that even though there has been significant progress in algorithms for maximum
flow since 1956 (see [Chen et al., 2022]), we only use the algorithm of Theorem 2.2 in
this thesis.

We say that a set A ⊆ V (G) of vertices is linked into a set B ⊆ V (G) of vertices if
flow(A,B) = |A|. Note that this definition is asymmetric, in particular, if |A| < |B|,
then A can be linked into B but B cannot be linked into A. We will use the following
standard lemma about linkedness.

Lemma 2.3. If S is a minimum-size (A,B)-separator, then S is linked into A and B.

Proof. Suppose S is not linked into B, and let S ′ be an (S,B)-separator of size |S ′| < |S|.
Because every A-B-path contains a vertex from S, it follows that S ′ is also an (A,B)-
separator. However, then S ′ contradicts the fact that S is a minimum-size (A,B)-separator.
This shows that S is linked into B, and the fact that S is linked into A can be shown by
interchanging the roles of A and B in the proof.

We also say that A is strongly linked into B if A is linked into B, and furthermore, for
every (A,B)-separator S of size |S| = |A| it holds that either S = A or S = B.

2.2.2 Trees

A tree is a connected acyclic graph. We usually call vertices of trees nodes, to underline
that they are vertices of a tree. A subtree of a tree T is a subgraph of T that is a tree, in
particular, a subgraph that is connected. The degree-1 nodes of a tree are leaves. A tree
is cubic if all of its nodes except the leaves have degree 3.

Rooted trees

A rooted tree is a tree where one node is designated as the root. When talking about
rooted trees, we use the convention that the root is not a leaf, even if it would have
degree 1.

A node x of a rooted tree T is a descendant of a node y if the unique path from x to
the root contains y. If x is a descendant of y, then y is an ancestor of x. Note that
every node is both a descendant and an ancestor of itself. We define that x is a strict
descendant of y if x is a descendant of y and x 6= y. Strict ancestor is defined analogously.
We denote the set of descendants of a node x in a rooted tree T by descT (x). The parent

26 Definitions and preliminary results

of a non-root node x is the unique ancestor of x that is adjacent to x, and is denoted by
parentT (x). We may omit the subscript if it is clear from the context. If y is the parent
of x, then x is a child of y. A binary tree is a rooted tree where every node has at most
two children.

When manipulating rooted trees in algorithms, we assume that in addition to the adjacency
list, a pointer to the root is stored, and every node stores a pointer to its parent.

We note that although the parent of a node is defined only for rooted trees, we may call
the only node adjacent to a leaf node its parent even in non-rooted trees.

We define a rooted subtree of a rooted tree T as a subtree T ′ of T so that T ′ = T [desc(x)]

for some x ∈ V (T). In that case, x is the root of T ′. When we talk about the subtree of
T rooted at x, we mean the rooted subtree T [desc(x)] of T .

We define that the depth of a node x ∈ V (T) of a rooted tree T is equal to 0 if x is the
root, and otherwise equal to the depth of its parent plus one, and is denoted by depthT (x).
The height of x is equal to the number of vertices on a longest path from x to a leaf, and
is denoted by hgtT (x). In particular, the height of each leaf is 1. Note that the function
depth(x) takes values in [0, |V (T)| − 1] and the function hgt(x) takes values in [|V (T)|].
The height of a rooted tree T is the height of its root, and is denoted by hgt(T).

A node z of a rooted tree T is the lowest common ancestor (LCA) of two nodes x and y
of T if z is an ancestor of both x and y, and subject to that, z maximizes depth(z). We
say that a set X ⊆ V (T) of nodes is LCA-closed if for every two distinct nodes x, y ∈ X,
the LCA of x and y is in X. The LCA-closure of a set X of nodes is the unique minimal
superset Y ⊇ X of X so that Y is LCA-closed. The following lemma shows that Y is
indeed unique.

Lemma 2.4. Let X ⊆ V (T) be a set of nodes in a rooted tree T , and L ⊆ V (T) the set
that contains for every pair x, y ∈ X the LCA of x and y. Then, X ∪ L is LCA-closed.

Proof. Let x, y ∈ X ∪ L. If x is an ancestor or a descendant of y, then their LCA is x or
y, which is in X ∪L. Otherwise, there exists a descendant x′ of x in X and a descendant
y′ of y in X. The LCA of x′ and y′ is the LCA of x and y, and by definition is in L.

We also observe a bound on the size of the LCA-closure.

Lemma 2.5. If X ⊆ V (T) is non-empty, then its LCA-closure has size at most 2|X|− 1.

Proof. We prove this by induction on |X|. The base base of |X| = 1 clearly holds. Now,
let |X| ≥ 2, let Y be the LCA-closure of X, choose x ∈ X, and let Y ′ be the LCA-closure

2.3 Width parameters 27

of X \ {x}. Suppose two distinct strict ancestors a1 and a2 of x are in Y \ Y ′, and let a2

be a strict ancestor of a1. Now, if a1 is the LCA of x and y ∈ X, and a2 is the LCA of x
and z ∈ X, then a2 is in fact the LCA of y and z, so a2 ∈ Y ′, which is a contradiction.
Therefore, at most one strict ancestor of x is in Y \ Y ′, so |Y | ≤ |Y ′|+ 2 ≤ 2|X| − 1.

A prefix of a rooted tree T is a set Tpref ⊆ V (T) of nodes so that T [Tpref] is connected
and contains the root of T . Note that a prefix is by definition non-empty. An appendix
of a prefix Tpref is a node a ∈ V (T) \ Tpref that is not in Tpref but whose parent is in
Tpref . The set of appendices of Tpref is denoted by appT (Tpref), where the subscript may
be dropped if T is clear from the context. We observe that if T is a binary tree, then
|app(Tpref)| ≤ |Tpref |+ 1.

2.3 Width parameters

We review the definitions of treewidth, branchwidth of connectivity functions, branchwidth
of graphs, rankwidth, and cliquewidth. We also introduce additional notation related to
them and summarize well-known facts. We refer to [Cygan et al., 2015, Chapter 7] for
introductory material on treewidth and to [Hliněný et al., 2008] for introductory material
on the other width parameters.

2.3.1 Treewidth

Following Robertson and Seymour [1986a], we define a tree decomposition of a graph G
to be a pair T = (T, bag), where T is a tree and bag : V (T)→ 2V (G) is a function that
satisfies

1. V (G) =
⋃
t∈V (T) bag(t),

2. E(G) ⊆
⋃
t∈V (T)

(
bag(t)

2

)
, and

3. for every v ∈ V (G), it holds that T [{t ∈ V (T) | v ∈ bag(t)}] is connected.

The set bag(t) of a node t ∈ V (T) is called the bag of t. We will call the conditions of the
Items 1 to 3 the vertex condition, the edge condition, and the connectedness condition.
The width of a tree decomposition is the maximum size of a bag minus one, and is denoted
by width(T). The treewidth of a graph is the minimum width of a tree decomposition of
it, and is denoted by tw(G).

28 Definitions and preliminary results

For brevity, we will sometimes denote |T | = |V (T)|, V (T) = V (T), and E(T) = E(T),
and call nodes and edges of T nodes and edges of T . A tree decomposition is subcubic if T
is subcubic. For a set X ⊆ V (T), we denote by bagsT (X) the union

⋃
t∈X bag(t) of bags

in X, dropping the subscript if T is clear from the context. We may also use bags(T) to
denote the union of all bags of T (which is equal to V (G) if T is a tree decomposition of
G). For a subset X ⊆ V (T), we denote by T �X the pair (T [X], bag�X), which may or may
not be a tree decomposition (recall that we use f�X to denote the restriction of a function).
For an edge xy ∈ E(T) of the tree decomposition, the intersection bag(x) ∩ bag(y) is
called the adhesion of xy.

Let us now observe some basic properties of tree decompositions that will be often used
in this thesis without explicitly mentioning them. First, the connectedness condition
extends to sets of vertices as follows.

Lemma 2.6. Let (T, bag) be a tree decomposition of a graph G, and let X ⊆ V (G) so
that G[X] is connected. Then T [{t ∈ V (T) | bag(t) ∩X 6= ∅}] is connected.

Proof. Let uv ∈ E(G[X]). The set {t ∈ V (T) | bag(t) ∩ {u, v} 6= ∅} is connected in T
because both {t ∈ V (T) | u ∈ bag(t)} and {t ∈ V (T) | v ∈ bag(t)} are connected in T by
the connectedness condition, and by the edge condition there exists a node whose bag
contains both u and v. Now, the fact that T [{t ∈ V (T) | bag(t) ∩X 6= ∅}] is connected
follows from the connectedness of G[X].

Then we prove the basic separation property of tree decompositions that any adhesion of
an edge separates the vertices on different sides of it from each other.

Lemma 2.7. Let (T, bag) be a tree decomposition of a graph G and (A,B) a cut of T
so that there is exactly one edge xy ∈ E(T) with x ∈ A and y ∈ B. Then, the adhesion
bag(x) ∩ bag(y) is a (bags(A), bags(B))-separator in G.

Proof. Suppose not, and let S = bag(x)∩ bag(y) and uv ∈ E(G) be an edge of G so that
u ∈ bags(A) \ S and v ∈ bags(B) \ S. The subtree of bags that contain u intersects A,
and therefore does not intersect y because then it would intersect also x and u would be
in S. In particular, it is a subtree of T [A]. By a similar argument, the subtree of bags
that contain v is a subtree of T [B]. However, this contradicts the edge condition.

Note that Lemma 2.7 directly implies some weaker separation properties, for example,
that for any node t ∈ V (T) the set bag(t) is a (bags(C1), bags(C2))-separator for any two
connected components C1, C2 ∈ cc(T \ {t}).

2.3 Width parameters 29

We will need to bound the number of edges of graphs of small treewidth. For this, the
main intermediate lemma is the following.

Lemma 2.8. If a graph G has treewidth at most k, then G contains a vertex of degree
at most k.

Proof. Let (T, bag) be a tree decomposition of G of width at most k that minimizes
the number of nodes |V (T)|. If T would have a leaf ` whose only neighbor is a node p
so that bag(`) ⊆ bag(p), then we could remove the node ` from (T, bag) and obtain a
tree decomposition of G with a smaller number of nodes. Therefore, bag(`) \ bag(p) is
non-empty, and therefore there exists a vertex v of G that occurs only in the bag of `,
implying N(v) ⊆ bag(`) \ {v}, which implies that |N(v)| ≤ k.

The degeneracy of a graph G is the least integer d so that every subgraph of G has a
vertex of degree at most d. Because the treewidth of any subgraph of G is at most tw(G),
the result of Lemma 2.8 can be stated as that the degeneracy of G is at most tw(G).

A bound for the number of edges of G easily follows from Lemma 2.8.

Lemma 2.9. A graph G has at most tw(G) · |V (G)| edges.

Proof. This follows from Lemma 2.8 and the fact that removing a vertex from G does
not increase the treewidth of G.

Another application of Lemma 2.8 is the following data structure for checking adjacencies
on graphs of bounded treewidth.

Lemma 2.10. There is a data structure, that can be initialized with a graph G in time
O(tw(G) · n) and supports the query

• Adjacent(u, v): Given u, v ∈ V (G), return whether uv ∈ E(G) in time O(tw(G)).

Proof. By repeatedly removing vertices with the smallest degree, let us order the vertices
of G as v1, . . . , vn so that vi has at most tw(G) neighbors vj with j > i. Then, let us store
for each vi the set N+(vi) ⊆ N(vi) consisting of the neighbors vj of vi with j > i. This can
be done in time O(tw(G) · n). Then, the adjacent(vi, vj) query for i < j can be answered
by checking if vj ∈ N+(vi), which takes O(tw(G)) time because |N+(vi)| ≤ tw(G).

We sometimes assume implicitly that the data structure of Lemma 2.10 is available when
working with graphs of small treewidth.

30 Definitions and preliminary results

We then recall the well-known property that taking minors does not increase treewidth.

Lemma 2.11. If H is a minor of G, then tw(H) ≤ tw(G).

Proof. For vertex and edge deletions it is obvious how to translate a tree decomposition
of G into a tree decomposition of H. For edge contractions, if an edge uv is contracted
into a new vertex w, then we replace each occurrence of u and v in the tree decomposition
by w.

Rooted tree decompositions

Often it will be convenient to assume that the tree T of a tree decomposition is rooted. A
rooted tree decomposition is a tree decomposition T = (T, bag) where T is a rooted tree.
Similarly, a binary tree decomposition is a tree decomposition where T is a binary tree.

The adhesion of a non-root node t ∈ V (T) of a rooted tree decomposition is the intersection
bag(t) ∩ bag(parent(t)) of the bags of t and its parent, and is denoted by adhT (t), where
the subscript T may be dropped. If t is the root, then adhT (t) = ∅. The component of
a node t, denoted by cmpT (t), is the union of the bags of descendants of t minus the
adhesion of t, i.e., cmpT (t) = bagsT (descT (t)) \ adhT (t). Note that by Lemma 2.7, if T is
a tree decomposition G, then (cmp(t), adh(t), V (G) \ (cmp(t) ∪ adh(t))) is a separation
of G.

If T = (T, bag) is a rooted tree decomposition of G and v ∈ V (G), then the forget-node of
v is the node with the smallest depth whose bag contains v. Equivalently, the forget-node
of v is the unique node whose bag contains v but whose parent’s bag does not contain v
(or which does not have a parent). We denote the forget-node of v by forgetT (v). We say
that v is a forget-vertex of t if t is the forget-node of v. In this thesis, an important role
will be played by the vertex-depth function depthT (v) = depthT (forgetT (v)) that maps
the vertices of G to the depths of their forget-nodes.

Note that if uv ∈ E(G), then the forget-nodes of u and v are in an ancestor-descendant
relation. The forget-node of the edge uv is the node with the smallest depth whose bag
contains both u and v, and is denoted by forgetT (uv). We observe that forgetT (uv) is
equal to either forgetT (u) or forgetT (v), whichever has greater depth.

With these definitions in place, it is easy to prove the following well-known lemma about
cliques and tree decompositions.

Lemma 2.12. If W ⊆ V (G) is a clique in a graph G and (T, bag) is a tree decomposition
of G, then there exists a node t ∈ V (T) so that W ⊆ bag(t).

2.3 Width parameters 31

Proof. Let us root T = (T, bag) at an arbitrary selected root. Then, choose v ∈ W that
maximizes depthT (forgetT (v)) among all vertices in W . Now, for all u ∈ W \{v}, it holds
that forgetT (uv) = forgetT (v), implying W ⊆ bag(forgetT (v)).

Note that the idea of the proof of Lemma 2.12 can be used to devise a data structure that
given a clique W ⊆ V (G), returns a node t ∈ V (T) with W ⊆ bag(t) in time O(|W |).

In algorithms that work on tree decompositions, it is often helpful to assume additional
properties of the tree decomposition. For example, it is a convenient, and often implicitly
made assumption in the literature, that the number of nodes of a tree decomposition of
an n-vertex graph is O(n), or kO(1)n, where k is the width of the tree decomposition. We
also make this assumption when talking about algorithms that take tree decompositions
as input. This assumption is justified by the following lemma, that transforms any tree
decomposition into a tree decomposition of such form.

Lemma 2.13. There is an algorithm, that given a tree decomposition (T, bag) of an
n-vertex graph G of width k, in time kO(1)|V (T)| returns a tree decomposition (T ′, bag′)

of G with |V (T ′)| ≤ n, and so that there exists an injective function φ : V (T ′)→ V (T)

so that for all t′ ∈ V (T ′), bag′(t′) = bag(φ(t′)).

Proof. Let us root (T, bag) at an arbitrary node with non-empty bag. Then, while (T, bag)

contains a node t with parent p so that bag(t) ⊆ bag(p), we delete t and attach all children
of t as children of p. This can be implemented by depth-first-search in kO(1)|V (T)| time.
This results in a tree decomposition (T ′, bag′) of G for which such function φ clearly
exists. Moreover, every node of (T ′, bag′) is a forget-node of some vertex, because if a
non-root node would not be a forget-node of a vertex then its bag would be a subset
of its parent’s bag. The root is a forget-node because its bag is non-empty. Therefore,
because each vertex of G has a unique forget-node, T ′ has at most n nodes.

The purpose of the function φ in the statement of Lemma 2.13 is to formalize the idea
that no matter how we measure the quality of tree decompositions, the tree decomposition
(T ′, bag′) outputted by the algorithm of the lemma is no worse than (T, bag).

Another convenient form of tree decompositions is binary tree decompositions.

Lemma 2.14. There is an algorithm, that given a tree decomposition (T, bag) of a graph
G of width k, in time O(k · |V (T)|) outputs a binary tree decomposition (T ′, bag′) of G
of width k so that |V (T ′)| ≤ O(|V (T)|).

Proof. Let us root (T, bag) at an arbitrary node r ∈ V (T). Then, we process (T, bag)

bottom-up from the leaves to the root, and every time we encounter a node t with c ≥ 3

32 Definitions and preliminary results

children, we replace the node with a binary tree with c leaves with bags equal to bag(t).
The sum of the sizes of constructed binary trees is linear in the sum of the degrees of T ,
so therefore |V (T ′)| = O(|V (T)|).

Finally, a classical form of a tree decomposition with useful extra structure is that of nice
tree decompositions, which to the best of our knowledge was first used by Bodlaender and
Kloks [1996]. We follow the definition of [Cygan et al., 2015, Chapter 7]. A nice tree
decomposition is a binary tree decomposition (T, bag), where

1. bag(r) = ∅ for the root node r,

2. bag(`) = ∅ for every leaf node `, and

3. every non-leaf node t either

(a) has exactly one child c so that |bag(t) \ bag(c)|+ |bag(c) \ bag(t)| = 1, or

(b) has exactly two children c1 and c2 so that bag(t) = bag(c1) = bag(c2).

We recall the well-known fact that tree decompositions can be efficiently turned into nice
tree decompositions.

Lemma 2.15. There is an algorithm that, given a tree decomposition (T, bag) of an n-
vertex graph G of width k, in time kO(1)|V (T)| outputs a nice tree decomposition (T ′, bag′)

of G of width at most k and |V (T ′)| ≤ O(kn).

Proof. First, let us use the combination of Lemmas 2.13 and 2.14 to obtain a binary tree
decomposition (T0, bag0) of G of width at most k and |V (T0)| ≤ O(n).

First, we change (T0, bag0) by adding a new root adjacent only to the previous root
with an empty bag, and for each leaf a new child with an empty bag. The resulting
decomposition (T1, bag1) has width at most k, has |V (T1)| ≤ O(n), and satisfies Items 1
and 2 of the definition of nice tree decompositions.

Then, let us guarantee that for every node t of T1 with two children, the bags of the
children are equal to the bag of t by subdividing the edges between t and its children and
adding new bags equal to bag1(t) on the newly created nodes. The resulting decomposition
(T2, bag2) has width at most k, |V (T2)| ≤ O(n), still satisfies Items 1 and 2, and its nodes
with two children satisfy Item 3.

Then, for every edge ct of (T2, bag2), where c is a child of t, if |bag2(t) \ bag2(c)| +
|bag2(c) \ bag2(t)| > 1, let us subdivide the edge ct into a path where first the vertices in

2.3 Width parameters 33

bag2(c) \ bag2(t) are “forgotten” one at a time, and then the vertices in bag2(t) \ bag2(c)

are “introduced” one at a time. The resulting decomposition (T3, bag3) has width at most
k, has |V (T3)| ≤ O(kn), satisfies Items 1 and 2, its nodes with two children satisfy Item 3,
and its nodes t with one children c satisfy that |bag2(t) \ bag2(c)|+ |bag2(c) \ bag2(t)| ≤ 1.

Finally, to turn (T3, bag3) into a nice tree decomposition, it suffices to contract edges ct
between a child c and a parent t, where t has only one child and bag3(c) = bag3(t).

All of the transformations from (T0, bag0) to the final nice tree decomposition can be
implemented in time kO(1)|V (T0)|, so the overall running time is kO(1)(|V (T)|+ |V (T0)|) =

kO(1)|V (T)|.

2.3.2 Branchwidth of connectivity functions

Chapter 7 of this thesis is about the graph width parameters rankwidth and branchwidth,
and their common generalization branchwidth of connectivity functions. We first give
the general definition of branchwidth of connectivity functions, and then define the
branchwidth and rankwidth of graphs in Subsections 2.3.3 and 2.3.4, respectively.

Connectivity functions

Let V be a set. A function f : 2V → Z from subsets of V to integers is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (2.16)

for all A,B ⊆ V . The function f is symmetric if f(A) = f(V \ A) for all A ⊆ V . In this
context, we denote A = V \ A.

Following the definition given by Robertson and Seymour [1991], we say that a function
f : 2V → Z≥0 is a connectivity function if it is both symmetric and submodular, and
f(∅) = f(V) = 0. We note that requirements that f is non-negative and f(∅) = 0 are
not real restrictions, because it is easy to show that if f : 2V → Z is symmetric and
submodular, then the function f−f(∅) is also symmetric, submodular, and non-negative.1

1The proof of the non-negativity of f − f(∅) goes by applying (2.16) with A and B = A.

34 Definitions and preliminary results

Branch decompositions

Let V be a set with |V | ≥ 2 and f : 2V → Z≥0 a connectivity function. A branch
decomposition of f , as defined by [Oum and Seymour, 2006], is a pair T = (T, λ), where
T is a cubic tree, and λ is a bijection from V to the leaves of T . In particular, the
number of leaves of T is |V |, and therefore as T is cubic, the number of nodes of T is
|V (T)| = 2|V | − 2. For brevity, we sometimes denote V (T) = V (T), E(T) = E(T), and
refer to nodes and edges of T as nodes and edges of T .

Let uv ∈ E(T) be an edge of T . We denote by T [uv] ⊆ V the subset of V that is
mapped by λ to the leaves that are closer to u than v. In other words, T [uv] contains the
elements x ∈ V so that the unique path in T from λ(x) to u does not contain v. Note
that T [uv] = T [vu], and in particular that although uv and vu refer to the same edge of
T , in the context of this notation the order of u and v matters.

Now, we define the width of the edge uv ∈ E(T) to be f(uv) = f(T [uv]) = f(T [vu]).
Then, the width of the branch decomposition T , denoted by width(T), is the maximum
width of an edge of it. The branchwidth bw(f) of a connectivity function f is the minimum
width of a branch decomposition of it, or if |V | ≤ 1, we define the branchwidth of f to
be 0.

2.3.3 Branchwidth of graphs

The branchwidth of a graph was defined by Robertson and Seymour [1991]. Here we
give an equivalent definition as a special case of branchwidth of connectivity functions.
Let G be a graph. We define the branchwidth of G via a connectivity function that
maps subsets of E(G) to non-negative integers. In particular, the leaves of a branch
decomposition of G correspond to the edges of G.

Let X ⊆ E(G). The border δG(X) of X is the set of vertices δG(X) ⊆ V (G) that are
incident to both an edge in X and an edge in E(G) \X. Now, |δG| : 2E(G) → Z≥0 is the
function that maps each X ⊆ E(G) to the size |δG(X)| of its border.

Lemma 2.17. The function |δG| is a connectivity function.

Proof. It is obvious from the definition that δG(X) = δG(X), and therefore |δG| is
symmetric. For the submodularity, we first observe that if v ∈ δG(A ∩ B), then either
v ∈ δG(A) or v ∈ δG(B), and therefore δG(A ∩B) ⊆ δG(A) ∪ δG(B). It also follows that

δG(A ∪B) = δG(A ∩B) ⊆ δG(A) ∪ δG(B) = δG(A) ∪ δG(B),

2.3 Width parameters 35

and therefore δG(A ∩ B) ∪ δG(A ∪ B) ⊆ δG(A) ∪ δG(B). Suppose that v is in both
δG(A ∩B) and δG(A ∪B) = δG(A ∩B). Now, v is incident to edges in all A, B, A, and
B, implying that v is in both δG(A) and δG(B). Therefore, we obtain by counting that
|δG(A)|+ |δG(B)| ≥ |δG(A ∪B)|+ |δG(A ∩B)|.

Now we can define a branch decomposition of G to be a branch decomposition of |δG|
and the branchwidth of G, denoted by bw(G), to be the branchwidth of |δG|. Robertson
and Seymour [1991] showed the following relation of branchwidth and treewidth.

Lemma 2.18 (Robertson and Seymour [1991]). For all graphs G it holds that bw(G) ≤
tw(G) + 1 ≤ max(3

2
· bw(G), 2).

The idea of the proof of the bound tw(G) + 1 ≤ max(3
2
· bw(G), 2) is to map a branch

decomposition T = (T, λ) to a tree decomposition (T, bag) so that each leaf ` ∈ V (T)

has bag(`) = {u, v}, where uv ∈ E(G) and λ(uv) = `, and each non-leaf t ∈ V (T) has
bag(t) = δG(T [xt])∪ δG(T [yt])∪ δG(T [zt]), where {x, y, z} = NT (t). The bound bw(G) ≤
tw(G) + 1 is shown by first showing that any tree decomposition can be transformed to
the form of the tree decomposition (T, bag) defined above without increasing its width,
and then reversing the construction.

2.3.4 Rankwidth

Rankwidth was defined by Oum and Seymour [2006]. Let G be a graph, A ⊆ V (G), and
recall that G[A,A] denotes the bipartite graph containing the edges with one endpoint in
A and other in A = V (G) \ A. Let MG(A) be the |A| × |A| matrix over the binary field
GF(2), whose rows are indexed by A and columns by A, and which describes the edges of
the graph G[A,A] by zeros and ones. We define cutrkG(A) to be the rank of MG(A).

Lemma 2.19 (Oum and Seymour [2006]). The function cutrkG : 2V (G) → Z≥0 is a
connectivity function.

Now, a rank decomposition of G is a branch decomposition of cutrkG, and the rankwidth
of G is the branchwidth of cutrkG, and is denoted by rw(G).

For branchwidth of graphs, it is clear that a partition {X,X} of E(G) with a small
value of |δG(X)| is “simple”, because the sets of edges X and X interact only via a small
number of vertices, namely δG(X). For rankwidth, the simplicity of cuts (A,A) with a
small value of cutrkG(A) is a bit more subtle. One way to capture it is via representatives
of sets of vertices.

36 Definitions and preliminary results

Let A ⊆ V (G). We say that a set R ⊆ A is a representative of A if for every vertex
v ∈ A there exists a vertex u ∈ R so that N(v) \ A = N(u) \ A. In other words, every
neighborhood from A into A should be represented by some vertex in the representative.
A representative R is minimal if for every v ∈ A there exists exactly one such u ∈ R.
The following observation is vital for dynamic programming on rank decompositions of
small width.

Lemma 2.20. If cutrkG(A) ≤ k and R is a minimal representative of A, then |R| ≤ 2k.

Proof. The sets N(v) \ A for v ∈ A correspond to the rows of the matrix MG(A), and in
particular, the sets N(u) \ A for u ∈ R correspond to distinct rows of MG(A). Because
MG(A) has rank at most k, it can have at most 2k distinct rows.

2.3.5 Cliquewidth

Cliquewidth was introduced by Courcelle et al. [1993], and defined in its present form by
Courcelle [1995]. We give a definition that follows that of the latter reference.

For k ∈ Z≥1, a k-graph is a pair G = (G, µ), where G is a graph and µ : V (G) → [k]

is a function that labels the vertices of G with integers from [k]. A k-expression is an
algebraic expression that constructs k-graphs by using the following four operations.

• Introduce: Construct a k-graph (G, µ), where G is the single-vertex graph and
µ(v) = 1 for the only vertex v ∈ V (G).

• Union: Given two k-graphs (G1, µ1) and (G2, µ2), construct the disjoint union of
them, i.e., the k-graph (G, µ) with V (G) = V (G1)∪V (G2), E(G) = E(G1)∪E(G2),
µ(v) = µ1(v) for v ∈ V (G1), and µ(v) = µ2(v) for v ∈ V (G2).

• Relabel: Given a k-graph (G, µ) and two distinct integers x, y ∈ [k], construct
the k-graph (G, µ′), where µ′(v) = y for all v ∈ V (G) with µ(v) ∈ {x, y}, and
µ′(v) = µ(v) for other vertices v.

• Join: Given a k-graph (G, µ) and two distinct integers x, y ∈ [k], construct the
k-graph (G′, µ), where G′ is obtained from G by adding all edges uv with µ(u) = x

and µ(v) = y.

A k-expression of a graph G is a k-expression that constructs the k-graph (G, µ), where
µ(v) = 1 for all v ∈ V (G). The cliquewidth of a graph G, denoted by cw(G), is the
smallest k so that there exists a k-expression of G. It is not hard to observe (and indeed

2.4 Computational complexity 37

was observed for example by Courcelle et al. [2000]) that any k-expression can be turned
into an equivalent k-expression with at most kO(1) · n operations by removing redundant
operations. Therefore, we will assume that k-expressions have size bounded by kO(1) · n.

Rankwidth was introduced by Oum and Seymour [2006] to approximate cliquewidth.
They showed that the two parameters are tied together in the following way.

Lemma 2.21 (Oum and Seymour [2006]). For all graphs, rw(G) ≤ cw(G) ≤ 2rw(G)+1−1.
Moreover, there is an algorithm that, given a graph G and a rank decomposition of G of
width k, in time 2O(k)n2 returns a (2k+1 − 1)-expression of G.

The rough idea of the construction of the (2k+1−1)-expression given a rank decomposition
of width k is to follow the rank decomposition and choose the labeling µ based on minimal
representatives. In particular, suppose we have rooted the tree T of a rank decomposition
T = (T, λ) at some node r, and consider an edge tp ∈ E(T), where p is the parent
of t. Then, we wish to associate with tp a 2k-graph (G[T [tp]], µ), where µ is chosen
based on the partition of T [tp] into equivalence classes of NG(v) \ T [tp]. In particular,
if R = {u1, . . . , u`} is a minimal representative of T [tp], which has size at most ` ≤ 2k

by Lemma 2.20, then we label v ∈ T [tp] with i ∈ [2k] if NG(v) \ T [tp] = NG(ui) \ T [tp].
The idea of the construction is that, if x and y are the children of t, then the 2k-graph
corresponding to tp can be constructed from the 2k-graphs corresponding to xt and yt
via a (2k+1 − 1)-expression.

2.4 Computational complexity

We briefly review the main complexity-theoretic definitions relevant to this thesis. We as-
sume that the reader is familiar with the concept of NP-hardness, and refer to [Sipser, 2012,
Chapter 7]. We assume the word RAM model of computation with words of Θ(log n)

bits, where n is the input length, as is customary.

Amortized running time

When we say that some operation in a data structure has amortized running time of
f(x̄), where x̄ is a tuple of parameters, we mean that the total time for the first t
applications of this operation is at most t ·f(x̄) for every t ∈ Z≥0. When multiple different
operations in the same data structure, say op1, . . . , opp, have amortized running times
f1(x̄1), . . . , fp(x̄p), we interpret this as saying that the total running time of applying the
operations t1, . . . , tp times, respectively, is at most

∑p
i=1 ti · fi(x̄i). For example, if the

38 Definitions and preliminary results

initialization operation has amortized running time O(n) and the update operation has
amortized running time O(1), then the first update after the initialization is allowed to
run in Θ(n) time, but the total running time across the first n updates must be O(n).

Fixed-parameter tractability

We give a formal definition of fixed-parameter tractability. Our definition is similar to
that of [Courcelle and Engelfriet, 2012, Chapter 1], and is slightly more general than the
definitions of [Downey and Fellows, 2013, Chapter 2] and [Cygan et al., 2015, Chapter 1].2

Let Σ be a fixed alphabet. A parameterized problem is a pair (L, κ), where L ⊆ Σ∗ is a
language over Σ, and κ is a function κ : Σ∗ → Z≥0. An instance of (L, κ) is a word x ∈ Σ∗.

For example, the 3-coloring problem parameterized by treewidth can be encoded as a
pair (L, κ), where L ⊆ {0, 1}∗ is a language that contains a word x ∈ {0, 1}∗ if x is an
encoding of a graph that is 3-colorable, and κ is a function that maps words that encode
graphs to their treewidth, and words that do not encode graphs to 0.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm
for deciding if x ∈ L with running time f(κ(x)) · |x|c for a computable function f and
a constant c. Such an algorithm is called a fixed-parameter algorithm, or just an FPT
algorithm. We also refer to the class of fixed-parameter tractable problems as FPT. A
slice-wise polynomial-time (XP) algorithm is an algorithm that runs in time |x|f(κ(x)) for
a computable function f . Note that every FPT algorithm is also an XP algorithm, but
not the other way around.

The standard argument for showing that a problem is probably not fixed-parameter
tractable is to show that it is hard for a complexity class called W[1]. The class W[1]
is a class of parameterized problems, which is believed to be a strict superset of the
class FPT (see e.g. [Downey and Fellows, 2013, Chapter 21] and [Cygan et al., 2015,
Chapter 13]). The formal definition of W[1] is complicated (we refer the reader to the
above two references), but W[1]-hardness can be defined via parameterized reductions to
the W[1]-complete problem of deciding if a graph contains a clique of size k, parameterized
by k.

A parameterized reduction from a problem P1 = (L1, κ1) to a problem P2 = (L2, κ2) is an
algorithm, that given an instance x1 of P1, runs in time f(κ1(x1)) · |x1|c for a computable
function f and a constant c, and outputs an instance x2 of P2 so that x2 ∈ L2 if and only

2The definitions in [Downey and Fellows, 2013, Chapter 2] and [Cygan et al., 2015, Chapter 1] do not
accommodate a natural way of stating that 3-coloring is fixed-parameter tractable parameterized by
cliquewidth, because they require an FPT algorithm to compute the exact value of the parameter, but
no exact FPT algorithms are known for cliquewidth.

2.4 Computational complexity 39

if x1 ∈ L1, and κ2(x2) ≤ g(κ1(x1)) for a computable function g. Then, a parameterized
problem P is W[1]-hard if there exists a parameterized reduction from the problem of
deciding if a given graph contains a clique of size k, parameterized by k, to the problem P .

Exponential time hypotheses

For problems known to be FPT, one can ask if the running time of a known FPT algorithm
is the best possible. This can be asked both for the dependence f on the parameter and
the exponent c of the polynomial in the running time. In the past 15 years, there has been
a lot of success in showing lower bounds for the function f on the running times of various
parameterized problems, assuming the so-called “Exponential Time Hypothesis” (ETH)
or the “Strong Exponential Time Hypothesis” (SETH) [Cygan et al., 2016; Lokshtanov
et al., 2018a,b]. The ETH, introduced by Impagliazzo and Paturi [2001] (see also
Impagliazzo et al. [2001]), states that there is no 2o(n) time algorithm for 3-SAT, where n
is the number of variables. Impagliazzo and Paturi [2001] also introduced the hypothesis
stating that for every ε > 0, there exists k so that there is no O((2− ε)n) time algorithm
for k-SAT, which was later dubbed the SETH.

So far there has been very little success in establishing tight lower bounds under the
(S)ETH for algorithms computing graph width parameters. In particular, to the best of
the author’s knowledge, no tight lower bounds under the ETH are known for computing
any of the width parameters that are the topics of this thesis. We discuss this further
in Chapter 8.

40 Definitions and preliminary results

Chapter 3

Survey of the literature

In this chapter we survey some previous results in more detail than we did in Chapter 1. We
start by reviewing the algorithms of Robertson and Seymour [1995] and Bodlaender [1996]
for computing treewidth. These have been the two most influential algorithms for
computing graph width parameters, and most of the later FPT algorithms for width
parameters are based on either of them. After that, we review applications of graph width
parameters in Section 3.3. Finally, in Section 3.4 we review the proof of [Bellenbaum and
Diestel, 2002; Thomas, 1990] on the existence of lean tree decompositions.

Several lemmas reviewed (and proved) in this chapter will be used and referred to later
in this thesis, and the ideas reviewed in Section 3.4 will be the starting point for ideas
introduced in the subsequent chapters. Nevertheless, the later chapters can be read
mostly independently of this chapter.

3.1 Robertson-Seymour algorithm

Robertson and Seymour [1995] gave an algorithm that, given a graph G and an integer
k, in time 2O(k)n2 either returns a branch decomposition of G of width at most 3k, or
concludes that the branchwidth of G is more than k. In the subsequent literature, perhaps
first by Reed [1992], this algorithm has been interpreted as the following theorem about
4-approximating treewidth.

Theorem 3.1 (Robertson and Seymour [1995]). There is an algorithm that, given an n-
vertex graph G and an integer k, in time O(33k ·k2 ·n2) either outputs a tree decomposition
of G of width at most 4k + 3, or concludes that tw(G) > k.

42 Survey of the literature

We follow this interpretation as a treewidth approximation algorithm, which has, in addi-
tion to Reed [1992], been reviewed also by [Kleinberg and Tardos, 2005, Chapter 10], [Flum
and Grohe, 2006, Chapter 11], [Cygan et al., 2015, Chapter 7], and [Pilipczuk, 2020]. We
first describe and analyze the algorithm in Subsection 3.1.1, and then in Subsection 3.1.2
briefly discuss the vast body of literature inspired by this algorithm.

3.1.1 The algorithm

The Robertson-Seymour algorithm constructs a rooted tree decomposition in a greedy,
top-down manner, from the root towards the leaves. The main idea is that no matter
what subset of vertices we choose to have in the root bag of the decomposition, we
can proceed the construction by chopping this set into smaller pieces by small balanced
separators. To express this idea more formally, let us introduce some notation.

Let W ⊆ V (G) be a set of vertices in a graph G. We say that a set S ⊆ V (G) is a
W -balanced separator if for every connected component C ∈ cc(G \ S) it holds that
|C ∩W | ≤ |W |/2. In particular, if W is large enough compared to S, then S must be
a separator of G that breaks the vertices in W in a balanced manner. Our first lemma
formalizes the idea that in graphs of small treewidth, there is an abundance of small
separators. In particular, every set W has a W -balanced separator of size tw(G) + 1.

Lemma 3.2. If G is a graph of treewidth k and W ⊆ V (G) is a set of vertices, then
there exists a W -balanced separator of size at most k + 1.

Proof. Let (T, bag) be a rooted tree decomposition of G of width k. Then, let t be a node
of (T, bag) so that |W ∩ bags(desc(t))| > |W |/2, but for all children c of t is holds that
|W ∩ bags(desc(c))| ≤ |W |/2. Such a node t can be found by starting from the root and
iteratively walking down while there exists a child c with |W ∩ bags(desc(c))| > |W |/2.

We claim that S = bag(t) is a W -balanced separator. Consider a connected component
C ∈ cc(G \ S). The set of nodes of T whose bags contain vertices from C forms a
connected subtree that is disjoint from t. If the subtree is contained in a subtree of T
rooted at some child c of t, then |W ∩C| ≤ |W ∩bags(desc(c))| ≤ |W |/2. Otherwise, if the
subtree is disjoint from the subtree of T rooted at t, then C is disjoint from bags(desc(t)),
implying that |W ∩ C| ≤ |W | − |W ∩ bags(desc(t))| < |W |/2.

Now we can describe a recursive method to construct an approximately optimal tree
decomposition of a graph G. At this point, we will not worry about how to actually
algorithmically implement this method, but instead only focus on the construction.

3.1 Robertson-Seymour algorithm 43

S

W

C1 C2

WC1

C1 C2

WC2 W ∪ S

T C1 T C2

Figure 3.1: Illustration of the Robertson-Seymour algorithm. The graph G is depicted
on the left, with the set W , the separator S, and the connected components C1 and C2

of G \ S. The graphs G[C1 ∪ S] and G[C2 ∪ S], together with the sets WC1 and WC2 are
depicted in the middle. The construction of the tree decomposition T of G from the tree
decompositions T C1 and T C2 of G[C1 ∪ S] and G[C2 ∪ S] is depicted on the right.

The method takes as input a graph G and a set of vertices W ⊆ V (G). It outputs a
rooted tree decomposition of G that contains W as a subset of its root bag. Let us
furthermore assume that the treewidth of G is k, and that |W | = 2k + 3. If W is smaller
than 2k + 3, then we can add arbitrary vertices of G to it to make it larger (and if no
vertices in V (G) \W exist, then the single bag containing W = V (G) already forms a
desired tree decomposition).

Let us apply Lemma 3.2 to the set W . It gives us a W -balanced separator S of size
at most |S| ≤ k + 1. We construct a tree decomposition of G as follows. First, for
every component C ∈ cc(G \ S), we call the method recursively to construct a tree
decomposition of G[C ∪ S] that contains the set WC = (W ∩ C) ∪ S in its root bag. Let
us denote this tree decomposition by T C . Then, we construct a tree decomposition T
of G by letting its root bag be W ∪ S, and attaching the decompositions T C , for all
C ∈ cc(G \ S), from their roots as the children of the root bag W ∪ S. See Figure 3.1 for
an illustration.

We first argue that T is indeed a tree decomposition of G, assuming that each T C is a
tree decomposition of G[C ∪ S] that contains WC = (W ∩ C) ∪ S in its root bag.

Lemma 3.3. T is a tree decomposition of G.

Proof. Let us check the three conditions of tree decompositions. First, T satisfies the
vertex condition because all vertices of G are in at least one of the induced subgraphs
G[C ∪ S] for C ∈ cc(G \ S), so all vertices of G are already contained in the tree
decompositions T C . The same argument works for checking that T satisfies the edge
condition, as every edge of G is an edge of at least one induced subgraph G[C ∪ S].

We then check the connectedness condition for vertices v ∈ V (G) \ S. The vertex v is in
exactly one set C for C ∈ cc(G \ S), so v occurs in exactly one of the decompositions
T C . Therefore, because the decompositions T C satisfy the connectedness condition, the

44 Survey of the literature

only thing to check is that if v ∈ W ∪ S, then v is in the root bag of T C , which is indeed
true. The same argument works for v ∈ S, in particular, in that case v is in the root bag
of T and in the root bags of every T C .

Then, we should verify that the recursive calls of the method satisfy the assumption that
the set WC asked to be in the root bag has size at most 2k + 3. This follows from the
fact that S is W -balanced separator, in particular

|WC | = |(W ∩ C) ∪ S| ≤ |W |/2 + k + 1 < 2k + 3.

The stronger property |WC | < 2k + 3 also implies that the recursion does not continue
forever, as the fact that WC is smaller than W implies that G[C ∪ S] is smaller than G.

Finally, what is the width of T ? The size of the root bagW ∪S is at most 2k+3+k+1 ≤
3k + 4, so we can state an invariant that the method returns a tree decomposition of
width at most 3k+ 3, and the induction works out to show that the width of the resulting
decomposition T is indeed at most 3k + 3.

Now, 3k + 3 is even better than the 4k + 3 we wanted, so what went wrong? The
problem with the method we described is that we did not give an algorithm for finding
the W -balanced separators of Lemma 3.2. With modern techniques ([Cygan et al., 2015,
Chapter 8], [Chen et al., 2009]), one could design a 2O(k)m time algorithm for finding
such separators, but there is a simpler solution by Robertson and Seymour [1995], which
is to resort to a weaker balance property, with the cost of a worse approximation ratio.

Lemma 3.4. If G is a graph of treewidth k and W ⊆ V (G) is a set of vertices with
|W | ≥ 2k + 3, then there exists a separation (A, S,B) of G with |S| ≤ k + 1 and
0 < |W ∩ A|, |W ∩B| ≤ 2

3
|W |.

Proof. Let S be aW -balanced separator guaranteed by Lemma 3.2, and let {C1, . . . , C`} =

cc(G\S) be the connected components of G\S. Because |W \S| ≥ |W |−(k+1) > |W |/2,
at least two of the component intersect W , so let us assume that C1 and C` intersect W .
Furthermore, assume that C1 is the component with the largest intersection |Ci∩W | with
W . Now, let t ∈ [`− 1] be the greatest index less than ` so that

∑t
i=1 |Ci ∩W | ≤

2
3
|W |.

We claim that (A, S,B) = (
⋃t
i=1 Ci, S,

⋃`
i=t+1Ci) is the desired separation.

As t ∈ [` − 1], both A and B intersect W . Also, |A ∩W | ≤ 2
3
|W | by definition, so it

remains to prove that |B∩W | ≤ 2
3
|W |. First, if |C1∩W | ≥ |W |/3, we are done as C1 ⊆ A

and A is disjoint from B. Otherwise, |Ci ∩W | < |W |/3 for all i ∈ [`], and therefore
if
∑t

i=1 |Ci ∩W | ≤ |W |/3, then
∑t+1

i=1 |Ci ∩W | ≤
2
3
|W |. If t + 1 < ` we contradict the

choice of t, and if t+ 1 = `, then B = C` and thus |B ∩W | ≤ |W |/2.

3.1 Robertson-Seymour algorithm 45

The utility of Lemma 3.4 is that the separations guaranteed by it can be found easily,
at least if we allow running time exponential in |W |. In particular, if we guess the
intersection (A ∩W,S ∩W,B ∩W) of the separation and W , then the existence of a
separation as in Lemma 3.4 can be tested in time O(k ·m) by the algorithm of Ford and
Fulkerson (Theorem 2.2). By trying all possible intersections, whose number is upper
bounded by 3|W |, we obtain an O(3|W | · k ·m) time algorithm that given a graph G, an
integer k, and a set W ⊆ V (G) with |W | ≥ 2k + 3, either outputs a separation as in
Lemma 3.4 or concludes that the treewidth of G is more than k.

Now, let us describe the actual algorithm. The algorithm takes as an input

• a graph G,

• an integer k,

• and a set W ⊆ V (G) of size at most |W | ≤ 3k + 3,

and outputs either

• a binary tree decomposition T of G of width at most 4k + 3, such that W is a
subset of the root bag of T , or

• the conclusion that tw(G) > k.

The algorithm works as follows. First, if |W | < 3k+ 3, we add arbitrary vertices to W to
make it larger. If no such vertices exist, i.e., |V (G)| < 3k + 3, we can output the tree
decomposition with a single bag V (G). Suppose then that |W | = 3k + 3.

We apply the algorithmic version of Lemma 3.4, that in time O(3|W | ·k ·m) = O(33k ·k ·m)

either returns a separation (A, S,B) ofG with |S| ≤ k+1 and 0 < |W∩A|, |W∩B| ≤ 2
3
|W |,

or concludes that tw(G) > k. In the latter case, we can return immediately. In the former
case, we call the algorithm recursively with the graphs GA = G[A∪S] and GB = G[B∪S]

and the sets WA = (W ∩A)∪S and WB = (W ∩B)∪S. If either of the calls returns that
tw(GA) > k or tw(GB) > k we can return that tw(G) > k. Otherwise, let T A and T B be
the returned binary tree decompositions. We return the binary tree decomposition T that
is constructed by having W ∪ S as its root bag, and attaching the tree decompositions
T A and T B from their roots as the children.

Let us then check the correctness. Note that the proof of Lemma 3.3 can be directly
adapted to show that T is indeed a tree decomposition of G. Furthermore, in all cases
when we return that tw(G) > k, this fact holds, in particular because GA and GB are

46 Survey of the literature

subgraphs of G. Because 2
3
|W |+ k + 1 ≤ 3k + 3, it holds that the sets WA and WB have

size at most 3k + 3, as required.

To analyze the running time, let us first analyze the total number of recursive calls.
We observe that the recursion tree of the algorithm is in fact isomorphic to the tree
decomposition outputted by it, so it suffices to analyze the number of nodes of it.

Lemma 3.5. The tree decomposition returned by the algorithm has O(n) nodes.

Proof. Let (T, bag) be the returned binary tree decomposition. We claim that for each
non-leaf node t ∈ V (T) of (T, bag), it holds that either t is a forget-node of a vertex of G,
or t has a child that is a forget-node of a vertex of G, or both of its children are leaves.
This implies the conclusion because each vertex of G has exactly one forget-node and T
is a binary tree.

First, observe that if a bag of (T, bag) is created as W ∪ S, then it is a forget-node of all
vertices in S \W , because the intersection of this bag with its parent is W . It remains to
consider the case when S ⊆ W , in which case the node is not a forget-node of any vertex,
so we have to argue about its children. In this case, because |W ∩ A|, |W ∩ B| > 0, it
holds that |WA|, |WB| < |W |. Therefore, as both WA and WB are smaller than 3k + 3,
the recursive steps start with adding vertices to them, or terminating as leaves if no
vertices can be added. In the case of adding vertices, these nodes become forget-nodes of
the added vertices, so it must be that at least one of the children is a forget-node of a
vertex, or both of the children are leaves.

The time taken by one recursive call is O(33k · k · m) for the algorithmic version of
Lemma 3.4, plus the time taken to combine the tree decompositions T A and T B into T ,
which can be bounded by O(k ·n) because they have O(n) nodes. Therefore, as the number
of recursive steps is O(n), the total running time of the algorithm is O(33k · k ·m · n). By
Lemma 2.9 we can assume that m ≤ kn, so this can be upper bounded by O(33k · k2 · n2).

3.1.2 Related literature

The main idea of the Robertson-Seymour algorithm, that tree decompositions can be
constructed in a top-down greedy fashion by finding balanced separators, has turned
out to be very generally applicable in the context of approximating width parameters
of graphs. All algorithms for approximating treewidth listed in Table 1.1, except the
algorithms introduced in this thesis, build on this general template. Moreover, for width

3.1 Robertson-Seymour algorithm 47

parameters other than treewidth, the first algorithms for approximating them have often
been adaptations of the Robertson-Seymour algorithm.

In particular, as we already mentioned, the subsequent FPT approximation algorithms for
treewidth by [Belbasi and Fürer, 2021, 2022; Bodlaender et al., 2016a; Lagergren, 1996; Ma-
toušek and Thomas, 1991; Reed, 1992] are based on the same top-down construction as
the Robertson-Seymour algorithm, but with different subroutines for finding the balanced
separator. The algorithms achieving subquadratic running time in n do this by occasion-
ally using a separator that is balanced with respect to V (G) instead of W , resulting in a
recursion tree of depth O(log n).

This construction is also the basis for polynomial-time approximation algorithms for
treewidth [Amir, 2010; Bodlaender et al., 1995; Feige et al., 2008; Fomin et al., 2018].
Indeed, one can observe that the only part of the algorithm that takes superpolynomial
time is that of finding a balanced separator of the setW . These approximation algorithms
work by replacing this part by a polynomial-time approximation algorithm for finding
balanced separators.

To turn to a slightly different context, the Robertson-Seymour algorithm was imple-
mented in parameterized logspace, that is, in space f(k) log n and time nf(k) by Elberfeld
et al. [2010]. Another adaptation was by Lokshtanov et al. [2017] to make the Robertson-
Seymour algorithm to run, in some sense, in a canonical way, which served as the central
ingredient of their algorithm to show that graph isomorphism is FPT parameterized by
treewidth. This result was also adapted to parameterized logspace by Elberfeld and
Schweitzer [2017].

In the context of other width parameters than treewidth, the algorithm of Oum and
Seymour [2006] for approximating branchwidth of connectivity functions works also
in a similar fashion as the Robertson-Seymour algorithm for treewidth, as well as the
subsequent rankwidth approximation algorithms by Oum [2008b]. Before Oum and
Seymour, similar ideas were used by Hliněný [2005] to give a 3-approximation algorithm
running in time f(k) · n3 for branchwidth of matroids represented over finite fields. A
construction similar to that of the Robertson-Seymour algorithm was used by Kim
et al. [2018] to obtain a 2O(k2 log k)n2 time 2-approximation algorithm for tree-cut width.

In the aforementioned settings of treewidth, rankwidth, branchwidth of connectivity
functions, and tree-cut width, the cuts or separators of the decompositions we are
seeking have submodularity properties. Perhaps surprisingly, the Robertson-Seymour
algorithm extends even to settings without submodularity. In particular, it was adapted
by Marx [2010a] for designing an XP approximation algorithm for a parameter called
“fractional hypertreewidth”. With a similar approach, XP approximation algorithms for

48 Survey of the literature

parameters called “α-treewidth” and “minor-matching hypertreewidth” were given by
Yolov [2018], and subsequently improved by Dallard et al. [2022].

The top-down template of the Robertson-Seymour algorithm extends also to settings
where we wish to compute a tree decomposition that may have large bags, but (1) the
large bags are required to have a specific structure and (2) the intersections of adjacent
bags, i.e., adhesions, are required to be small. In particular, the original case of a structure
like this is the decomposition of minor-free graphs by Robertson and Seymour [2003],
where the proof of obtaining the tree-like decomposition presented in [Robertson and
Seymour, 1991] indeed follows an outline similar to the Robertson-Seymour algorithm,
even though the original version was not presented as an algorithm. A subsequent
algorithmic version was given by Kawarabayashi and Wollan [2011]. Similar ideas were
applied for decomposing graphs excluding a topological minor by Grohe and Marx [2015],
for decomposing graphs into “unbreakable” bags by Cygan et al. [2019], and for finding
tree decompositions whose large bags must come from a specific graph class by Jansen
et al. [2023].

3.2 Bodlaender’s algorithm

Bodlaender [1996] gave a linear-time algorithm for computing optimum-width tree de-
compositions of bounded-treewidth graphs.

Theorem 3.6 (Bodlaender [1996]). There is an algorithm that, given an n-vertex graph
G and an integer k, in time 2O(k3)n either outputs a tree decomposition of G of width k,
or determines that tw(G) > k.

This algorithm consists of two main ingredients. The first ingredient is an algorithm for
computing optimum-width tree decompositions by dynamic programming, when given a
tree decomposition of small but not optimal width. This was given by Bodlaender and
Kloks [1996], and by Lagergren and Arnborg [1991].

Theorem 3.7 (Bodlaender and Kloks [1996]; Lagergren and Arnborg [1991]). There is
an algorithm that, given a graph G, a tree decomposition of G of width `, and an integer
k < `, in time 2O((k+log `)·`2)n outputs a tree decomposition of G of width k, if one exists.1

At the time in 1991, Theorem 3.7 implied a 2O(k3)n log2 n time exact algorithm for
computing treewidth, by first running the algorithm of Lagergren [1996] (first appeared

1The dependence 2O((k+log `)·`2) on k and ` is stated by neither Bodlaender and Kloks [1996] nor
Lagergren and Arnborg [1991], but is stated by Bodlaender [1996] and follows directly from the techniques
presented in [Bodlaender and Kloks, 1996].

3.2 Bodlaender’s algorithm 49

in [Lagergren, 1990]) to obtain an 8-approximate tree decomposition in kO(k)n log2 n

time, and then running the algorithm of Theorem 3.7 with this 8-approximate tree
decomposition. A year later, this could have been replaced by the kO(k)n log n time
8-approximation algorithm of Reed [1992].

The second ingredient of Theorem 3.6 is a self-reduction scheme given by Bodlaender [1996],
that states that any algorithm for computing treewidth that requires an approximately
optimal tree decomposition as an input can be turned into an algorithm without this
requirement, only with a small overhead in the running time. It was later also observed
by Bodlaender et al. [2016a] that this self-reduction scheme works in the context of
approximating treewidth as well. We will use this self-reduction scheme in multiple
results of this thesis, so next we state it in a formal and very general form.

Theorem 3.8 (Bodlaender [1996]). Let α ≥ 1 be a rational number. Suppose there is an
algorithm A, that given an n-vertex graph G, integer k, and a tree decomposition of G
of width at most 2 · α · (k + 1)− 1, in time TA(k, n) either outputs a tree decomposition
of G of width at most α · (k + 1) − 1 or determines that tw(G) > k. Then there is an
algorithm that in time kO(1) · (TA(k, n) + n) does the same, but without requiring a tree
decomposition as an input. Moreover, if A runs in space SA(k, n), then this algorithm
runs in space kO(1)n+ SA(k, n).

By inserting α = 1 and the algorithm of Theorem 3.7 as the algorithm A, the combination
of Theorems 3.7 and 3.8 implies Theorem 3.6. Theorem 3.8 was also used with α = 5

and α = 3 by Bodlaender et al. [2016a], and we use it with α = 2 in Chapter 4, and with
α = 1 and α = 1 + ε in Chapter 5.

We will give an informal overview the proof of Theorem 3.7 in Subsection 3.2.1, and
then give the full proof of Theorem 3.8 in Subsection 3.2.2. These proofs have also been
reviewed, for example, by Kloks [1994], Pilipczuk [2020], and Downey and Fellows [2013].
The algorithms of Theorem 3.7 and Theorem 3.8 have been very influential in computing
graph width parameters, so in Subsection 3.2.3 we briefly review the subsequent works
inspired by them.

3.2.1 Bodlaender-Kloks dynamic programming

We now give an informal overview the proof of Theorem 3.7. Our presentation is based
on that of Bodlaender and Kloks [1996].

Let T = (T, bag) be the given tree decomposition of width at most `, and by Lemma 2.15
assume that T is nice. For a node t ∈ V (T), we denote by Gt = G[bagsT (descT (t))]

50 Survey of the literature

the graph induced by the bags of the descendants of t. The idea of the algorithm is to
compute for each node t ∈ V (T) a set of descriptions of tree decompositions of Gt of width
at most k, so that the set for t can be computed given the sets for the children of t, and
the set for the root node r is non-empty if and only if there exists a tree decomposition
of Gr = G of width at most k.

What should we remember about a tree decomposition T0 = (T0, bag0) of Gt to know
whether it can be extended to a tree decomposition of the graph Gt′ for some ancestor t′

of t? The first observation is, that if a vertex v ∈ V (Gt) is not in bag(t), then it is not
adjacent to any vertex outside of Gt, so we should have already determined whether edges
incident to it satisfy the edge condition. Therefore, it is not important to remember the
set bag0(x)\bag(t) for any x ∈ V (T0), but in order to bound the width, it is important to
remember the number |bag0(x) \ bag(t)| of such vertices in each bag of T0. In particular,
instead of remembering (T0, bag0), it suffices to remember the triple T1 = (T1, bag1, |bag0|),
where T1 = T0, bag1 is the function that maps x ∈ V (T1) to bag1(x) = bag0(x) ∩ bag(t),
and |bag0| the function mapping x ∈ V (T1) to |bag0(x)|.

Then we shall prune leaves of T1. Suppose that there is a leaf x of T1 with parent p, so
that bag1(x) ⊆ bag1(p). Do we actually need to remember x? If we removed x, then T1

would still have the node p with bag1(p) ⊇ bag1(x), and we know that we could take
any subset B ⊆ bag1(p) and create a new node adjacent to p with that B as its bag. If
|bag0(x)| > |bag1(x)|, then this new bag with B = bag1(x) would be even better than
the bag of x, as it would not contain any forgotten nodes, and otherwise it would be
identical to the bag of x. In either case, it is not useful to remember the node x or any
information about its bag. Therefore, as long as T1 has such a leaf x, we can remove
x. Let us denote the tree resulting by pruning such leaves exhaustively by T2, and let
T2 = (T2, bag1�V (T2), |bag0|�V (T2)).

Now T2 has at most |bag(t)| leaves, as each leaf bag must contain a vertex of bag(t) not
contained in the bag of its parent, and thus by the connectedness condition, not contained
anywhere else in T2. It follows that T2 has at most |bag(t)| − 1 nodes of degree more than
2. Let T ′2 be the tree obtained by suppressing all degree-2 nodes of T2. In particular, each
edge of T ′2 corresponds to a path of T2 whose endpoints have degree not equal to 2 and
whose internal nodes have degree equal to 2. Note that |V (T ′2)| ≤ 2 · |bag(t)|. We shall
remember enough information about T2 by remembering T ′2, and information about the
triple P = (P, bag1�V (P), |bag0|�V (P)) for every path P of T2 corresponding to an edge
of T ′2.

Let P be a path of T2 corresponding to an edge of T ′2. First we divide P into segments
based on the sets bag1(x) for x ∈ V (P). In particular, note that the connectedness

3.2 Bodlaender’s algorithm 51

condition implies that there are at most 2 · |bag(t)| different sets bag1(x) on P , as each
vertex in bag(t) can be introduced and forgotten at most once as we travel P from one
end to another. Let P ′ = x1, . . . , xp be a maximal subpath of P so that the sets bag1(xi)

are equal to each other for all xi. Now, Bodlaender and Kloks show that if there exists
indices i < j ∈ [p] so that either |bag0(xi)| ≤ |bag0(xh)| ≤ |bag0(xj)| for all h ∈ [i, j] or
|bag0(xi)| ≥ |bag0(xh)| ≥ |bag0(xj)| for all h ∈ [i, j], then it is safe to suppress all nodes
between xi and xj in P ′. Intuitively, the reason is that if we imagine combining the
decomposition with another decomposition in a join node, then, if |bag0(xi)| ≤ |bag0(xh)|
for all h ∈ [i, j], we could match all bags that are matched with bags between xi and xj
with the bag of xi. We also need to keep the bag of xj to encode that in order to “slide”
the other decomposition over xj, one needs a small enough bag.

Let P ′′ be the path obtained from P ′ by exhaustively suppressing all nodes between
such pairs xi, xj. The mapping from P ′ to P ′′ depends only on the integer sequence
|bag0(x1)|, |bag0(x2)|, . . . , |bag0(xp)|, and indeed the corresponding integer sequence of
bag sizes for P ′′ is called the typical sequence of the sequence |bag0(x1)|, . . . , |bag0(xp)|
by Bodlaender and Kloks. They showed that the number of typical sequences of integers
between 0 and k is at most 2O(k).

Now, to describe P = (P, bag1�V (P), |bag0|�V (P)) it suffices to record the sequence of
different sets bag1(xi) as we travel P from left to right, and for each of them the typical
sequence of the numbers |bag0(xi)| on the corresponding subpath of P . As discussed, there
are at most 2 · |bag(t)| different such sets bag1(xi) on P , and by using the connectedness
condition it can be shown that there are at most |bag(t)|O(|bag(t)|) possible sequences of
the bags bag1(xi). For each sequence we need to store up to 2 · |bag(t)| typical sequences,
so in total there can be at most

|bag(t)|O(|bag(t)|) · 2O(k)·2·|bag(t)| ≤ 2O((k+log `)·`)

different descriptions of such P .

Now, to describe T2 = (T2, bag1�V (T2), |bag0|�V (T2)), we write down the compressed tree
T ′2 with at most O(`) edges, and for each of its edges a description of the corresponding
path in T2 as discussed above. The number of trees with O(`) edges is `O(`) by Cayley’s
formula. Therefore, the total number of different descriptions of such T2 is

`O(`) · 2O((k+log `)·`)·O(`) ≤ 2O((k+log `)·`2).

Now, the dynamic programming records for each node t the set of all possible descriptions
of tree decompositions of Gt of width at most k. We omit from this overview the

52 Survey of the literature

descriptions of the transitions of the dynamic programming, as well as how they are
traversed backwards to actually return a tree decomposition of G of width at most k if
one exists.

3.2.2 Bodlaender’s self-reduction scheme

We then describe the self-reduction algorithm resulting in Theorem 3.8, given by Bodlaen-
der [1996]. In particular, we will give a completely self-contained proof of Theorem 3.8,
with slight differences compared to the original proof, but following the ideas of it.

Informally speaking, the main idea of Bodlaender’s self-reduction algorithm is to compute,
given a graph G, a graph G′ such that,

1. the treewidth of G′ is at most the treewidth of G,

2. any tree decomposition of G′ of width at most k can be turned into a tree decom-
position of G of width at most 2k + 1, and

3. |V (G′)| ≤ |V (G)| · (1− 1/kO(1)).

The algorithm proceeds by calling itself recursively on G′ to obtain a tree decomposition
T ′ of G′, then lifts T ′ by using the property of Item 2 to a tree decomposition T of G,
and finally runs the algorithm A to reduce the width of T .

How is the graph G′ obtained? The algorithm first computes a maximal matching M
in G, and then analyses the following cases. First, if M is large, that is, of size roughly
linear in |V (G)|, then G′ is obtained from G by contracting all edges in M . In the other
case when M is small, the vertices V (M) of M form a small vertex cover of G, which can
be used to either find a large number of vertices of G that can be “eliminated” without
increasing the treewidth of G, i.e., removed and having their neighborhoods turned into
cliques, or to conclude that G has large treewidth.

Let us then turn to a more formal description. A main concept of the algorithm is the
k-improved graph of a graph G, denoted by Ik(G). The graph Ik(G) is the supergraph of
G that is obtained by adding an edge between every two non-adjacent vertices u and v
if there is a collection of more than k internally vertex-disjoint paths between u and v,
i.e., if flowG(N(u), N(v)) > k. The motivation of this definition is the following lemma,
stating that from the viewpoint of tree decompositions of width at most k, the graphs G
and Ik(G) behave the same way.

3.2 Bodlaender’s algorithm 53

Lemma 3.9. If (T, bag) is a tree decomposition of G of width at most k, then (T, bag)

is also a tree decomposition of Ik(G).

Proof. Let (T, bag) be a tree decomposition of G of width at most k. We have to prove
that if vertices u and v of G are non-adjacent but flow(N(u), N(v)) > k, then there exists
a bag of (T, bag) that contains both u and v. Let u,v be such a pair and suppose there does
not exist such a bag. Let r be a node of (T, bag) with u ∈ bag(r) and let us root (T, bag)

at r. Let also t = forget(v) be the forget-node of v. We have that |adh(t)| ≤ k because
adh(t) ⊆ bag(t)\{v}. Moreover, (cmp(t), adh(t), V (G)\ (cmp(t)∪ adh(t))) is a separation
of G of order k, with v ∈ cmp(t) and u ∈ V (G)\(cmp(t)∪adh(t)) because u /∈ bag(t) and u
is in the root bag. Therefore, this separation contradicts that flowG(N(u), N(v)) > k.

A vertex v of a graph G is called a simplicial vertex if N(v) is a clique in G. We call v an
Ik-simplicial vertex if N(v) is a clique in Ik(G). In the case when the maximal matching
is small, the desired outcome of the algorithm will be a large collection of Ik-simplicial
vertices. This will be used in the following way.

Lemma 3.10. Let G be an n-vertex graph, k an integer, and S ⊆ V (G) an independent
set consisting of Ik-simplicial vertices of degree at most k in G. Let G′ be the graph
obtained from G by making N(v) into a clique for every v ∈ S, and then removing S. It
holds that

1. if tw(G) ≤ k, then tw(G′) ≤ tw(G), and

2. any tree decomposition of G′ of width at most k can be turned into a tree decompo-
sition of G of width at most k in time kO(1)n.

Proof. Let us first show Item 1. By Lemma 3.9, if T is a tree decomposition of G of
width at most k, then T is also a tree decomposition of Ik(G), and therefore by removing
the vertices in S, we obtain a tree decomposition of Ik(G) \ S, which is also a tree
decomposition of G′ because Ik(G) \ S is a supergraph of G′.

For Item 2, let (T, bag) be a tree decomposition of G′. By Lemma 2.12, and because
S is an independent set, for every v ∈ S there exists t ∈ V (T) so that N(v) ⊆ bag(t).
Therefore, we simply add a node t′ adjacent to t with bag(t′) = N [v]. Because the degree
of v is at most k, |bag(t′)| ≤ k + 1, and therefore adding it does not increase the width
of (T, bag) above k. Note that the proof of Lemma 2.12 gives an efficient algorithm for
finding such a node t, in particular, if (T, bag) is rooted, then it can be taken as the node
forget(u) that maximizes the depth among all u ∈ N(v).

54 Survey of the literature

Then we show that either a large matching or a large number of Ik-simplicial vertices can
be found efficiently.

Lemma 3.11. There is an algorithm that, given an n-vertex graph G and an integer
k ≥ 1, in time kO(1)n either

1. determines that tw(G) > k,

2. returns a matching with at least n/O(k2) edges, or

3. returns an independent set S ⊆ V (G) consisting of Ω(n) Ik-simplicial vertices of
degree at most k.

Proof. First, if the number of edges m of G is more than nk, we can by Lemma 2.9 return
that tw(G) > k. Then, we can in O(m) = O(kn) time compute a maximal matching
M in G. If |M | ≥ n/(8k2), we conclude with the case 2. Otherwise, the vertices V (M)

of M form a vertex cover of G of size at most n/(4k2), i.e., every vertex v in the set
X = V (G) \ V (M) has N(v) ⊆ V (M). Let X ′ ⊆ X be the vertices in X with degree
at most 4k. We have that |X| ≥ n − n/(4k2) ≥ 3

4
n, and because m ≤ nk, we have

|X \X ′| ≤ n/4, implying that |X ′| ≥ n/2.

We define the graph GM to be the graph with the vertex set V (GM) = V (M) and edge
set obtained by having an edge between u, v ∈ V (GM) if either uv ∈ E(G), or if there
are more than k vertices w ∈ X ′ with {u, v} ⊆ N(w). Note that GM is a subgraph of the
k-improved graph Ik(G). Because the vertices in X ′ have degree at most 4k, the graph
GM can be be explicitly computed in time kO(1)n. Let X ′′ ⊆ X ′ be the vertices in X ′

whose neighborhood is a clique in GM . Because GM is a subgraph of Ik(G), the vertices
in X ′′ are Ik-simplicial. If |X ′′| ≥ n/4 and all vertices in X ′′ have degree at most k, we
return X ′′.

We claim that otherwise tw(G) > k. First, if X ′′ contains a vertex v of degree at least
k + 1, then N [v] is a clique of size at least k + 2 in Ik(G), and therefore tw(Ik(G)) > k,
implying tw(G) > k.

It remains to show that if |X ′′| < n/4, then tw(G) > k. For every vertex v ∈ X ′ \X ′′,
there exists a pair xy of distinct vertices of GM so that {x, y} ⊆ N(v) but xy /∈ E(GM).
In particular, xy is a “reason” why the neighborhood of v is not a clique in GM . Let us
fix arbitrarily a mapping r : X ′ \X ′′ →

(
V (GM)

2

)
that assigns one such reason for every

vertex in X ′ \ X ′′. We observe that the graph GM
? obtained by adding the edges r(v)

for all v ∈ X ′ \X ′′ to GM is a minor of the graph Ik(G) because the edge r(v) can be
created by contracting an edge incident to v. Therefore, if |E(GM

?)| > k · |V (GM
?)|, then

tw(Ik(G)) > k and thus tw(G) > k.

3.2 Bodlaender’s algorithm 55

Now assume |E(GM
?)| ≤ k · |V (GM

?)| ≤ n/(4k). Because |X ′ \ X ′′| > n/4, by the
pigeonhole principle there must be xy ∈ E(GM

?) so that there are more than k vertices
v ∈ X ′ \X ′′ so that r(v) = xy. However, then xy should be an edge of GM , and not be
the reason r(v) for any vertex, which is a contradiction.

We are now ready to prove Theorem 3.8, which we restate here. We remark that in
the proof we make the assumption that the running time function TA(k, n) of the given
algorithm A is, for any fixed k, non-decreasing and convex in n. This assumption holds
for any reasonable running time bound.

Theorem 3.8 (Bodlaender [1996]). Let α ≥ 1 be a rational number. Suppose there is an
algorithm A, that given an n-vertex graph G, integer k, and a tree decomposition of G
of width at most 2 · α · (k + 1)− 1, in time TA(k, n) either outputs a tree decomposition
of G of width at most α · (k + 1) − 1 or determines that tw(G) > k. Then there is an
algorithm that in time kO(1) · (TA(k, n) + n) does the same, but without requiring a tree
decomposition as an input. Moreover, if A runs in space SA(k, n), then this algorithm
runs in space kO(1)n+ SA(k, n).

Proof. Let kα = α · (k+ 1)− 1. We describe a recursive procedure, which is always called
with a graph Gr, so that tw(Gr) ≤ k if tw(G) ≤ k, where G is the original input graph.
Each recursive call either determines that tw(Gr) > k (and thus also tw(G) > k), or
returns a tree decomposition of Gr of width at most kα.

The base case of the recursion is an edgeless graph with treewidth 0, in which case we
can return in O(n) time a trivial tree decomposition of width 0.

Otherwise, in the start of each recursive call we use the algorithm of Lemma 3.11
with the inputs Gr and kα. If it returns that tw(Gr) > kα, we can return tw(G) > k

immediately. If it returns an independent set S of at least |S| ≥ Ω(|V (Gr)|) Ikα-simplicial
vertices of degree at most kα, we let G′r to be the graph obtained from Gr by making
the neighborhoods of vertices in S cliques and then removing S. By Lemma 3.10, if
tw(Gr) ≤ k, then tw(G′r) ≤ k. We call our procedure recursively with the graph G′r, and
if it returns a tree decomposition of G′r of width at at most kα, we use the algorithm
of Lemma 3.10 to turn it into a tree decomposition of Gr of width at most kα in time
kO(1)n, and return it. If it returns that tw(G′r) > k, we can return tw(Gr) > k.

In the case when the algorithm of Lemma 3.11 returns a matching M of size |M | ≥
|V (G)|/O(k2), we contract the edges in M to obtain a graph GM

r and call the algorithm
recursively on GM

r . As contracting edges does not increase treewidth, the treewidth of
GM
r is at most the treewidth of Gr. Also, we can obtain a tree decomposition T of Gr

56 Survey of the literature

of width at most 2kα + 1 from a tree decomposition T M of GM
r of width at most kα by

expanding the bags according to the matching, in particular, by replacing each occurrence
of a vertex wuv ∈ V (GM

r) corresponding to a contracted edge uv ∈M by the vertices u
and v of GM . Then we use the algorithm A with T to either get a tree decomposition of
width at most kα or to determine that the treewidth of Gr is larger than k.

When we call the algorithm recursively, it holds that |V (G′r)| ≤ (1− Ω(1)) · |V (Gr)| or
|V (GM

r)| ≤ (1−1/O(k2))·|V (Gr)|. Therefore, in each recursive call the number of vertices
is multiplied by a factor of at most 1− 1/O(k2), and therefore the total running time can
be expressed as a recurrence T (k, n) = kO(1)n+ TA(k, n) + T (k, n− n/O(k2)), which can
be bounded by kO(1) · (TA(k, n) + n) by using the facts that TA(k, n) is non-decreasing
and convex in n for fixed k.

3.2.3 Related literature

The pathwidth of a graph is defined like treewidth, but with the restriction that the
tree T in the decomposition (T, bag) must be a path, in which case it is called a path
decomposition. Bodlaender and Kloks [1996] gave also an algorithm, that given a tree
decomposition of width `, in time 2O((k+log `)·`)n outputs a path decomposition of width
at most k if one exists. Either combining this with 2O(k)n time constant-approximation
of treewidth (Bodlaender et al. [2016a] or Theorem 1.1), or observing that the proof of
Theorem 3.8 can be adapted to the setting of pathwidth, yields a 2O(k2)n time algorithm
for computing optimum-width path decompositions.

Bodlaender and Thilikos [1997] extended the ideas of Theorem 3.7 to give a f(k) · n
time algorithm, for some computable function f , for constructing optimum-width branch
decompositions of graphs, parameterized by the branchwidth k.

The parameter cutwidth (also known as “minimum cut linear arrangement”), asks for a
linear ordering v1, . . . , vn of the vertices that minimizes the maximum number of edges
|E(G[{v1, . . . , vi}, {vi+1, vn}])| cut by cutting the graph G along the ordering. Using
techniques similar to Theorem 3.7, Thilikos et al. [2005] gave a f(k) · n time algorithm,
for some computable function f , for constructing an ordering of width at most k, if one
exists. An alternative f(k) · n time algorithm for cutwidth was given by Giannopoulou
et al. [2019]. A linear-time FPT algorithm was also given for a parameter called “linear-
width” by Bodlaender and Thilikos [2004]. Unifying frameworks for algorithms inspired
by the algorithm of Bodlaender and Kloks [1996] were given by Bodlaender et al. [2009]
and Soares [2013].

3.3 Applications 57

Later, Jeong et al. [2021] further developed the ideas of Bodlaender and Kloks [1996] to
give an algorithm for constructing optimum-width branch decompositions of connectivity
functions that can be expressed in a certain linear-algebraic way with subspaces of vector
spaces over finite fields. This framework captures the branchwidth of linear matroids over
finite fields, the rankwidth of graphs, the branchwidth of graphs and hypergraphs, and the
carving width of graphs, yielding f(k) · n3 time algorithms for computing optimum-width
decompositions for each of them. Similar result for the path-like variants of these problems
were given earlier by the same authors [Jeong et al., 2017].

Bojańczyk and Pilipczuk [2022] showed, building on their earlier result [Bojanczyk and
Pilipczuk, 2016], that in a certain sense, optimum-width tree decompositions of graphs
can be encoded in monadic second-order logic. Their techniques give an alternative
viewpoint of the dynamic programming of Bodlaender and Kloks [1996], and we make use
of this in Chapter 6. Also, Bodlaender et al. [2023] gave additional structural insights on
the technique of typical sequences used in the algorithm of Bodlaender and Kloks [1996],
leading to a polynomial-time algorithm for cutwidth of series parallel directed graphs.

Perković and Reed [2000] gave a version of Theorem 3.6 that in the case when tw(G) > k

returns a subgraph G′ of G with tw(G′) > k and a tree decomposition of G′ of width at
most 2k. This was applied by Kawarabayashi et al. [2012] to give f(k) · n2 and f(H) · n2

time algorithms for the k-disjoint paths and H-minor-containment problems.

3.3 Applications

In this section we review some applications of graph width parameters in different
contexts. We start by reviewing the role and applications of treewidth in the Graph
Minors series of Robertson and Seymour in Subsection 3.3.1. In Subsection 3.3.2 we
review the monadic second-order logic of graphs, and the role of treewidth and cliquewidth
in it. The topic of Subsection 3.3.3 is the various algorithmic applications of treewidth.
Finally, in Subsection 3.3.4 we discuss some results related to width parameters with a
computational complexity flavor. The overarching theme of this section is to convince
the reader that treewidth, and sometimes cliquewidth and rankwidth, is a fundamental
parameter to study, and in many settings, the right parameter to study.

58 Survey of the literature

Figure 3.2: The 6× 6 grid graph.

3.3.1 Graph Minors

Treewidth was introduced in the Graph Minors series of Robertson and Seymour, and
many of the most significant applications of treewidth stem from there. The Graph
Minors series spans 23 articles and contains several fundamental results, most of which
are either directly related to treewidth, or use treewidth as an ingredient in the proof.
Perhaps the most famous result of the series is the resolution of Wagner’s conjecture.

Theorem 3.12 (Robertson and Seymour [2004]). If G1, G2, . . . is an infinite sequence
of graphs, then there exists i 6= j so that Gi is a minor of Gj.

The Grid Minor Theorem

While treewidth does play a role in the proof of Theorem 3.12, its significance becomes
more clear in the special case of Theorem 3.12 where the graphs G1, G2, . . . are planar,
or contain even a single planar graph. The proof of this special case has two ingredients,
of which the first one is the Grid Minor Theorem.

Theorem 3.13 (Robertson and Seymour [1986b]). There is a function f : Z≥0 → Z≥0, so
that if a graph G does not contain a planar graph H as a minor, then tw(G) ≤ f(|V (H)|).

This theorem is called the “Grid Minor Theorem” because the general case presented
in Theorem 3.13 is quite easily derived from the special case where the graph H is a
square grid. See Figure 3.2 for an illustration of grid graphs. The significance of grids
is also that the k × k grid has treewidth k, so Theorem 3.13 can be seen as saying that
treewidth of a graph G is “functionally equivalent” to the largest k such that G contains
a k × k grid as a minor, in the sense that k ≤ tw(G) ≤ f(k) for some function f . Note
that Theorem 3.13 fails for every non-planar graph H, because planar graphs do not
contain H as a minor but have unbounded treewidth, as shown by the grids.

The function f originally given by Robertson and Seymour [1986b] was very fast-growing,
but after a series of improvements [Leaf and Seymour, 2015; Robertson et al., 1994],

3.3 Applications 59

Chekuri and Chuzhoy [2016] proved a polynomial upper bound for f . The current best
upper bound for f , when H is the k × k grid, is O(k9 · poly log k) by Chuzhoy and
Tan [2021]. It has been conjectured by Robertson et al. [1994] that the best possible
bound Θ(k2 log k) would be the right answer, and by Demaine et al. [2009] that the
correct bound would be Θ(k3).

The second ingredient of the proof of the special case of Theorem 3.12 is to show that it
holds if there is an upper bound for the treewidth of the graphs in the sequence, which
was shown by Robertson and Seymour [1990]. Now, the Grid Minor Theorem implies
that if G1, G2, . . . is an infinite sequence of graphs so that there does not exists any i 6= j

such that Gi is a minor of Gj, and one graph in the sequence is planar, then there is an
upper bound for the treewidth of all graphs in this sequence, particularly f(|V (G`)|) if
G` is planar. This implies Theorem 3.12 in that case.

It is not hard to think of algorithmic applications of the Grid Minor Theorem. A direct
application is an FPT algorithm for deciding if a graph G contains a planar graph H
as a minor, parameterized by |V (H)|. By Theorem 3.13, we may immediately answer
yes if the treewidth of G is more than f(|V (H)|). If the treewidth of G is less than
f(|V (H)|), we may solve the problem by first using an FPT algorithm for computing a
tree decomposition, and then applying dynamic programming on the tree decomposition.
If the algorithm for computing a tree decomposition runs in time linear in n = |V (G)|,
then this gives an algorithm with running time g(|V (H)|) · n, for some function g that
depends on the function f , the treewidth algorithm, and the details of the dynamic
programming.

There are several variants and enhancements of the Grid Minor Theorem. In the context
when G is planar or minor-free, linear upper bounds for the function f have been
given by [Demaine and Hajiaghayi, 2008; Gu and Tamaki, 2012; Kawarabayashi and
Kobayashi, 2020; Robertson et al., 1994], with algorithmic applications that will be
discussed in Subsection 3.3.3.

Geelen et al. [2023] gave an analogue of the Grid Minor Theorem for rankwidth, showing
that graphs that exclude a “circle graph” as a “vertex-minor” have bounded rankwidth.
Both vertex-minors and circle graphs have technical definitions that we omit here.
Oum [2009] has conjectured a similar result about “pivot-minors” and bipartite circle
graphs, which would be stronger in that it would directly imply both Theorem 3.13 and
the aforementioned result about vertex-minors.

A version of the Grid Minor Theorem for directed graphs has been given by Kawarabayashi
and Kreutzer [2015]. It uses analogues of treewidth, grids, and minors for directed graphs
that were proposed by Johnson et al. [2001]. The author showed that “minor” in the Grid

60 Survey of the literature

Minor Theorem can be replaced by “induced minor”, which is like minor but not allowing
edge deletions, if the graph G has bounded degree [Korhonen, 2023]. The conditions on
when such “Grid Induced Minor Theorem” holds have been further investigated by Alecu
et al. [2023].

The k-disjoint paths and H-minor-containment problems

In the k-disjoint paths problem we are given a graph G and k pairs of terminal vertices
(s1, t1), (s2, t2), . . . , (sk, tk), and the problem is find a collection P1, . . . , Pk of vertex-
disjoint paths, each Pi with endpoints si and ti. The H-minor-containment problem asks
if G contains the graph H as a minor. The main algorithmic results of the Graph Minors
series are FPT algorithms for the k-disjoint paths problem parameterized by k and for
the H-minor-containment problem parameterized by |V (H)|.

Theorem 3.14 (Robertson and Seymour [1995]). There is a computable function f , so
that there is an f(k) · n3 time algorithm for k-disjoint paths, and an f(|V (H)|) · n3 time
algorithm for H-minor-containment.

We stated both of the algorithms in the same theorem because Robertson and Sey-
mour [1995] in fact give an algorithm that solves a common generalization of the two
problems, called the “folio” problem. For their algorithm, Robertson and Seymour [1995]
introduced the irrelevant vertex technique. They showed that if a graph G has high
treewidth (compared to k or |V (H)|), then it is possible to locate an irrelevant vertex
in G, whose removal from G does not change the answer to the problem. Then, their
algorithm works by repeatedly removing irrelevant vertices, until the treewidth of G is
bounded by a function of the parameter, at which point the problem can be solved by
dynamic programming using treewidth.

The irrelevant vertex argument of Robertson and Seymour [1995] is divided into two
cases, depending on whether G contains a large clique as a minor. If G contains a large
clique minor, identifying an irrelevant vertex based on the clique minor is relatively easy.
When G does not contain a large clique minor but has large treewidth, their argument is
based on the Flat Wall Theorem, which is a version of the Grid Minor Theorem where
the grid is laid out in a planar-like piece of the graph. In this case, they use long and
complicated rerouting arguments, given in [Robertson and Seymour, 2012], to show that
any vertex central enough in the grid is irrelevant.

The combination of Theorems 3.12 and 3.14 yields a very general algorithmic result.
Theorem 3.12 implies that if C is a minor-closed class of graphs, that is, any minor of a
graph in C is also in C, then there is a finite collection of obstructions for C. In particular,

3.3 Applications 61

the set of graphs that are not in C but whose every (strict) minor is in C must be finite by
Theorem 3.12. To test if G ∈ C, one only needs to test for every obstruction H whether
H is a minor of G, and this can be done with the algorithm of Theorem 3.14. It follows
that for every minor-closed graph class C, there exists an algorithm for testing if G ∈ C
with running time O(n3). The constant hidden by the O-notation of course depends on
the class C, and the result shows only the existence of an algorithm, not how to construct
it, because there is no general method for finding the obstructions.

The dependence on n in the algorithms of Robertson and Seymour [1995] has been
improved to n2 by Kawarabayashi et al. [2012]. In the case when H (or G) is planar,
a f(|V (H)|) · n time algorithm for H-minor-containment follows from the Grid Minor
Theorem as we discussed earlier. A f(k) · n time algorithm for k-disjoint paths on planar
graphs was given by Reed et al. [1993] (see also [Reed, 1995]). Several authors have
improved the function f(k) on planar k-disjoint paths [Adler et al., 2017; Lokshtanov
et al., 2020a], culminating in the 2O(k2)n time algorithm by Cho et al. [2023]. Adler
et al. [2012] gave a 2O(|V (H)|)n + O(n2 log n) time algorithm for H-minor-containment
when G is planar.

After Robertson and Seymour, the irrelevant vertex technique has been applied to several
problems beyond Theorem 3.14. To name a few, Grohe [2004] used the irrelevant vertex
technique to show that the problem of finding planar drawings with the minimum number
of crossings is FPT parameterized by the number of crossings. Cygan et al. [2013] showed
that the k-disjoint paths problem is FPT on directed planar graphs. Baste et al. [2023]
used irrelevant vertices inside dynamic programming to show that for every minor-closed
graph class C there exists a 2O(tw(G) log tw(G))n time algorithm that, given an input graph
G, finds a minimum-size set X ⊆ V (G) so that G \X ∈ C.

3.3.2 Monadic second-order logic of graphs

Courcelle’s theorem [1990] gives a semi-automatic way of obtaining dynamic programming
algorithms on tree decompositions. All that one needs to do is to express the problem
in monadic second-order logic (MSO). For example, the 3-coloring problem can be
expressed in MSO by first defining a formula that tells if a set of vertices X ⊆ V (G) is
an independent set as

Ind(X) = ∀u,v∈V (G) (¬adj(u, v)) ∨ (¬u ∈ X) ∨ (¬v ∈ X)

62 Survey of the literature

and then defining a sentence ϕ expressing 3-colorability as

ϕ = ∃X1,X2,X2⊆V (G) Ind(X1) ∧ Ind(X2) ∧ Ind(X3) ∧ (∀v∈V (G) v ∈ X1 ∨ v ∈ X2 ∨ v ∈ X3).

Now, ϕ is true in a graph G if and only if G is 3-colorable, which is equivalent to the
fact that there exists three independent sets X1, X2, X3 ⊆ V (G) so that every vertex of
G is in at least one of them. Note that it is not necessary to define that the sets X1, X2,
and X3 are disjoint, but this could also be defined in the sentence ϕ.

In the monadic second-order logic of graphs we can use the usual logical connectives ¬,
∨, and ∧, the equality = of vertices or edges, the quantifiers ∃ and ∀ that quantify over
single vertices or edges, or sets of vertices or edges, the binary predicate ∈ that tells
if a vertex belongs to a set of vertices or an edge belongs to a set of edges, the binary
predicate adj for telling if two vertices are adjacent, and the binary predicate inc for
telling if an edge is incident to a vertex. The length of an monadic second-order logic
formula is the number of symbols appearing in it.

There are in fact several variants of monadic second-order logic of graphs, and the one
described above is referred to as MSO2. In a slightly more general variant, called counting
monadic second-order logic and referred to as CMSO2, there exists for all constants
p, q ∈ Z≥0 a formula cardp,q(X) that tells if the cardinality of a set X is p modulo q. Now
we can state Courcelle’s theorem as follows.

Theorem 3.15 (Courcelle [1990]). There is an algorithm, that given a graph G, a tree
decomposition of G of width k, and a CMSO2 sentence ϕ, in time f(k, ϕ) · n returns
whether ϕ is true in G, where f(k, ϕ) is a computable function.

As many graph properties can be expressed in CMSO2 sentences ϕ of fixed size, Courcelle’s
theorem, together with algorithms for computing treewidth, imply the fixed-parameter
tractability of deciding these properties parameterized by treewidth. Classical examples
of such properties are Hamiltonicity and c-colorability for fixed c, although for them
there exists also simple hand-crafted dynamic programming algorithms that are much
more efficient than what follows from Courcelle’s theorem (e.g. [Bodlaender, 1988]).
However, Courcelle’s theorem has been used in applications where designing the dynamic
programming algorithm by hand would be overwhelmingly complicated, such as the
aforementioned crossing number algorithm of Grohe [2004].

Although Courcelle’s theorem is formulated only for decision problems, the techniques
behind it extend also to optimization and counting problems. Indeed, theorems similar
to Theorem 3.15 but for optimization and counting were given by Arnborg et al. [1991]
and Borie et al. [1992] (the latter independently of Courcelle and the former). Also, there

3.3 Applications 63

has been several approaches to general theorems for dynamic programming algorithms
on tree decompositions akin to Courcelle’s, but with a more reasonable running time
dependence on treewidth [Pilipczuk, 2011; Telle and Proskurowski, 1997].

Cliquewidth and CMSO1

Cliquewidth2 was introduced by Courcelle et al. [1993] to be an analogue of treewidth
for a variant of CMSO2 called CMSO1. A CMSO1 formula is like a CMSO2 formula, but
without the possibility to talk about the edges of the graph. In particular, we cannot
quantify over sets of edges, do not have the vertex-edge incidence predicate, and cannot
use the cardp,q(X) formula on sets of edges. However, we still have the adj predicate
describing adjacencies between vertices. We can still express 3-coloring in CMSO1, in
particular, our earlier example sentence ϕ is in fact an MSO1 sentence, but for example
Hamiltonicity cannot be expressed in CMSO1 [Courcelle and Engelfriet, 2012, Chapter 5].

Another way of thinking about CMSO1 and CMSO2 is that in CMSO2 graphs are encoded
as a logical structure with an universe V (G) ∪ E(G), with edges described by the vertex-
edge incidence predicate inc. In CMSO1 the universe is V (G), and edges are described by
the vertex-vertex adjacency predicate adj. The adj predicate can also be assumed to be
available in CMSO2 because it can be written using the inc predicate as

adj(u, v) = (u 6= v) ∧ ∃e∈E(G) inc(u, e) ∧ inc(v, e).

The “Courcelle’s theorem for cliquewidth” was already implicit in the early work of
Courcelle [1995], but was explicitly given by Courcelle et al. [2000].

Theorem 3.16 (Courcelle et al. [2000]). There is an algorithm that, given a k-expression
of a graph G and a CMSO1 sentence ϕ, in time f(k, ϕ) · n returns whether ϕ is true in
G, where f(k, ϕ) is a computable function. Furthermore, this algorithm extends to an
optimization variant of CMSO1.

As discussed earlier, bounded cliquewidth is a significant generalization of bounded
treewidth, so Theorem 3.16 is a significant generalization of Theorem 3.15 for problems
expressible in CMSO1. Note that even though a graph G with cliquewidth 2 can have
Θ(n2) edges, the algorithm of Theorem 3.16 runs in time linear in n, because it takes as
an input a k-expression of G, not the graph G. Here we assume that the k-expression has
length at most f(k) · n, and this is justified by the discussion in Subsection 2.3.5. Unlike

2In this subsection, we will exclusively talk about cliquewidth instead of rankwidth, but all the results
hold even when cliquewidth is replaced by rankwidth.

64 Survey of the literature

for treewidth and Theorem 3.15, it is still an open question if there exists a version of
Theorem 3.16 that runs in time linear in the size of G for fixed k and ϕ, for graphs of
cliquewidth k given without a k-expression. As mentioned earlier, we make significant
progress on this question in Chapter 7, improving the dependence on n from n3 to n2.
Theorem 3.16 was extended also to counting problems by Courcelle et al. [2001].

The more profound aspects of MSO

So far we have treated the monadic second-order logic of graphs simply as a general tool
for constructing algorithms. However, the theory is deeper than that, and motivates the
notions of treewidth and cliquewidth by showing that they are the right parameters for
CMSO2 and CMSO1, respectively.

One consequence of the proof of Theorem 3.15 is that the CMSO2-theory of graphs of
bounded treewidth is decidable. This means that there exists an algorithm, that given
a CMSO2-sentence ϕ and an integer k, tests if ϕ is true in all graphs of treewidth at
most k [Courcelle, 1990]. Roughly speaking, this follows from the fact that the proof
of Theorem 3.15 gives a finite-state “tree automaton” processing tree decompositions
of width at most k, and one can analyze all possible runs of this automaton. The
converse of this was proven by Seese [1991]. He showed that if C is a class of graphs with
unbounded treewidth, then the MSO2-theory of C is undecidable. This indicates that the
role of treewidth in the proof of Theorem 3.15 cannot be exchanged for any other graph
parameter, unless that parameter is bounded by a function of treewidth.

Similar decidability result holds also for cliquewidth and CMSO1 [Courcelle, 1995].
Seese [1991] conjectured that the converse also holds in that setting. Courcelle and
Oum [2007] showed that if C is a class of graphs with unbounded cliquewidth, then the
CMSO1-theory of C is undecidable. This is indeed a converse of the decidability result,
but the original conjecture of Seese was about MSO1 instead of CMSO1, which remains
open.

Another piece of evidence pointing that graphs of bounded treewidth are exactly the
tree-like graphs from the viewpoint of MSO2 and graphs of bounded cliquewidth are
exactly the tree-like graphs from the viewpoint of MSO1 is given by MSO transductions,
introduced in different forms by Arnborg et al. [1991] and Courcelle [1991] (see [Courcelle
and Engelfriet, 2012] for a modern exposition). Informally speaking, we say that a graph
G can be MSO1 interpreted in a graph H with V (H) = V (G) if we can write an MSO1

formula adjG(u, v) that based on the graph H tells if uv is an edge of G. For example, if
we write adjG(u, v) = ¬adj(u, v), then G is the complement of H. In this way, we can

3.3 Applications 65

view the formula adjG(u, v) as a function that maps the input graph H to the output
graph G, and extend it to map graph classes to graph classes, in this example, class
C to the class of complements of graphs in C. MSO1 transductions map graph classes
to graph classes roughly like this, but with some additional features such as making
copies of vertices and guessing a coloring that can be talked about in the formula. MSO2

transductions are similar, but with the incidence predicate instead of adjacency. Courcelle
and Engelfriet [1995] showed that a class of graphs C has bounded treewidth if and only if
it is a subclass of an MSO2 transduction from the class of trees, and bounded cliquewidth
if and only if it is a subclass of an MSO1 transduction from the class of trees.

Finally, let us discuss a result that instead of showing that treewidth is the right
parameter for CMSO2, shows that CMSO2 is the right logic for dynamic programming on
tree decompositions. As we mentioned earlier, the proof of Courcelle [1990] not only gives
an algorithm, but shows that there exists an algorithm of a specific form. In particular,
the algorithm can be formulated as dynamic programming on binary tree decompositions,
that has f(k, ϕ) states per node, and the state of a node depends only on the states
of its children and the bag of the node. Courcelle [1990] conjectured also a converse of
this, that every property of graphs that can be recognized by such finite-state dynamic
programming on bounded-width tree decompositions can be defined in CMSO2. This
conjecture was proven by Bojanczyk and Pilipczuk [2016]. Bojanczyk et al. [2021] asked
whether an analogous statement holds for cliquewidth and CMSO1, and proved it in the
special case of linear cliquewidth, which is the path-like version of cliquewidth.

We also briefly note that Courcelle’s theorem has been extended to the setting of the
monadic second-order logic of matroids and matroid branchwidth by Hliněný [2006].
Hliněný and Seese [2006] gave also an analogue of Seese’s theorem in this setting.

3.3.3 Algorithms

In this subsection we survey some algorithmic applications of treewidth, rankwidth, and
cliquewidth that we did not already mention in the previous two subsections.

Dynamic programming on tree decompositions

The fundamental application of treewidth is of course dynamic programming on tree
decompositions of small width. Although this topic was already thoroughly explored in
the end of the 1980s and beginning of 1990s (e.g. [Arnborg and Proskurowski, 1989; Arn-
borg et al., 1991; Bodlaender, 1988; Borie et al., 1992; Courcelle, 1990; Telle and

66 Survey of the literature

Proskurowski, 1997]), many techniques for nailing down the best dependence on the
width k were discovered in the last 15 years. Let us mention a few of them.

Consider first the minimum dominating set problem, which asks for a minimum-size set
of vertices X ⊆ V (G) so that N [X] = V (G). Telle and Proskurowski [1997] showed that
minimum dominating set can be solved in time 9kkO(1)n when given a tree decomposition
of width k, and Alber and Niedermeier [2002] improved this to 4kkO(1)n. Both of these
algorithms were relatively straightforward, unlike the next improvement to 3kkO(1)n by
van Rooij et al. [2009], which used a technique called “fast subset convolution”, introduced
by Björklund et al. [2007] (see also [Björklund et al., 2009]). With fast subset convolution,
van Rooij et al. [2009] also improved the dependence on k for many other problems in
the framework of “[ρ, σ]-domination problems” of Telle and Proskurowski [1997].

Lokshtanov et al. [2018b] introduced a framework for showing the optimality of the
dependence on k in dynamic programming algorithms on tree decompositions, assuming
the SETH. They showed that there is no (2 − ε)knO(1) time algorithm for maximum
independent set nor a (3− ε)knO(1) time algorithm for minimum dominating set when
given a tree decomposition of width k, for any ε > 0, and several other lower bounds,
assuming the SETH. In particular, the aforementioned dynamic programming algorithm
for minimum dominating set using fast subset convolution is optimal. Lower bounds
forbidding 2o(k log k)nO(1) time algorithms on tree decompositions of width k for problems
like disjoint paths and chromatic number were given by Lokshtanov et al. [2018a].

For a long time it was not known whether the relatively straightforward 2O(k log k)n time
dynamic programming for connectivity problems such as Hamiltonian path, feedback
vertex set, and connected dominating set would be optimal. This was shown to not be the
case by Cygan et al. [2022]3, who gave 2O(k)nO(1) time algorithms for these and several
other “connectivity problems”. Their algorithm was rather atypical for an algorithm
parameterized by treewidth, being randomized and having superlinear dependence on
the number of vertices n. These defects were however fixed by Bodlaender et al. [2015],
who obtained deterministic 2O(k)n time algorithms for these problems using a different
linear-algebra based approach. Another alternative approach to obtain results similar
to Bodlaender et al. [2015] was given by the “representative sets” technique that was
introduced by Fomin et al. [2016] and further improved by Fomin et al. [2017].

3The conference version of [Cygan et al., 2022] appeared in 2011 [Cygan et al., 2011].

3.3 Applications 67

Dynamic programming on k-expressions and rank decompositions

We then turn to cliquewidth and rankwidth. In addition to the FPT results for CMSO1

problems parameterized by cliquewidth by Courcelle et al. [2000], XP algorithms parame-
terized by cliquewidth for problems not expressible in CMSO1, such as Hamiltonicity and
chromatic number, were given by [Espelage et al., 2001; Gerber and Kobler, 2003; Kobler
and Rotics, 2003; Suchan and Todinca, 2007; Wanke, 1994]. These two problems were
shown to be W[1]-hard parameterized by cliquewidth by Fomin et al. [2010].

As for improved FPT algorithms, Kobler and Rotics [2003] designed algorithms running in
time 2O(k)n for problems such as minimum dominating set and c-coloring for fixed c, when
given a k-expression. Much later, Lampis [2020] nailed down the dependence on k for
c-coloring, giving a (2c − 2)knO(1) time algorithm and showing that no (2c − 2− ε)knO(1)

time algorithm, for any ε > 0 and c ≥ 3, exists assuming the SETH.

Perhaps more interesting story than dynamic programming on k-expressions is dynamic
programming on rank decompositions. Currently, all known FPT algorithms for computing
k-expressions work via rankwidth, producing at best a k-expression with k = 2cw(G)+1− 1,
leading to at least double-exponential algorithms parameterized by cliquewidth even
for simple vertex-partitioning problems like maximum independent set or minimum
dominating set. Similar double-exponential dependence on cliquewidth results also from
naive dynamic programming on rank decompositions.

However, Bui-Xuan et al. [2010] (see also [Ganian and Hliněný, 2010]) showed that
by taking advantage of the “rank” in the definition of rankwidth, it is possible to
design 2O(k2)nO(1) time dynamic programming algorithms for rank decompositions of
width k. They designed such algorithms for various vertex-partitioning problems such
as maximum independent set, minimum dominating set, and c-coloring for fixed c.
Ganian and Hliněný [2010] gave also such an algorithm for feedback vertex set. As
rw(G) ≤ cw(G) and rankwidth can be constant-factor approximated in 2O(rw(G))nO(1)

time [Oum and Seymour, 2006], this implies 2O(cw(G)2)nO(1) time algorithms parameterized
by cliquewidth, without needing a k-expression. Further 2O(k2)nO(1) time algorithms on
rank decompositions of width k were given by Bui-Xuan et al. [2011] and Bergougnoux
and Kanté [2021], and the dependence 2O(k2) was shown to be optimal for maximum
independent set, assuming the ETH, by Bergougnoux et al. [2023]. Oum et al. [2014]
introduced a variant of rankwidth called “Q-rankwidth” to give 2O(cw(G) log cw(G))nO(1) time
algorithms for various vertex-partitioning problems parameterized by cliquewidth without
needing a k-expression.

68 Survey of the literature

Beyond graph problems

So far we have focused on the applications of width parameters in graph problems, but
in fact many their most significant applications come from problems that are not about
graphs. Let us now discuss these applications.

How to use treewidth if we do not have a graph? The perhaps most common way of
associating an instance of a problem with a graph whose tree decompositions are useful
for solving the problem is the primal graph (also known as the Gaifman graph). Suppose
we have a problem whose instances can be expressed as pairs (V,C), where V is a set of
variables and C is a set of constraints, where each constraint c ∈ C concerns some subset
V (c) ⊆ V of the variables in the sense that we can tell whether an assignment of variables
satisfies the constraint based on just the assignment of V (c). Now, the vertices of the
primal graph of (V,C) are the variables V , and there is an edge between two vertices
u, v ∈ V if there is a constraint where u and v appear together, that is, exists c ∈ C
with {u, v} ⊆ V (c).

The constraint satisfaction problem (CSP) is a problem as above, where for each variable
v ∈ V we are given a finite domain D(v) from which its value can be chosen, and each
constraint c ∈ C is given by listing all of the assignments of values to the variables V (c)

that satisfy the constraint. The problem is to find an assignment that satisfies all of the
constraints. It was shown by Freuder [1990] and Dechter and Pearl [1989] that a CSP
with n variables whose each domain has size at most d can be solved in time n · dO(k)

if the input is given together with a tree decomposition of the primal graph of width k,
that is, for instances with primal treewidth k.

By observing a connection between CSPs and the “conjunctive query evaluation” problem
in databases, Kolaitis and Vardi [2000] showed that the evaluation problem can be solved
in polynomial time for queries with bounded primal treewidth. A related result purely
in the context of the conjunctive query evaluation problem was shown a bit earlier by
Chekuri and Rajaraman [2000], who introduced a parameter called “query-width”, showed
that the evaluation problem can be solved in polynomial time for queries with bounded
query-width if a corresponding decomposition is given, and that the query-width of a
query is at most its primal treewidth plus one. Other problem observed by [Chandra and
Merlin, 1977; Feder and Vardi, 1998] to be closely linked to conjunctive query evaluation
and CSPs is the homomorphism problem. Let us continue in the setting of CSPs.

The incidence graph of a CSP (V,C) has the union V ∪C of variables and constraints as
its vertices, and has an edge between a variable v ∈ V and a constraint c ∈ C if v ∈ V (c).
Note that the incidence graph is bipartite with a bipartitioning cut (V,C). It is not hard

3.3 Applications 69

to observe that the treewidth of the incidence graph, i.e., the incidence treewidth, of a
CSP is at most its primal treewidth plus one, but the incidence treewidth can be 1 even
when the primal treewidth is |V | − 1. Chekuri and Rajaraman [2000] showed that the
query-width of a CSP is at most the treewidth of its incidence graph plus one, implying
that CSPs with bounded incidence treewidth can be solved in polynomial time. Even
more generally, it was shown by Gottlob and Pichler [2004] that the query-width of a
CSP is at most the cliquewidth of its incidence graph. Generalizations of query-width
were given by [Gottlob et al., 2002; Grohe and Marx, 2014; Marx, 2013].

The primal and incidence treewidth were also considered in the slightly different setting
of the Boolean satisfiability problem (SAT). One can think of SAT as like CSP, but with
domains of size 2 and constraints expressed by listing the assignments that do not satisfy
the constraint, instead of the assignments that satisfy the constraint. Szeider [2003]
observed that the Courcelle’s theorem for cliquewidth [Courcelle et al., 2000], or in fact
its formulation for directed graphs, implies that SAT is FPT parameterized by incidence
treewidth, or more generally, by the cliquewidth of the directed incidence graph. See
also the work of Ganian et al. [2013] on using rankwidth for SAT. Earlier, Alekhnovich
and Razborov [2011]4 had shown that SAT can be solved in time 2O(k)nO(1), where n
is the number of variables and k is the branchwidth of the hypergraph of the instance.
The branchwidth of the hypergraph was shown by Szeider [2003] to be approximately
equivalent to the treewidth of the primal graph.

Let us then briefly mention some other applications. In the context of probabilistic
inference in Bayesian networks, the running time of the influential “junction tree algorithm”
of Lauritzen and Spiegelhalter [1988] is characterized by the treewidth of the “moral
graph” of the Bayesian network (see also Dechter [1999]). This setting has in fact
motivated several authors to design heuristics for computing treewidth, e.g. [Gogate and
Dechter, 2004; Kjærulff, 1992]. In the context of compiler optimization, Thorup [1998]
showed that the register allocation problem can be efficiently approximated if the treewidth
of the control-flow graph of the program is small, and showed that the control-flow graphs
of “structured programs” in fact always have small treewidth. In quantum computing,
Markov and Shi [2008] showed that quantum circuits can be simulated in time 2O(k)nO(1),
where k is the treewidth of the underlying graph. Algorithms for solving linear equations
and linear programs with running times of form kO(1)n·poly log n, where k is the treewidth
of a certain graph associated with the input, were given by Fomin et al. [2018] and Dong
et al. [2021], respectively. Cunningham and Geelen [2007] used the branchwidth of
matroids in the context of integer linear programming.

4The conference version of Alekhnovich and Razborov [2011] appeared in 2002 [Alekhnovich and
Razborov, 2002].

70 Survey of the literature

v

Figure 3.3: An illustration of the Baker’s scheme. The area in light red depicts the
vertices in a set Xq,k for some k and q, and the area in blue the vertices of G \Xq,k.

Baker’s scheme and local treewidth

We then turn from applications that are useful only if the inputs have small width to
applications where treewidth is used in a subroutine of an algorithm that works even on
graphs of large treewidth. These applications often turn up in algorithms for planar and
minor-free graphs, and sometimes can be extended all the way up to general graphs, like
we saw in Subsection 3.3.1 with the k-disjoint paths problem.

The maximum independent set and minimum dominating set problems are NP-hard to
constant-factor approximate on general graphs [Dinur and Steurer, 2014; Zuckerman, 2007].
However, for planar graphs, Baker [1994] gave approximation algorithms returning a
solution within an ε factor of the optimum and running in time 2O(1/ε)n, for any ε > 0.
The idea of her algorithm is to show that planar graphs can be sliced into components
of small treewidth without affecting the optimum solution much, and then solve each
component optimally by dynamic programming on tree decompositions.5

In more detail, Baker’s scheme is based on the following bounded local treewidth property
of planar graphs.

Lemma 3.17 (Baker [1994]; Robertson and Seymour [1984]). If G is a planar graph,
v ∈ V (G), d is an integer, and D ⊆ V (G) is the set of vertices that have distance at most
d to v, then tw(G[D]) ≤ O(d).

Baker’s algorithm for approximating independent set proceeds as follows (see also Fig-
ure 3.3). Let G be the input planar graph and assume that it is connected. Then, pick

5The conference version [Baker, 1983] of [Baker, 1994] pre-dates the wide adoption of treewidth, so it
actually uses hand-crafted dynamic programming on “k-outerplanar” graphs. The algorithm has been
interpreted as an application of treewidth in later literature, e.g., [Bodlaender, 1988; Eppstein, 2000].

3.3 Applications 71

a vertex v ∈ V (G), let k = d1/εe, and for every q ∈ [0, k − 1] define that Xq,k ⊆ V (G)

is the set of vertices having distance q modulo k from v. It follows from Lemma 3.17
that for each q, the graph G \ Xq,k has treewidth at most O(k). This can be seen by
observing that each connected component C of G \Xq,k consists of vertices that are at
distance [d, d+ k − 1] from v, for some d ∈ Z≥0, and that after contracting all vertices
at distance less than d from v into a single vertex, all vertices in C would have distance
at most k from the contracted vertex. Now there exists some q ∈ [0, k − 1] so that Xq,k

intersects an optimum solution in at most a fraction of 1/k ≤ ε of it, and therefore solv-
ing the problem exactly in G \Xq,k for that q results in (1− ε)-approximation. By using
treewidth, maximum independent set can be solved in G \Xq,k in time 2O(k)n = 2O(1/ε)n.

Eppstein [2000] (see also [Demaine and Hajiaghayi, 2004]) showed that the bounded
local treewidth property of Lemma 3.17 holds in a minor-closed graph class C if and
only if C excludes some apex graph, generalizing the algorithm to those classes. An
apex graph is a graph G that contains a vertex v ∈ V (G) so that G \ {v} is planar. By
showing that minor-free graphs can be decomposed into apex-minor-free graphs, i.e.,
H-minor-free graphs for an apex graph H, Grohe [2003] further generalized the scheme
to minor-free graphs. Other generalizations and applications of Baker’s scheme have been
given by, for example, [Dawar et al., 2006; Dvorák, 2018; Fox-Epstein et al., 2019; Hunt
et al., 1998; Klein et al., 1993].

Frick and Grohe [2001] applied the bounded local treewidth property of Lemma 3.17 in
another context. They showed that problems expressible in first-order logic (FO)6 can be
solved in linear time on apex-minor-free graphs. In particular, their result is analogous
to Courcelle’s theorem, but with CMSO2 replaced by FO, and treewidth replaced by
the size of an apex graph excluded as a minor. The algorithm of Frick and Grohe is
based on the locality of first-order logic shown by Gaifman [1982]. Roughly speaking,
Gaifman’s theorem says that deciding if an FO sentence ϕ is true in a graph G can
be reduced to deciding a local FO formula ψ(v) for every vertex v ∈ V (G), and then
combining the results in a certain manner. Here, the fact that ψ(v) is local means that
it depends only on the graph induced by vertices at distance at most d = f(ϕ) from v.
The central observation of Frick and Grohe is that, by the bounded local treewidth
property of apex-minor-free graphs, this graph has bounded treewidth, and thus we can
use Courcelle’s theorem for deciding ψ(v). A bit more sophistication is then needed for
combining the results and making the algorithm run in linear time.

The algorithm of Frick and Grohe was subsequently generalized to larger classes of graphs
[Dawar et al., 2007; Dvorák et al., 2013; Flum and Grohe, 2001], culminating in the
generalization to “nowhere dense” graphs by Grohe et al. [2017], which is the highest

6One can think of FO as like MSO1, but without set variables.

72 Survey of the literature

generality of subgraph-closed graph classes where deciding FO can be FPT. The problem
of pinning down the induced subgraph-closed graph classes where FO is FPT is open, but
very actively worked on recently [Bonnet et al., 2022; Dreier et al., 2023; Torunczyk, 2023].

Bidimensionality

Another class of applications of treewidth for planar and minor-free graphs stems from
the Grid Minor Theorem (Theorem 3.13), or more precisely, from improved versions of
it for planar and minor-free graphs given by Robertson et al. [1994] and Demaine and
Hajiaghayi [2008]. In particular, Robertson et al. showed that if a planar graph G does not
contain the k × k grid as a minor, then tw(G) ≤ 6k − 5. Demaine and Hajiaghayi [2008]
generalized this result, showing that there is a function f : Z≥0 → Z≥0 so that if G
contains neither a graph H nor the k × k grid as a minor, then tw(G) ≤ f(|V (H)|) · k.

These results can be applied to design subexponential 2O(
√
k)nO(1) time FPT algorithms for

planar and minor-free graphs. For example, consider the minimum vertex cover problem
on planar graphs, parameterized by the solution size k. We can observe that (1) if a
graph H is a minor of a graph G, then the minimum vertex cover of H is not larger than
that of G, and (2) the size of a minimum vertex cover of the k × k grid is Θ(k2). By
combining (1) and (2) with the Grid Minor Theorem for planar graphs, it follows that if
we are seeking for a vertex cover of size at most k and the input graph has treewidth
more than O(

√
k), we can immediately return NO. Therefore, the non-trivial instances

have treewidth O(
√
k), so we obtain a 2O(

√
k)n time algorithm.

For some problems, for example dominating set, the property (1) does not hold because
edge deletions can increase the size of a minimum dominating set. However, Fomin
et al. [2011a] showed that on planar and apex-minor-free graphs, having treewidth Ω(k)

not only implies a k × k grid minor, but also a k × k “grid-like” graph as a contraction,
which can be interchanged with the grid to make the same argument work also for
minimum dominating set and related problems.

The first prototype of the aforementioned idea for subexponential FPT algorithms was per-
haps the 2O(

√
k)n time algorithm for dominating set on planar graphs by Alber et al. [2002].

Subsequently, this theory was significantly developed by [Demaine et al., 2005a,b, 2006]
and dubbed “bidimensionality”, referring to the fact that it is applicable if the parameter
has large value on grids, or on the grid-like graphs. In addition to subexponential FPT
algorithm, the ideas originating from bidimensionality were later applied also to approxi-
mation schemes [Demaine and Hajiaghayi, 2005; Fomin et al., 2011b] and kernelization
[Bodlaender et al., 2016b; Fomin et al., 2020] on minor-free graphs.

3.3 Applications 73

3.3.4 Complexity

We have surveyed many applications of treewidth for algorithm design, and left many
more unmentioned due to space constraints. After spending so much effort in designing
algorithms parameterized by treewidth, it could be disappointing if there would be
another graph parameter that would have all the good qualities of treewidth, but be even
more general, capturing even more graphs. Of course, in some settings, like problems
expressible in CMSO1, this has indeed happened to some extent with the parameters
cliquewidth and rankwidth. In this subsection we survey complexity-theoretic arguments
giving evidence that treewidth is the right parameter for some problems, i.e., why one
sometimes cannot “beat treewidth”.

Graph classes with closure properties

The first such argument arises from the Grid Minor Theorem of Robertson and Seymour
(Theorem 3.13). Suppose that C is a minor-closed class of graphs. Then, the Grid Minor
Theorem implies that either there exists an upper bound for the treewidth of all graphs
in C, or C contains all planar graphs. Now, if Π is a graph problem that is NP-hard
on planar graphs but linear-time solvable on graphs of bounded treewidth, for example,
Hamiltonicity or 3-coloring, then we have the following dichotomy: If a minor-closed
graph class C has bounded treewidth, then Π is linear-time solvable on C, and otherwise
Π is NP-hard on C.

This easy argument was observed by Makowsky and Mariño [2003]. They also generalized
it to the setting of graph classes closed under topological minors and problems that are
NP-hard on planar graphs with maximum degree 3. Topological minors are like minors,
but instead of contraction, only the suppression of degree-2 vertices is allowed. Makowsky
and Mariño also observed that the argument does not extend to subgraph-closed graph
classes because of the following example. Let C be a graph class that for every n ∈ Z≥1

contains the graph obtained from the complete graph on n vertices by subdividing every
edge 22n times, and all of their subgraphs. Now, C has unbounded treewidth and is
subgraph-closed, but problems like Hamiltonicity and 3-coloring are polynomial-time
solvable on C because n-vertex graphs from C have treewidth O(log log n). In fact, all
CMSO2-expressible problems are linear-time solvable on this class C.7

Much more recently, Johnson et al. [2022] showed that one can get around the afore-
mentioned problem for subgraph-closed graph classes if one considers classes that are

7This does not hold in general for classes with treewidth O(log log n), but in this case can be shown
by a modification of the argument of [Makowsky and Mariño, 2003, Proposition 32].

74 Survey of the literature

defined by excluding a finite family of graphs as subgraphs. They showed that for many
graph problems, for example, maximum independent set and minimum dominating set,
the problem is polynomial-time solvable on a graph class C defined by the exclusion of a
finite family H of subgraphs if and only if C has bounded treewidth, assuming P 6= NP.

Monadic second-order logic

As we recall from Subsection 3.3.2, the theorem of Seese [1991] gives evidence that
Courcelle’s theorem for MSO2 cannot be extended beyond treewidth. However, the
aforementioned construction of Makowsky and Mariño shows that a direct complexity-
theoretic analogue of Seese’s theorem is not true, even in subgraph-closed graph classes.
Nevertheless, Kreutzer and Tazari [2010b] (see also [Kreutzer and Tazari, 2010a]) showed
that after placing down definitions that forbid such frivolous constructions, one can prove
a complexity-theoretic analogue of Seese’s theorem for subgraph-closed classes.

Kreutzer and Tazari defined that the treewidth of a class C of graphs is strongly unbounded
by a function f : Z≥1 → Z≥1 and gap-degree γ ≥ 1 if there exists ε < 1, so that for all
n ∈ Z≥1 there is a graph Gn ∈ C such that

1. the treewidth of Gn is at least f(|V (Gn)|), and between n and O(nγ), and

2. given n, Gn can be constructed in time O(2n
ε
).

Then their results is as follows.

Theorem 3.18 (Kreutzer and Tazari [2010b]). If C is a subgraph-closed graph class,
and the treewidth of C is strongly unbounded by f(n) = log28α n and gap-degree γ for
some α > γ, then assuming the ETH, MSO2 is not XP parameterized by the length of the
sentence on the class C.

The idea of the proof of Theorem 3.18 is again to exploit the Grid Minor Theorem,
or in fact a “grid-like-minor” theorem of Reed and Wood [2012] since no polynomial
bounds for the Grid Minor Theorem were known at the time. It can indeed be seen as a
complexity-theoretic analogue of Seese’s theorem, since both proofs are based on encoding
a Turing machine in a grid minor. Ganian et al. [2014] gave a variant of Theorem 3.18
but with MSO1 and a different set of technical assumptions. Another variant, slightly
stronger than the one by Ganian et al. was given by Amarilli et al. [2016]. They also
gave similar results for “probabilistic” MSO. All of these results require the class C to be
subgraph-closed.

3.3 Applications 75

Constraint satisfaction

We then turn to CSPs. Recall that an n-variable CSP with domains of size at most
d can be solved in time n · dO(k) if its primal treewidth is k. In particular CSP is XP
parameterized by primal treewidth. Grohe et al. [2001] showed that CSP cannot be
XP parameterized by any more general parameter of primal graphs. In particular, they
showed the following theorem.

Theorem 3.19 (Grohe et al. [2001]). If C is a graph class, then CSP restricted to
instances whose primal graphs are from C is polynomial-time if and only if C has bounded
treewidth, assuming FPT 6= W[1].

This result does not require any technical conditions or closure properties of C.8 The
explanation for why we avoid the technicalities of Theorem 3.18 is that here, the domain
size d can be arbitrarily large. In particular, in our counterexample class C constructed
by subdividing n-cliques 22n times, we do not have polynomial-time algorithm for CSP,
because by using domains of size d = 22n we could polynomial-time reduce the problem
of finding a clique of size n in a graph with 22n vertices to a CSP whose primal graph is
the n-clique subdivided 22n times.

Grohe [2007] generalized Theorem 3.19 to arbitrary classes of relational structures with
bounded arity, showing that in this case, “bounded treewidth modulo homomorphic
equivalence” characterizes the polynomial-time solvable classes. A version of this result
for counting problems was given by Dalmau and Jonsson [2004]. All of these results use
arguments based on the Grid Minor Theorem. By finding an argument without the Grid
Minor Theorem, Marx [2010b] gave a more quantitative version of Theorem 3.19.

Theorem 3.20 (Marx [2010b]). If C is a class of graphs with unbounded treewidth, and
there exists an algorithm with running time f(G) · (nd)o(tw(G)/ log tw(G)) for binary CSP
with n variables and domain size d on instances with primal graphs G ∈ C, for some
function f , then the ETH fails.

Here, binary CSP means that each constraint c has |V (c)| = 2. By Theorem 3.20, the
n · dO(k) time algorithm is (almost) optimal on every graph class C. To obtain lower
bounds such as the one in Theorem 3.20, one cannot rely on the Grid Minor Theorem.
Instead, Marx developed an alternative technique for embedding problems into graphs of

8Although it requires some conditions on how a supposed algorithm should behave on instances whose
primal graphs are not from C, or that C is recursively enumerable. See the discussion in [Marx, 2010b].
Throughout this section, we ignore these issues by not formally defining what it means for an algorithm
to work only on a restricted class of inputs.

76 Survey of the literature

large treewidth by using the (approximative) duality between balanced separators and
concurrent flows introduced by Leighton and Rao [1999].

Finally, before moving from hardness on graph classes to hardness on individual graphs,
we briefly mention a couple more results. In the context of Bayesian networks, Chan-
drasekaran et al. [2008] and Kwisthout et al. [2010] gave results showing that bounded
treewidth is the only structural restriction that allows to perform inference in polynomial
time, under some technical assumptions. Amarilli and Monet [2022] showed that such a
result holds also for the problem of weighted counting of matchings in graphs.

Instance-specific hardness

Instead of showing that problems are hard on infinite graph classes, it would be satisfying
to show that every individual instance with high treewidth is hard. However, it is not
clear how such hardness would be formulated, as for every individual instance there exists
a trivial algorithm that solves the instance simply by hard-coding the answer. Even if we
would allow varying the solution, for example, by varying the weights of vertices, there
still would exist a constant-time algorithm for solving the problem on this graph, as the
input size would be constant.

Nevertheless, instance-specific hardness results can be given if we assume that the
algorithm solving the problem works in a certain way, in particular, if we restrict the
model of computation. This makes the most sense if there is some popular paradigm for
solving problems of certain type, and we restrict our attention to a model of computation
that captures this paradigm. This approach has also the additional benefit that we can
obtain unconditional lower bounds without resolving major open problems in complexity
theory, like P vs NP.

One such model of computation is that of resolution proofs for SAT (see e.g. [Buss
and Nordström, 2021]). If a SAT instance is unsatisfiable, then there always exists a
proof of unsatisfiability of a certain type, called a resolution proof. Many algorithms
for SAT, like clause learning solvers and the 2O(k)nO(1) time algorithm parameterized
by primal treewidth k, produce resolution proofs of unsatisfiability [Alekhnovich and
Razborov, 2011; Beame et al., 2004]. In fact, the primal treewidth-based algorithm
produces so-called regular resolution proofs.

A classical family of SAT instances used for showing lower bounds for regular resolution
is that of Tseitin formulas, which associate graphs G with SAT instances τ(G) encoding
certain parity conditions on G [Tseitin, 1968]. Building on the earlier work of Itsykson
et al. [2021] and de Colnet and Mengel [2023], Itsykson et al. [2022] showed that every

3.3 Applications 77

regular resolution proof for an unsatisfiable Tseitin formula τ(G) must have length at
least 2Ω(tw(G)), for every graph G. This implies that any algorithm that produces regular
resolution proofs must run in time at least 2Ω(tw(G)) on Tseitin formulas τ(G), for all
graphs G. As the treewidth of the primal graph of τ(G) is at most tw(G) · log |τ(G)|,
where |τ(G)| is the length of τ(G), an almost matching upper bound of |τ(G)|O(tw(G))

follows from the algorithm of Alekhnovich and Razborov [2011].

Another related setting is that of knowledge compilation, which studies how certain
restricted Boolean circuits can represent the sets of all solutions of SAT formulas [Darwiche
and Marquis, 2002]. While these circuits have applications on their own, from the
algorithms perspective it is interesting that many algorithms for the problem of counting
the number of solutions of a SAT formula (#SAT) implicitly construct these circuits (see
e.g. [Muise et al., 2012]), and thus their running time is lower bounded by the size of a
smallest possible such circuit.

In particular, solving #SAT by dynamic programming on tree decompositions corresponds
to compilation to so-called “d-DNNF” circuits, yielding a 2O(k)nO(1) time algorithm for
constructing them, parameterized by the primal treewidth k. Amarilli et al. [2020] proved
a host of lower bounds for compilation of monotone SAT formulas. In particular, they
showed that for monotone SAT formulas with primal graphs of bounded degree, every
d-DNNF circuit has size at least 2Ω(k), where k is the primal treewidth. This means that
treewidth characterizes the sizes of d-DNNF circuits for such formulas.

The author considered in [Korhonen, 2021] a model of computation called “tropical
circuits” [Jerrum and Snir, 1982; Jukna, 2023], which, as argued by Jukna, models
dynamic programming algorithms. It was shown that for every graph G with treewidth k
and maximum degree ∆, any tropical circuit for solving the maximum weight independent
set problem has size at least 2Ω(k/∆). An upper bound of 2O(k)n is given by dynamic
programming on treewidth, so on bounded-degree graphs, treewidth captures the tropical
circuit complexity of maximum weight independent set.

Lastly, we mention that treewidth has been tightly related to complexity in restricted
models of computation such as AC0 [Li et al., 2017] and monotone arithmetic circuits
[Komarath et al., 2023]. Branchwidth has been related to tensor network complexity by
[Austrin et al., 2022].

78 Survey of the literature

3.4 Lean tree decompositions

In this section we first review the proof of [Bellenbaum and Diestel, 2002; Thomas, 1990]
on the existence of lean tree decompositions, and then discuss how it leads us to the ideas
of Chapter 4.

A tree decomposition (T, bag) of a graph G is lean if for every two nodes t1, t2 ∈ V (T)

and subsets of bags X1 ⊆ bag(t1), X2 ⊆ bag(t2) it holds that either

• flow(X1, X2) = min(|X1|, |X2|), or

• there exists an edge st of T on the unique t1-t2-path in T such that flow(X1, X2) =

|bag(s) ∩ bag(t)|.

This means that in a lean tree decomposition every non-trivial separator between two
subsets of bags is explained by an adhesion of the decomposition. Note that the leannes
condition is non-trivial even when t1 = t2. In particular, as a special case it states that
if X1 and X2 are subsets of the same bag, then flow(X1, X2) = min(|X1|, |X2|). This
means that even the existence of any lean tree decomposition is non-trivial, as the trivial
single-bag tree decomposition is not lean unless the graph is a clique.

The original motivation of lean tree decompositions arose from the theory of graph minors.
They were used by Robertson and Seymour [1990] to show that Wagner’s conjecture
(Theorem 3.12) holds for graphs of bounded treewidth. For this result, Robertson and
Seymour applied the following theorem of Thomas [1990].

Theorem 3.21 (Thomas [1990]). For every graph G, there exists a lean tree decomposition
of width tw(G).

The preliminary version of the article [Robertson and Seymour, 1990] contained a weaker
version of Theorem 3.21 proven by Robertson and Seymour, but in the final version it
was replaced by the stronger and more elegant version of Thomas. Later, Bellenbaum
and Diestel [2002] gave an even shorter and more elegant proof of Theorem 3.21, although
using many ideas introduced by Thomas. Next we present a proof of Theorem 3.21 that
mostly follows the proof of Bellenbaum and Diestel [2002] .

We remind the reader that reading this proof is not a prerequisite for reading the rest
of the thesis, and warn that it can be a bit more complicated than, for example, the
material in Chapter 4. We also advise the reader that the interesting case of the leannes
condition from the viewpoint of this thesis is the single-bag case of t1 = t2, and the proof
becomes a bit easier if one thinks only about this case.

3.4 Lean tree decompositions 79

3.4.1 The proof

This subsection is dedicated to the proof of Theorem 3.21. The high-level outline of the
proof is as follows. We first take a tree decomposition (T, bag) that is “optimal” with
respect to a certain optimality criterion. Then, we show that if some pair X1, X2 of
subsets of bags would violate the leannes condition, we could use a minimum-size (X1, X2)-
separator to re-arrange the tree decomposition into an even better tree decomposition
according to the optimality criterion. This would contradict the optimality of (T, bag),
so (T, bag) must be lean.

Let us then give the proof in detail. For a tree decomposition (T, bag) of an n-vertex graph
G, we say that its width-vector is the (n+ 1)-element vector w̄ = (a0, a1, . . . , an), where
ai ∈ Z≥0 is the number of bags of size i. We consider the total order of width-vectors
where w̄1 = (a0, . . . , an) is smaller than w̄2 = (b0, . . . , bn) if there exists i so that ai < bi

and aj = bj for all j > i, i.e., the lexicographic order starting from the end of the vector.

Let T = (T, bag) be a tree decomposition of G with the smallest width-vector. Clearly,
width(T) = tw(G), as otherwise an optimum-width tree decomposition of G would have
smaller width-vector. We will prove by contradiction that T is lean.

Suppose not. Then there exist nodes t1, t2 ∈ V (T) and sets of vertices X1 ⊆ bag(t1),
X2 ⊆ bag(t2) so that flow(X1, X2) < min(|X1|, |X2|) and all adhesions of edges on the t1-
t2-path in T have size more than flow(X1, X2). Furthermore, let us select such quadruple
t1, t2, X1, X2 so that t1 and t2 have the minimum possible distance in T .

Then, we select an (X1, X2)-separator S of size |S| = flow(X1, X2) as follows. We define
a function d : V (G)→ Z≥0 so that d(v) is the distance between the unique t1-t2-path in
T and the closest bag containing v. Note that if v occurs on some bag on the t1-t2-path
then d(v) is 0, and otherwise a node tv with v ∈ bag(tv) minimizing the distance to the
path is unique. Now, we let S be an (X1, X2)-separator of size |S| = flow(X1, X2) that
minimizes

∑
v∈S d(v).

We use S to construct an improved tree decomposition of G. Let (C1, S, C2) be a
separation of G with X1 ⊆ C1 ∪ S and X2 ⊆ C2 ∪ S. We will construct a rooted tree
decomposition T 1 of G[C1 ∪ S] and a rooted tree decomposition T 2 of G[C2 ∪ S], so that
both of them contain S as a subset of their root bags. Then we will put them together
by adding an edge between their root bags.

Let i ∈ {1, 2} and j = 3− i. Informally speaking, the tree decomposition T i = (T i, bagi)

of G[Ci ∪ S] is constructed by taking a copy of T rooted at the node tj (note tj instead
of ti), then removing all vertices in Cj , then adding S to the root bag bagi(tj), and finally

80 Survey of the literature

fixing the connectedness condition in a minimal way. In particular, note that adding S
to the root bag can break the connectedness condition for vertices in S, and a minimal
fix to that is to add, for every v ∈ S, the vertex v to every bag on the path from the root
to the subtree containing the other occurrences of v.

Formally, T i = (T i, bagi) is constructed as follows. Consider T = (T, bag) to be rooted
at tj, and let T i to be a copy of the rooted tree T . To define the bags of T i, we first
define for all t ∈ V (T) that

pulli(t) = {v ∈ S | forgetT (v) is a strict descendant of t in T}.

Note that when defining pulli, we consider T rooted at tj. Then,

bagi(t) = (bag(t) \ Cj) ∪ pulli(t)

for every t ∈ V (T). Note that the purpose of the the vertices pulli(t) is to add S to the
root bag and fix the connectedness condition.

Let us first observe that T i is indeed a tree decomposition of G[Ci ∪ S].

Lemma 3.22. T i is a tree decomposition of G[Ci ∪ S].

Proof. The vertex condition follows from the vertex condition of T , because no vertices
in Ci ∪ S are deleted and all vertices in Cj are deleted. The same argument works for the
edge condition. The connectedness condition holds trivially for vertices in Ci, as their
occurrences are not altered compared to T . For vertices v ∈ S, we observe that if a bag
of T i contains v, then the pulli sets ensure that also the parent bag contains v, which
implies the connectedness condition.

A more surprising fact, which is at the heart of this proof and eventually the algorithms
of this thesis, is that the bags of T i are no larger than those of T .

Lemma 3.23. For every t ∈ V (T) and i ∈ {1, 2}, it holds that |bagi(t)| ≤ |bag(t)|.

Proof. For clarity, we prove this for i = 1. The proof is the same for i = 2. Because
bag1(t) = (bag(t) \ C2) ∪ pull1(t), it suffices to prove that |pull1(t)| ≤ |bag(t) ∩ C2|.
Because S is a minimum-size (X1, X2)-separator, there exists a collection P = P1, . . . , P|S|

of |S| vertex-disjoint S-X2-paths (Lemma 2.3). Because (C1, S, C2) is a separation and
X2 ⊆ S ∪C2, these paths are disjoint from C1, in fact, all of their vertices except the first
ones are in C2. As pull1(t) ⊆ S, there is a subcollection P ′ ⊆ P of |pull1(t)| vertex-disjoint
pull1(t)-X2-paths.

3.4 Lean tree decompositions 81

Let us again view T as rooted at t2. Each path P ∈ P ′ intersects a bag of a strict
descendant of t because the forget-nodes of vertices in pull1(t) are strict descendants of
t. Also, P intersects X2 ⊆ bag(t2). Therefore, as G[P] is connected, P must intersect
bag(t), and because pull1(t) is disjoint with bag(t), P in fact intersects bag(t) ∩ C2. The
fact that these paths are vertex-disjoint implies |bag(t) ∩ C2| ≥ |pull1(t)|.

Because S ⊆ bag1(t2) and S ⊆ bag2(t1), it is not hard to see that the tree decomposition
T ′ = (T ′, bag′) constructed by connecting (T 1, bag1) and (T 2, bag2) by an edge between
the root node t2 of T 1 and the root node t1 of T 2 is indeed a tree decomposition of G.
By Lemma 3.23, the width of T ′ is no larger than the width of T . However, it does not
yet imply that the width-vector of T ′ is smaller than that of T .

To prove that the width-vector of T ′ is smaller than the width-vector of T , we will use an
argument similar to that of Lemma 3.23, but in a stronger form, using the optimizations
for choosing t1, t2, and S that we asserted in the beginning of the proof. The argument
of Lemma 3.23 is in fact a special case of the argument of the following proof, but they
illustrate two different viewpoints, disjoint paths and separators.

Lemma 3.24. For every t ∈ V (T) and i ∈ {1, 2}, the equality |bagi(t)| = |bag(t)| holds
only if bag(t) ⊆ Ci ∪ S.

Proof. For clarity, we prove this for i = 1. The proof is the same for i = 2. Observe that
it suffices to prove that either pull1(t) is empty or |pull1(t)| < |bag(t) ∩ C2|. For the sake
of contradiction, suppose that pull1(t) is non-empty and |pull1(t)| ≥ |bag(t) ∩ C2|. Let us
also again view T = (T, bag) as rooted at t2.

Claim 3.25. The set
S ′ = (S \ pull1(t)) ∪ (bag(t) ∩ C2)

is a (X1, X2)-separator and a (bag(t), X2)-separator.

Proof of the claim. We will prove that S ′ is a (C1 ∪ pull1(t), X2)-separator, which implies
the claim because X1 ⊆ C1 ∪ S ′ ∪ pull1(t) and bag(t) ⊆ C1 ∪ S ′.

Assume not, and let P be a shortest (C1 ∪ pull1(t))-(X2 \ S ′)-path in G \ S ′. Because
pull1(t) is a (C1, X2 \ S ′)-separator in G \ S ′, P contains no vertices in C1, and in fact all
vertices of P except the first are in C2. Because P is a connected set that intersects a
descendant of t and the root t2, it must intersect bag(t). However, bag(t) is disjoint with
pull1(t) and bag(t) ∩ C2 ⊆ S ′, so no such path P can exist in G \ S ′. C

82 Survey of the literature

Now, if |pull1(t)| > |bag(t) ∩ C2|, then |S ′| < |S|, which contradicts the fact that S is a
minimum-size (X1, X2)-separator. Otherwise, |S ′| = |S| and pull1(t) is non-empty. We
consider cases depending on whether t is on the t1-t2-path in T .

First, suppose that t 6= t1 and t is on the t1-t2-path. Our goal is to contradict the choice
of t1, in particular, to show that t should have been chosen instead. Recall that all
bags on the t1-t2-path, including bag(t), have size greater than flow(X1, X2) because the
quadruple t1, t2, X1, X2 violated the leannes condition. By Claim 3.25,

flow(bag(t), X2) ≤ |S ′| = flow(X1, X2) < min(|bag(t)|, |X2|).

As flow(bag(t), X2) ≤ flow(X1, X2), all adhesions on the t-t2-path have size greater than
flow(bag(t), X2), so t, t2, bag(t), X2 is also a quadruple that violates the leannes condition.
The distance between t and t2 is smaller than the distance between t1 and t2, so this
contradicts the choice of t1 and t2.

Then, suppose that t is not on the t1-t2-path or t = t1. We aim to contradict the choice of
S. Recall that all occurrences of vertices in pull1(t) are in the bags of strict descendants
of t. This implies that d(v) < d(u) for all v ∈ bag(t) and u ∈ pull1(t). As pull1(t) is
non-empty, it follows that

∑
v∈S′ d(v) <

∑
v∈S d(v), which contradicts the choice of S.

With the help of Lemma 3.24 we can prove that the width-vector of T ′ is smaller than
that of T . Our goal will be to show that there exists k > |S| so that T ′ has less bags of
size k than T , and for all ` > k at most as many bags of size ` as T .

Let i ∈ {1, 2} and j = 3− i. If |bagi(t)| = |bag(t)|, then by Lemma 3.24, bag(t) ⊆ Ci ∪S,
which implies that bagj(t) ⊆ S. In particular, either both bag1(t) and bag2(t) are smaller
than bag(t), or one of them has size |bag(t)| and another has size at most |S|. Let k be
the largest integer so that there is t ∈ V (T) with |bag(t)| = k such that both bag1(t) and
bag2(t) are smaller than bag(t). If k > |S|, then the above arguments imply that this is
indeed the desired k to show that the width-vector of T ′ is smaller than the width-vector
of T , so it remains to prove that indeed k > |S|.

By Lemma 3.24 the equality |bagi(t)| = |bag(t)| cannot happen if bag(t) intersects Cj , so
it suffices to show that there exists t ∈ V (T) so that |bag(t)| > |S| and bag(t) intersects
both C1 and C2. We show that such t exists on the t1-t2 path. Because each adhesion
bag(a) ∩ bag(b) of an edge ab on this path has size more than |S|, it cannot be that
bag(a) ⊆ Ci ∪ S and bag(b) ⊆ Cj ∪ S. However, because |Xi| > |S|, Xi ⊆ Ci ∪ S,
and Xi ⊆ bag(ti), we have that bag(t1) intersects C1 and bag(t2) intersects C2, so there
must be a bag on the path that intersects both C1 and C2. This finishes the proof of
Theorem 3.21.

3.4 Lean tree decompositions 83

3.4.2 Discussion

At first glance, the proof of Theorem 3.21 is not algorithmic. It starts with an imaginary
optimal tree decomposition, and proceeds by a proof by contradiction. However, we
can observe that this proof by contradiction in fact gives a procedure, that given a
tree decomposition that is not lean, improves it by improving the width-vector of it.
Because the width-vector cannot be improved forever, repeating this improvement must
eventually make any tree decomposition lean. With this procedure we obtain a lean tree
decomposition, but unlike in the statement of Theorem 3.21, it seems like we have no
guarantee on the width of it. However, it turns out that leannes itself is a strong enough
property to obtain a bound on the width as follows.

Lemma 3.26. If (T, bag) is a lean tree decomposition of a graph G, then the width of
(T, bag) is at most 3 · tw(G) + 2.

Proof. Denote tw(G) = k, and suppose that (T, bag) has width at least 3k + 3, meaning
that it has a bag W = bag(t) of size |W | ≥ 3k + 4. By Lemma 3.4, there exists a
separation (A, S,B) of G with |S| ≤ k + 1 and 0 < |W ∩ A|, |W ∩ B| ≤ 2

3
|W |. In

particular,
|W ∩ (A ∪ S)| = |W | − |W ∩B| ≥ d|W |/3e ≥ k + 2.

Similarly, we obtain that |W ∩ (B ∪ S)| ≥ k + 2. Now, W ∩ (A ∪ S) and W ∩ (B ∪ S)

are sets of size at least k + 2, and S is a (W ∩ (A ∪ S),W ∩ (B ∪ S))-separator of size
k + 1. As both W ∩ (A ∪ S) and W ∩ (B ∪ S) are subsets of the same bag W = bag(t),
this contradicts the leannes of (T, bag).

This means that the procedure is in fact a 3-approximation algorithm for treewidth!
Moreover, we only needed the single-bag case t1 = t2 of leannes to obtain the bound in
Lemma 3.26. At this point, we could ask how fast the procedure for improving non-lean
tree decompositions can be implemented, and whether the resulting approximation ratio
of 3 can be improved. These questions lead to the proof of Theorem 1.1 in Chapter 4.

Lastly, we note that in addition to this thesis, the ideas from the proof of Theorem 3.21
have been algorithmically applied in the context of computing unbreakable tree decomposi-
tions by Cygan et al. [2021]. They show that for any given parameter k, there exists a tree
decomposition whose adhesions have size at most k and the leannes conditions are satisfied
when t1 = t2 and X1 and X2 have size at most |X1|, |X2| ≤ k+ 1. Moreover, they give an
algorithm for computing such a tree decomposition in time 2O(k log k)nO(1). These unbreak-
able tree decompositions have been applied for obtaining FPT algorithms parameterized
by solution size for many different problems, for example, minimum bisection, Steiner

84 Survey of the literature

cut, fair bisection, and approximation of minimum k-cut [Cygan et al., 2021; Inamdar
et al., 2023; Lokshtanov et al., 2020b].

In the purely graph-theoretic setting, analogues of Theorem 3.21 have been given for
several other width parameters. Geelen et al. [2002] showed that connectivity functions
admit optimal branch decompositions that are “linked”, which is a property analogous to
a weaker version of leannes that holds only for t1 6= t2. An analogue of Theorem 3.21 but
for tree-cut width was given by Giannopoulou et al. [2021]. Erde [2018] gave a general
framework for results like this, and as an application showed an analogue of Theorem 3.21
for matroid treewidth.

Part II

Contributions

Chapter 4

Fast 2-approximation algorithm for
treewidth

In this chapter we prove the following theorem about 2-approximating treewidth.

Theorem 1.1. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k)n either outputs a tree decomposition of G of width at most 2k + 1 or
determines that the treewidth of G is larger than k.

As discussed before, the high-level idea behind the proof of Theorem 1.1 is to introduce
an algorithmic version of the tree decomposition improvement procedure in the proof of
[Bellenbaum and Diestel, 2002; Thomas, 1990], and then optimize its running time. In
this chapter, we follow a self-contained presentation and do not assume any familiarity
with the aforementioned proof.

4.1 Overview

We now give a high-level outline of the algorithm of Theorem 1.1 before formally presenting
it. The algorithm is based on applying iterative improvement operations to a tree
decomposition. By Theorem 3.8, suppose we have a tree decomposition T = (T, bag) of
a graph G, having width between 2k + 2 and 4k + 3. Our goal is to either conclude that
G has treewidth higher than k, or to improve the width of T to 2k + 1.

Let r be a node of T so that width(T) = |bag(r)| − 1. We introduce an improvement
operation, that takes bag(r), and either concludes that the treewidth of G is more than k,
or transforms T into an improved tree decomposition T ′. The resulting tree decomposition

88 Fast 2-approximation algorithm for treewidth

T ′ has width at most the width of T , and it has less bags of size |bag(r)| than T has.
Therefore, applying |T | = O(n) improvement operations will be sufficient for decreasing
the width of T by one, and O(kn) improvement operations for decreasing the width
to 2k + 1.

A natural implementation of the improvements would give a running time of 2O(k)n

per operation, resulting in a total time of 2O(k)n2. We then introduce a modified,
“local”, version of the improvement operation, which makes certain optimizations in the
construction of T ′. With this optimized version, we then introduce a potential function
Φ(T) that is initially bounded by 2O(k)n and for which Φ(T ′) < Φ(T) holds, and show
that with the help of appropriate data structures each improvement operation can be
implemented in time 2O(k) · (Φ(T)− Φ(T ′)). This yields the running time 2O(k) · Φ(T) =

2O(k)n over any sequence of improvement operations, resulting in Theorem 1.1.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the improve-
ment operation and prove its main graph-theoretic properties. In Section 4.3 we introduce
the optimized version of the improvement operation and the potential function Φ, and
analyze them. Then, in Section 4.4 we show that the algorithm can be implemented in
2O(k)n time.

4.2 Improving a tree decomposition

In this section we describe the tree decomposition improvement operation and prove its
main graph-theoretic properties. Many ideas of this section are inspired by the proofs of
[Bellenbaum and Diestel, 2002; Thomas, 1990], but none of our proofs is directly from
therein. In particular, our construction of an improved tree decomposition differs from
their construction in that we “split” a tree decomposition into three parts, instead of
their two parts. This is crucial for obtaining 2-approximation instead of 3-approximation.
Our construction would also work for splitting a tree decomposition into more than three
parts, but this would not anymore improve the approximation ratio.

4.2.1 Splittable sets of vertices

Let G be a graph. We say that a set of vertices W ⊆ V (G) is splittable if V (G) can
be partitioned into four, possibly empty, sets (C1, C2, C3, S) so that there are no edges
between Ci and Cj for i 6= j and |(W ∩ Ci) ∪ S| < |W | holds for all i ∈ [3]. We call such
4-tuple a split of W .

4.2 Improving a tree decomposition 89

The next lemma shows that if a tree decomposition of a graph G has width larger than
2k + 1, then either a largest bag of the tree decomposition is splittable or the treewidth
of G is larger than k.

Lemma 4.1. Let G be a graph of treewidth ≤ k. Any set of vertices W ⊆ V (G) of size
|W | ≥ 2k + 3 is splittable.

Proof. By Lemma 3.2, there exists a W -balanced separator S of size |S| ≤ k + 1. By
the definition of W -balanced separator, for every connected component C ∈ cc(G \ S) it
holds that |C ∩W | ≤ |W |/2, but there may be more than three components. We claim
that these components can be merged into a partition C of V (G) \ S with at most three
parts so that for each part C ∈ C it holds that |C ∩W | ≤ |W |/2.

This merging can be achieved by a following process. Let initially C = cc(G \ S). While
C has at least four parts, let C1 and C2 be the two parts with the smallest values of
|Ci ∩W |. We replace C1 and C2 by their union C1 ∪ C2. In this case it must hold that
|(C1 ∪C2)∩W | ≤ |W |/2, because there were at least four parts, and C1 and C2 were the
two parts with the smallest values of |Ci ∩W |.

We end up with a partition C of V (G)\S with at most three parts so that |C∩W | ≤ |W |/2
for all C ∈ C and there are no edges between Ci and Cj for distinct Ci, Cj ∈ C. This
directly gives a split of W because |(W ∩ C) ∪ S| ≤ |W |/2 + k + 1 < |W |.

In the algorithm, the set W will always be the root bag of the rooted tree decomposition
T = (T, bag) we are improving, i.e., W = bag(r) for the root r of T . Moreover, it will
always be a largest bag, i.e., |W | = |bag(r)| = width(T) + 1.

We impose additional restrictions on the splits that we consider. Recall that depthT (x) for
a node x of T is the distance from x to the root, forgetT (v) for a vertex v ∈ V (G) is the
unique node of T closest to the root whose bag contains v, and consider the vertex-depth
function depthT (v) = depthT (forgetT (v)). A split (C1, C2, C3, S) of W is a minimum split
of W if the split minimizes |S| among all splits of W , and among splits minimizing |S|,
it further minimizes depthT (S) =

∑
v∈S depthT (v). The improvement operation will be

performed using a minimum split of W .

4.2.2 The improvement operation

We describe the construction of an improved tree decomposition by using a minimum
split of the root bag. This construction is illustrated with an example in Figure 4.1.

90 Fast 2-approximation algorithm for treewidth

T
a, b, c, d, er

a, b, f, gx

a, f, g, hy

d, e, i, jz

d, i, j, kw

↓
h, ir′

T 1

a, c, h, ir1

a, hx1

a, hy1

iz1

i, kw1

T 2

b, h, ir2

b, g, hx2

g, hy2

iz2

iw2

T 3

d, e, h, ir3

f, hx3

f, hy3

d, e, i, jz3

d, i, jw3

Figure 4.1: Example of the improvement operation. A tree decomposition T = (T, bag)
of a graph G with V (T) = {r, x, y, z, w} and V (G) = {a, b, c, d, e, f, g, h, i, j, k},
with root bag bag(r) = {a, b, c, d, e} (top). For a minimum split (C1, C2, C3, S) =
({a, c, k}, {b, g}, {d, e, f, j}, {h, i}) of bag(r), the constructed improved tree decomposition
(bottom). It holds that pull(r) = {h, i}, pull(x) = {h}, and pull(t) = ∅ for t ∈ {y, z, w}.

Let T = (T, bag) be a tree decomposition of a graph G, rooted at a node r, and
(C1, C2, C3, S) a minimum split of bag(r). We first give a slightly informal description of
the improvement operation and then a more formal description with additional notation.

For each i ∈ [3], we construct a tree decomposition T i = (T i, bagi) of the induced
subgraph G[Ci ∪ S] as follows. We first set T i to be the copy of T obtained by renaming
each node x ∈ V (T) to xi. Then, the bags of T i are obtained by removing all other
vertices than Ci ∪ S from each bag of T , and then inserting each vertex v ∈ S to all bags
on the path from the root to the forget-node of v (excluding the forget-node, whose bag
already contains v). In particular, each T i will have a root bag bagi(ri) = (bag(r)∩Ci)∪S.
Then, the improved tree decomposition is obtained by combining T 1, T 2, and T 3 by
connecting them from their roots r1,r2, and r3 to a new node whose bag is equal to S.

Next we define the construction of the improved tree decomposition more formally with
the help of some additional notation. First, for each node x of the tree decomposition T
we define the subset of S inserted to bagi(xi) for all i ∈ [3] to be

pull(x) = {v ∈ S | forgetT (v) is a strict descendant of x in T}.

Note that pull(x) ⊆ S \ bag(x), and if y is an ancestor of x, then pull(x) ⊆ pull(y).

4.2 Improving a tree decomposition 91

Then we can define the tree decomposition T i = (T i, bagi).

Definition 4.2 (The tree decomposition T i). Let (T, bag) be a tree decomposition rooted
at a node r and (C1, C2, C3, S) a minimum split of bag(r). For each i ∈ [3], the rooted
tree decomposition (T i, bagi) is obtained by setting T i to be the copy of T with each node
x renamed to xi, and for all x ∈ V (T) setting bagi(xi) = (bag(x) ∩ (Ci ∪ S)) ∪ pull(x).

In other words, for each node x of T , each tree decomposition T i contains a node xi, so
that bagi(xi) is obtained from bag(x) by first removing all vertices not in (Ci ∪ S) and
then inserting the set pull(x). The insertions of the vertices in pull(x) can be seen as first
adding S to the bag of the root bagi(ri), and then fixing the connectedness condition by
“pulling up” vertices v ∈ S from their forget-nodes to the root. In particular, they ensure
that if pi is the parent of a node xi in T i, then bagi(xi) ∩ S ⊆ bagi(pi) ∩ S. This ensures
that the connectedness condition holds for vertices in S, and the rest of the conditions of
tree decompositions are easy to check to conclude that T i is a tree decomposition of the
induced subgraph G[Ci ∪ S].

The improved tree decomposition T ′ of T with respect to (C1, C2, C3, S) is then obtained
by taking the disjoint union of T 1, T 2, and T 3 and connecting each of them from their
roots to a new root node r′ whose bag is bag′(r′) = S.

Lemma 4.3. The improved tree decomposition is a tree decomposition of G.

Proof. As argued above, for each i ∈ [3], the tree decomposition T i is a tree decomposition
of the graph G[Ci ∪ S]. As S pairwise separates the sets of vertices Ci from each other, it
follows that each edge and vertex of G is in one of the induced subgraphs G[Ci ∪ S], and
therefore as T i is a tree decomposition of G[Ci ∪ S], the improved tree decomposition
satisfies the vertex and edge conditions of tree decompositions. The connectedness
condition for vertices not in S follows from the fact that each T i satisfies the connectedness
condition and that each vertex not in S appears in exactly one T i. For vertices in S, the
connectedness condition is satisfied because it is satisfied for each T i, S ⊆ bagi(ri), and
S = bag′(r′).

Next we prove the main lemma for arguing that that the improved tree decomposition is
indeed improved. The structure of the proof is to assume otherwise and then construct
a split (C ′1, C

′
2, C

′
3, S

′) that would contradict the fact that (C1, C2, C3, S) is a minimum
split. This argument is illustrated in Figure 4.2.

Lemma 4.4. Let T = (T, bag) be a rooted tree decomposition, W = bag(r) the root bag
of T , and (C1, C2, C3, S) a minimum split of W . For each node x of T and any pair of
distinct i, j ∈ [3] it holds that either |pull(x)| < |bag(x) ∩ (Ci ∪ Cj)| or pull(x) = ∅.

92 Fast 2-approximation algorithm for treewidth

pull(x)

C1 C3 C2

bag(x)

W = bag(r)

S

⇒

C ′1 C ′3 C ′2

bag(x)

W = bag(r)

S ′

Figure 4.2: Constructing a split (C ′1, C
′
2, C

′
3, S

′) of W from a split (C1, C2, C3, S) of W in
the proof of Lemma 4.4. The blue illustrates the set W , the orange the set bag(x), and
the green the set S. The set pull(x) is the part of S that is below bag(x).

Proof. By symmetry, we assume without loss of generality that i = 1, j = 2. Suppose
that |pull(x)| ≥ |bag(x) ∩ (C1 ∪ C2)| and pull(x) is non-empty. We claim that there
is a split (C ′1, C

′
2, C

′
3, S

′) of W with S ′ = (S \ pull(x)) ∪ (bag(x) ∩ (C1 ∪ C2)). This
split would contradict the minimality of the original split because |S ′| ≤ |S| and the
forget-nodes of vertices in pull(x) are strict descendants of x and thus strict descendants
of the forget-nodes of vertices in bag(x)∩ (C1∪C2), implying that depthT (u) < depthT (v)

for all u ∈ bag(x) ∩ (C1 ∪ C2) and v ∈ pull(x).

To show that there is indeed such a split (C ′1, C
′
2, C

′
3, S

′), first note that pull(x) does
not intersect W because bag(x) separates pull(x) from W and bag(x) ∩ pull(x) = ∅, so
W ∩ S ⊆ W ∩ S ′. Next we prove that the sets of vertices (W ∩ C1) \ S ′, (W ∩ C2) \ S ′,
and (W ∩ C3) \ S ′ are in different connected components of G \ S ′. This implies that we
can partition V (G) \ S ′ to (C ′1, C

′
2, C

′
3) so that W ∩ C ′i = (W ∩ Ci) \ S ′ and there are no

edges between C ′i and C ′j for i 6= j, implying that (C ′1, C
′
2, C

′
3, S

′) is a split of W .

Suppose that there is a path from (W∩Ck)\S ′ to (W∩C`)\S ′, with k 6= `, in G\S ′, and by
symmetry assume that k ∈ [2]. The path must intersect pull(x) before intersecting other
vertices of V (G) \ Ck because S ′ ∪ pull(x) ⊇ S separates Ck from V (G) \ Ck. Therefore
we have a path from W ∩Ck to pull(x) that is contained in (Ck ∪ pull(x)) \ S ′. This path
must have a vertex in bag(x) because bag(x) separates W from pull(x). However, because
k ∈ [2], bag(x) ∩ (Ck ∪ pull(x)) = bag(x) ∩ Ck ⊆ S ′, so this path cannot have a vertex in
bag(x).

Because bagi(xi) = (bag(x) \ (Cj ∪ Ck)) ∪ pull(x) where i, j, k is a permutation of 1, 2, 3,
Lemma 4.4 implies that |bagi(xi)| ≤ |bag(x)| for all i ∈ [3], and that |bagi(xi)| < |bag(x)|
if pull(x) is non-empty. This shows that the width of the improved tree decomposition is at

4.3 Amortized local improvement 93

most the width of T . Moreover, the only case when |bagi(xi)| = |bag(x)| can hold is when
bag(x) ⊆ Ci ∪S, in which case it holds that bagi(xi) = bag(x) and bagj(xj) = bag(x)∩S
for j 6= i. Together with the fact that |bagi(ri)| < |bag(r)| and |S| < |bag(r)| by the
definition of a split, this implies that the number of bags of size |bag(r)| in the improved
tree decomposition is smaller than the number of bags of size |bag(r)| in T if bag(r) is a
largest bag of T .

At this point, we have ingredients for a quite simple 2-approximation algorithm for
treewidth running in time 2O(k)n2: By rooting the tree decomposition at a largest bag,
the improvement operation decreases the number of largest bags by one. As the number
of largest bags is initially at most n (recall Lemma 2.13), it suffices to perform at most
n iterations of the improvement operation to improve the width by one. By making
use of Theorem 3.8, we can assume to start with a 4-approximate tree decomposition,
so O(nk) iterations of the improvement operation are sufficient. Each iteration can be
implemented in 2O(k)n time by finding a minimum split by dynamic programming on
the tree decomposition we have, thus resulting in a total running time of 2O(k)n2. In the
following two sections we improve this to 2O(k)n.

4.3 Amortized local improvement

A direct implementation of the improvement operation of the previous section would
have running time Ω(n), which would result in Ω(n2) running time over n improvements.
In this section we introduce the pruned improvement operation that is a slightly changed
version of the improvement operation of the previous section. We show that the pruned
improvement operation can be implemented so that the number of nodes edited over
the course of the algorithm is bounded by 2O(k)n, and moreover that in each pruned
improvement operation the nodes edited form a subtree containing the root, i.e., a prefix.

The main idea behind the pruned improvement operation is to exploit the fact that,
as was discussed in the end of the previous section, |bagi(xi)| = |bag(x)| can hold only
in the case when bag(x) ⊆ Ci ∪ S, in which case bagi(xi) = bag(x). In this case, the
whole subtree of T rooted at x will be handled in constant time by directly copying it
to T i, and not constructing a subtree corresponding to it in T j for j 6= i. In the other
case, when |bagi(xi)| < |bag(x)| for all i ∈ [3], the work will be charged from a potential
function that is initially bounded by 2O(k)n.

94 Fast 2-approximation algorithm for treewidth

T
a, b, c, d, er

a, b, f, gx

a, f, g, hy

d, e, i, jz

d, i, j, kw

↓
h, ir′

T 1

a, c, h, ir1

a, hx1

a, hy1

T 2

b, h, ir2

b, g, hx2

g, hy2

T 3

d, e, h, ir3

f, hx3

f, hy3

d, e, i, jz3

d, i, j, kw3

Figure 4.3: Example of the pruned improvement operation. A tree decomposition T =
(T, bag) of a graph G with V (T) = {r, x, y, z, w} and V (G) = {a, b, c, d, e, f, g, h, i, j, k},
with root bag bag(r) = {a, b, c, d, e} (top). For a minimum split (C1, C2, C3, S) =
({a, c, k}, {b, g}, {d, e, f, j}, {h, i}) of bag(r), the constructed pruned improved tree de-
composition (bottom). The nodes r, x, and y are editable, and the nodes z and w are
covered by C3. Note that even though the vertex k is in C1, it occurs in pruned T 3

instead of pruned T 1 because the only node whose bag contains k is covered by C3.

4.3.1 Pruned improvement operation

We define the pruned improvement operation which will be used instead of the improve-
ment operation of Section 4.2. The pruned improvement operation is illustrated with an
example in Figure 4.3.

Let T = (T, bag) be a tree decomposition rooted at a node r and (C1, C2, C3, S) a
minimum split of bag(r). We say that a node x of T is editable if bag(x) intersects at
least two of the sets C1, C2, C3 and every ancestor of x is editable. The root r is always
editable because the definition of a split implies that bag(r) must intersect at least two
of the sets C1, C2, and C3, and therefore the set of editable nodes forms a prefix of T .

Observe that a node x that is not editable has a unique highest ancestor y (which may
be x itself) for which it holds that bag(y) ⊆ Ci ∪ S for some i ∈ [3]. In this case we say
that x is covered by Ci (or just covered without specifying Ci). When bag(y) ⊆ S, we
define that x is covered by C1, but not by C2 or C3, implying that every node that is not
editable is covered by exactly one Ci. Observe that by definition, if x is covered by Ci
then also all of its descendants are covered by Ci. In particular, T can be partitioned

4.3 Amortized local improvement 95

into a prefix of editable nodes, and multiple rooted subtrees, each of which has a root x
with bag(x) ⊆ Ci ∪ S for some i ∈ [3] and whose all nodes are covered by Ci.

We also make the following observation.

Lemma 4.5. If a node x is covered, then pull(x) = ∅.

Proof. The node x has an ancestor y for which it holds that bag(y) ⊆ Ci ∪ S for some
i ∈ [3]. Now, as |bag(y) ∩ (Cj ∪ Ck)| = 0, where i, j, k is a permutation of 1, 2, 3,
by Lemma 4.4 it holds that pull(y) = ∅. By the definition of pull(x), we have that
pull(x) ⊆ pull(y) whenever y is an ancestor of x.

Next we define the tree decomposition T i in the pruned improvement operation.

Definition 4.6 (Pruned T i). Let T be a tree decomposition rooted at a node r and
(C1, C2, C3, S) a minimum split of bag(r). For each i ∈ [3], the pruned T i = (T i, bagi) is
obtained by replacing each node x of T by

1. a node xi with bagi(xi) = (bag(x) ∩ (Ci ∪ S)) ∪ pull(x) if x is editable,

2. a node xi with bagi(xi) = bag(x) if x is covered by Ci, or

3. nothing if x is covered by Cj for j 6= i.

For editable nodes, the construction of pruned T i is the same as the original construction
of T i. For a node x that is covered by Ci, a copy xi is created to the decomposition
T i, but no copies xj to T j for j 6= i are created. In particular, one may think of the
construction of pruned T i as first creating the original construction for the editable nodes,
and then for each node x that is covered by Ci and whose parent p is editable, copying
the subtree rooted at x from T to T i, attaching it as a child of pi.

Next we show that pruned T i can be used in the improvement operation instead of the
original T i.

Lemma 4.7. Let T = (T, bag) be a tree decomposition rooted at a node r and
(C1, C2, C3, S) a minimum split of bag(r). The tree decomposition T ′ constructed by con-
necting pruned T 1, T 2, T 3 from their roots r1, r2, r3 to a new node r′ with bag′(r′) = S

is a tree decomposition of G.

Proof. First, note that for every node x of T , either a node xi with bag′(xi) = bag(x)

appears in the construction, or the nodes xi with bag′(xi) = (bag(x) ∩ (Ci ∪ S)) ∪ pull(x)

96 Fast 2-approximation algorithm for treewidth

for all i ∈ [3] appear in the construction. Therefore, as every vertex and edge of G is in
some induced subgraph G[Ci ∪ S] for i ∈ [3], the constructed tree decomposition satisfies
the vertex and edge conditions.

For the connectedness condition for a vertex v ∈ Ci, there are two cases. First, if v does
not appear in a bag of any editable node, then v must be completely contained in the
bags of a rooted subtree covered by some Cj , and therefore because this subtree is directly
copied to pruned T j, the connectedness condition is maintained. Second, if v appears in
a bag of an editable node, v will appear only in pruned T i. This is because now, if there
is a covered node x with v ∈ bag(x), it must be covered by Ci, because otherwise the bag
bag(y) of the highest covered ancestor y of x would not contain v, but y would separate x
from the editable nodes, violating the connectedness condition for v in T . Therefore for
each node x of the subtree containing v in T , there will be a node xi with v ∈ bagi(xi)

in pruned T i, and therefore the connectedness condition is satisfied for v.

Finally, we argue that the connectedness condition holds for each vertex v ∈ S. To this
end, we first observe that because the root is editable, it holds that S ⊆ bagi(ri) for every
i ∈ [3]. Second, we show that if v ∈ bagi(xi) for a non-root node xi of pruned T i, then it
also holds that v ∈ bagi(pi) for the parent pi of xi. If the parent p of x is editable, we
have that if v ∈ bagi(xi), then either v ∈ bag(p) or v ∈ pull(p) and thus v ∈ bagi(pi). If
both x and its parent p are covered by Ci, we have that if v ∈ bag(x), then v ∈ bag(p),
because pull(p) = ∅ by Lemma 4.5, implying that if v ∈ bagi(xi) then v ∈ bagi(pi).

The pruned improvement operation will be implemented by only editing the tree de-
composition for the editable nodes, and directly copying the covered rooted subtrees in
constant time by just changing pointers. In Section 4.4 we will argue that with the help
of appropriate data structures, the pruned improvement operation can be implemented in
time 2O(k)t, where t is the number of editable nodes. In order to do this, one remaining
property to require in the improvement operation is to maintain that T is subcubic, i.e.,
has maximum degree 3. Next we give the final definition of our improvement operation
that maintains this by duplicating each node ri if necessary.

Definition 4.8 (Pruned improved tree decomposition). Let T = (T, bag) be a subcubic
tree decomposition rooted at a node r and (C1, C2, C3, S) a minimum split of bag(r). The
pruned improved tree decomposition T ′ of T with respect to (C1, C2, C3, S) is constructed
by first constructing pruned T 1, T 2, T 3, then for each i ∈ [3], if ri has three children
ci1, ci2, and ci3, adding a new node si with bagi(si) = bagi(ri) connected to ri, ci1, and
ci2, removing the edges between ri and ci1, ci2, and then combining T 1, T 2, and T 3 by
connecting each ri to a new node r′ with bag′(r′) = S.

4.3 Amortized local improvement 97

The construction of the pruned improved tree decomposition maintains maximum degree
3 because pruned T i has the same maximum degree as T , and splitting the node ri into
ri and si ensures that the degree of ri is at most 2 in T i, implying it is at most 3 in T ′.

4.3.2 Amortization

We show that the total number of editable nodes over the course of a sequence of pruned
improvement operations is bounded by 2O(k)n. Here we use the property that bag(r) is a
largest bag of T , i.e., the width of T is assumed to be |bag(r)| − 1. For the amortization,
we define the following potential function on a tree decomposition T .

Definition 4.9. Let T be a tree decomposition, w an integer, and x a node of T . The
w-potential of x in T is

Φw,T (x) =

{
|bag(x)| · 3|bag(x)|, if |bag(x)| ≤ w and
3|bag(x)| · 3|bag(x)|, if |bag(x)| > w.

The w-potential of T is Φw(T) =
∑

x∈V (T) Φw,T (x).

The w-potential of a tree decomposition T of width k is bounded by O(3k · k · |T |). Next
we show that a pruned improvement operation on a largest bag of size w + 1 decreases
the w-potential by at least the number of editable nodes.

Lemma 4.10. Let T be a subcubic tree decomposition of width w rooted at a node r, and
assume |bag(r)| = w + 1. Let also (C1, C2, C3, S) be a minimum split of bag(r). If T ′ is
the pruned improved tree decomposition of T with respect to (C1, C2, C3, S) and t is the
number of editable nodes, then Φw(T ′) ≤ Φw(T)− t.

Proof. The tree decomposition T ′ will have four types of nodes: nodes xi corresponding
to covered nodes of T , nodes xi corresponding to editable non-root nodes of T , nodes ri

and si corresponding to the root of T , and the node r′ with bag′(r′) = S.

Let E be the set of editable nodes of T , excluding the root r. Let E ′ be the set of
nodes of T ′ corresponding to the nodes E , i.e., E ′ = {xi | x ∈ E and i ∈ [3]}. Define
Φw(E) =

∑
x∈E Φw,T (x) and Φw(E ′) =

∑
x′∈E ′ Φw,T ′(x′). As the contribution of covered

nodes is the same for Φw(T ′) and Φw(T), we get that

Φw(T ′) ≤ Φw(T) + Φw(E ′)− Φw(E)− Φw,T (r) + Φw,T ′(r′) +
∑
i∈[3]

(
Φw,T ′(ri) + Φw,T ′(si)

)
.

98 Fast 2-approximation algorithm for treewidth

Let us start by bounding Φw(E ′) − Φw(E). By applying Lemma 4.4 and the fact that
each editable node x intersects Ci for at least two different i ∈ [3], we get that for every
x ∈ E it holds that

|bag′(xi)| = |bag(x)| − |bag(x) ∩ (Cj ∪ Ck)|+ |pull(x)| < |bag(x)|,

where i, j, k is a permutation of 1, 2, 3. Therefore, by |bag(x)| ≤ w + 1 we get that∑
i∈[3]

Φw,T ′(xi) ≤ 3(|bag(x)| − 1) · 3|bag(x)|−1 ≤ (|bag(x)| − 1) · 3|bag(x)| ≤ Φw,T (x)− 1,

which implies Φw(E ′) ≤ Φw(E)− |E|, implying that

Φw(T ′) ≤ Φw(T)− |E| − Φw,T (r) + Φw,T ′(r′) +
∑
i∈[3]

(
Φw,T ′(ri) + Φw,T ′(si)

)
.

For bounding the potential of the nodes ri, si, and r′, first we observe that the definition
of a split implies

|bag′(r′)| ≤ |bag′(ri)| = |bag′(si)| < |bag(r)| = w + 1.

As |bag(r)| = w + 1, it holds that Φw,T (r) ≥ 9 · Φw,T ′(ri), and therefore

Φw,T (r) ≥ 1 + Φw,T ′(r′) +
∑
i∈[3]

(
Φw,T ′(ri) + Φw,T ′(si)

)
,

which implies
Φw(T ′) ≤ Φw(T)− |E| − 1,

which implies the conclusion, as the number of editable nodes is |E|+ 1.

By Lemma 4.10, the total number of editable nodes over all operations when improving
a tree decomposition T of width w using pruned improvement operations on largest bags
is bounded by Φw(T) = 2O(w) · |T |, which by Lemma 2.13 can be assumed to be 2O(w)n.

4.4 Implementation in linear time

In this section we show that our algorithm can be implemented in 2O(k)n time. We give a
data structure that allows implementing the pruned improvement operation of Section 4.3
in 2O(k)t time, where t is the number of editable nodes, and in particular allows walking

4.4 Implementation in linear time 99

over the tree decomposition to perform the operation to all largest bags in a total of
2O(k)n time.

4.4.1 Overview

We treat our algorithm in the form that the input consists of a graph G, an integer k,
and a subcubic tree decomposition T of G of width w, where 2k + 2 ≤ w ≤ 4k + 3.
The algorithm either outputs a tree decomposition of width at most w − 1, or concludes
that the treewidth of G is larger than k. It is easy to see that O(k) applications of
this algorithm gives the algorithm A of Theorem 3.8 and therefore also the algorithm of
Theorem 1.1 up to a factor of kO(1) in the running time.

We note that given a tree decomposition T of width w, by using Lemmas 2.13 and 2.14
we can obtain a subcubic tree decomposition of width w and O(n) nodes in wO(1)|T |
time, so we will assume that the input tree decomposition T has this form.

During the algorithm we maintain a subcubic tree decomposition T = (T, bag) and a
root pointer to a node r of T . We treat T as rooted at r. We implement a data structure
that supports the following queries:

1. Init(T , r): Initializes the data structure with a subcubic tree decomposition T of
width w and a root node r ∈ V (T) in time 2O(w)|T |.

2. Move(s): Moves the root pointer from r to an adjacent node s in time 2O(w).

3. Split(): Returns ⊥ if bag(r) is not splittable, otherwise sets the internal state of the
data structure to represent a minimum split (C1, C2, C3, S) of bag(r) and returns
>. Runs in time 2O(w).

4. State(): Assuming there has been a successful Split query after the previous Init or
Edit query, returns the intersection (C1∩bag(r), C2∩bag(r), C3∩bag(r), S∩bag(r))

of bag(r) and the minimum split (C1, C2, C3, S) represented by the internal state.
Runs in time wO(1).

5. Edit(T ∗, T ′, bag′, π, r′): Given a subtree T ∗ of T with r ∈ V (T ∗), replaces T ∗ by a
given new subtree T ′ and a given bag function bag′ : V (T ′) → 2V (G). Here, π is
a function from the nodes of T \ T ∗ whose parents are in T ∗ to the nodes of T ′,
specifying how T \ T ∗ will be connected to T ′. The root pointer r will be set to
the given node r′ ∈ V (T ′). Assumes that the constructed tree decomposition is
subcubic and has width at most w, and runs in time 2O(w)(|V (T ∗)|+ |V (T ′)|).

100 Fast 2-approximation algorithm for treewidth

We give a detailed description of the data structure in the next subsection. Then, in
Subsection 4.4.3 we give our algorithm, using the data structure. In Subsection 4.4.4 we
give a more fine-grained bound for the 2O(k) factor in the running time of the algorithm.

4.4.2 The data structure

We now describe the details of the data structure. The data structure is essentially a
dynamic programming table on the tree decomposition T , directed towards the root r.
The main idea of the Move(s) query is that moving the root r to an adjacent node s
changes the dynamic programming tables of only the nodes r and s, and therefore only
their tables should be recomputed. For the Split query an essential idea is that while the
properties of a split depend on the intersection of bag(r) with the split (C1, C2, C3, S),
the set bag(r) does not need to be “globally specified” to the dynamic programming
because the set bag(r) will also correspond to the root node of the dynamic programming.
The state queries are implemented by tracing the solution backwards in the dynamic
programming, and the edit query by removing the old subtree and computing the dynamic
programming tables for the new subtree in a bottom-up manner.

The dynamic programming used will be a quite standard application of dynamic pro-
gramming on tree decompositions for vertex partitioning problems. The perhaps most
non-standard part is the secondary optimization of depthT (S) required by the definition
of a minimum split. All of the 2O(w) factors in the running times of the data structure
operations are of form 4wwO(1), in particular the exponential factor 4w arising from the
number of ways a bag of size at most w + 1 can intersect a split (C1, C2, C3, S).

Stored information

Let x be a node of T with a bag B = bag(x), Tx the tree decomposition obtained
by restricting T to the subtree rooted at x, and G[Tx] the subgraph of G induced by
vertices in the bags of Tx. For each partition (C1 ∩ B,C2 ∩ B,C3 ∩ B, S ∩ B) of B
and integer 0 ≤ h ≤ w we have a table entry D[x][(C1 ∩ B,C2 ∩ B,C3 ∩ B, S ∩ B)][h].
This table entry stores ⊥ if there is no partition (C1, C2, C3, S) of V (G[Tx]) such that
|S| = h and there are no edges between C1, C2, C3. If there is such a partition, then
the minimum possible integer depthTx(S) over all such partitions is stored, defined as
depthTx(S) =

∑
v∈S depthTx(forgetTx(v)). In particular, if x = r, then depthTx(S) is the

function that should be minimized on a minimum split as a secondary measure after
minimizing |S|.

4.4 Implementation in linear time 101

Additionally, for each node x there may be an “internal state” stored in order to trace the
dynamic programming backwards to implement the State queries after a Split query. The
internal state is a pair ((C1 ∩B,C2 ∩B,C3 ∩B, S ∩B), h), specifying the table entry of
this node to which the minimum split fixed by the previous Split query corresponds.

We note that if x is a leaf node then |V (G[Tx])| ≤ w + 1, and therefore all entries
D[x][. . .][. . .] can be computed directly in 2O(w) time.

Transitions

Let x be a node with at most three children c1, c2, c3, with x having a bag B = bag(x)

and the children having bags B1 = bag(c1), B2 = bag(c2), and B3 = bag(c3). We next
describe how to compute in 2O(w) time the table entries D[x][. . .][. . .] given the table
entries D[c1][. . .][. . .], D[c2][. . .][. . .], and D[c3][. . .][. . .].

First, we edit the stored depths depthTci (S) in the entries D[{c1, c2, c3}][. . .][. . .] to cor-
respond to depths in Tx instead of Tci . In particular, we increment the stored depth
depthTci (S) in each entry D[ci][(C1∩Bi, C2∩Bi, C3∩Bi, S∩Bi)][h] 6= ⊥ by h−|S∩B∩Bi|.
Then we do the transition by first decomposing it into O(w) “nice” transitions of types
“introduce”, “forget”, and “join”. In particular, we simulate the construction of a nice tree
decomposition from Lemma 2.15 inside our tree decomposition.

In an introduce transition we have a node x with a bag B with a single child c with a
bag B′ ⊆ B and |B \ B′| = 1. In a forget transition we have a node x with a bag B
with a single child c with a bag B′ ⊇ B and |B′ \ B| = 1. In a join transition we have
a node x with a bag B with two children c1,c2, with bags B1,B2 with B = B1 = B2.
The decomposition into nice transitions is done by first forgetting every vertex not in
bag(x), then introducing every vertex in bag(x), and then joining, i.e., similarly to the
construction of nice tree decompositions in Lemma 2.15.

The transitions follow standard ideas of dynamic programming on tree decompositions
and can be performed in time 2O(w) as follows. We define D[. . .][. . .][h] = ⊥ for all h < 0

and for all h > w.

Introduce. Let {v} = B \B′. For each partition (C1 ∩B,C2 ∩B,C3 ∩B, S ∩B) of B
and each integer 0 ≤ h ≤ w we set

D[x][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B)][h] =

D[c][(C1 ∩B \ {v}, C2 ∩B \ {v}, C3 ∩B \ {v}, S ∩B \ {v})][h− |{v} ∩ S|],

102 Fast 2-approximation algorithm for treewidth

if there are no edges between C1 ∩B, C2 ∩B, C3 ∩B, and otherwise to ⊥.

Forget. Let {v} = B′ \B. For each partition (C1 ∩B,C2 ∩B,C3 ∩B, S ∩B) of B and
each integer 0 ≤ h ≤ w we set

D[x][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B)][h] =

min{ D[c][(C1 ∩B ∪ {v}, C2 ∩B,C3 ∩B, S ∩B)][h],

D[c][(C1 ∩B,C2 ∩B ∪ {v}, C3 ∩B, S ∩B)][h],

D[c][(C1 ∩B,C2 ∩B,C3 ∩B ∪ {v}, S ∩B)][h],

D[c][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B ∪ {v})][h] },

where min(⊥, n) = n for any integer n.

Join. Let c1,c2 be the children of x. For each integer 0 ≤ h ≤ w and each partition
(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B) of B we set

D[x][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B)][h] =

min
h1+h2=h+|S∩B|

(
D[c1][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B)][h1]+

D[c2][(C1 ∩B,C2 ∩B,C3 ∩B, S ∩B)][h2]
)
,

where ⊥+n = ⊥ and min(⊥, n) = n for any integer n. Note that we do not double count
depthTx(v) for any v ∈ S because if v is in both subtrees of c1 and c2, then it is also in B
and therefore has depthTx(v) = 0.

Split query

Now the Split query amounts to iterating over all integers 0 ≤ h ≤ w and intersections
(C1 ∩ bag(r), C2 ∩ bag(r), C3 ∩ bag(r), S ∩ bag(r)) such that |(bag(r)∩Ci)|+ h < |bag(r)|
for all i ∈ [3], and returning ⊥ if all entries of D[r][. . .][. . .] corresponding to them
contain ⊥ and otherwise returning >. In the latter case, the internal state of the
root node r will be set to a pair ((C1 ∩ bag(r), C2 ∩ bag(r), C3 ∩ bag(r), S ∩ bag(r)), h)

such that D[r][(C1 ∩ bag(r), C2 ∩ bag(r), C3 ∩ bag(r), S ∩ bag(r))][h] is not ⊥, primarily
minimizes h, and secondarily minimizes the stored integer depthT (S). In particular, so
that (C1, C2, C3, S) is a minimum split and |S| = h.

Also, the internal states of all other nodes are invalidated, for example, by incrementing
a global counter.

4.4 Implementation in linear time 103

Move query

Consider a move from a node r to an adjacent node s. First, if there has been a successful
Split query after the previous Init or Edit query, but the children of r do not have valid
internal states, we use the internal state of r to compute the corresponding internal states
of its children by implementing the dynamic programming transitions backwards. In
particular, we can in time 2O(w) find the dynamic programming states of the children
of r that correspond to the split fixed by the previous successful Split query, and set
the internal states of the children to correspond to these dynamic programming states.
Now the node s is guaranteed to have a valid internal state before we move to it, and by
induction the current node r is always guaranteed to have a valid internal state.

Then, when moving the root from the node r to the node s, the only edge whose direction
towards the root changes is the edge between r and s. Therefore for all nodes x except
r and s the tree decomposition Tx rooted at x will stay exactly the same. Thus, we
first re-compute the dynamic programming table of r with a single transition and then
the dynamic programming table of s with a single transition, taking in total 2O(w) time.
Note that all of the re-computations of the dynamic programming tables happen after
computing the internal states, so the internal state of each node corresponds to the
dynamic programming table directed towards the node at which the previous successful
Split query was applied.

Init query

The dynamic programming tables are initialized with the already described transitions in
a bottom-up manner, starting from the leaves towards the root r. As each transition is
implemented in 2O(w) time, the initialization takes 2O(w)|T | time.

State query

With the move queries we have already guaranteed that the current node r has a valid
internal state corresponding to a minimum split (C1, C2, C3, S), if indeed there has been
a successful Split query after the previous Init or Edit query. Therefore we just return the
partition (C1 ∩ bag(r), C2 ∩ bag(r), C3 ∩ bag(r), S ∩ bag(r)) of the internal state.

104 Fast 2-approximation algorithm for treewidth

Edit query

Consider an edit query that replaces a subtree T ∗ by T ′, where r ∈ V (T ∗). Because
r ∈ V (T ∗), all the dynamic programming tables of nodes of T \ T ∗ are already oriented
towards the subtree T ∗, and therefore the tables for the new subtree T ′ can be constructed
in a bottom-up manner with |V (T ′)| transitions. Then, with at most |V (T ′)| Move

operations the root r can be moved to the specified root r′. Therefore, the total running
time is 2O(w)|V (T ′)|+ wO(1)|V (T ∗)|.

4.4.3 The algorithm

We now describe our algorithm, making use of the data structure. The goal is to traverse
the given tree decomposition T = (T, bag) of width w with the Move(s) operations, and
every time when a bag bag(r) of size |bag(r)| = w+ 1 is encountered, to apply the pruned
improvement operation.

We start by showing that when the root pointer r of the data structure is on a splittable
bag bag(r) of size |bag(r)| = w+1, the pruned improvement operation can be implemented
in time 2O(w)t, where t is the number of editable nodes.

Lemma 4.11. Let the state of the data structure be so that |bag(r)| = w + 1. There is
an algorithm that either in time 2O(w) reports that bag(r) is not splittable, or in time
2O(w)t transforms T into the pruned improved tree decomposition of T with respect to
a minimum split (C1, C2, C3, S) of bag(r), where t is the number of editable nodes. In
the latter case, the root pointer r of the data structure will be placed to some new node
introduced by the pruned improvement operation.

Proof. First, we use the Split query. If it returns ⊥ we return that bag(r) is not splittable.
Otherwise, it returns that bag(r) is splittable and sets the internal state of the data
structure to represent a minimum split (C1, C2, C3, S) of bag(r).

Then, as the editable nodes form a prefix TE ⊆ V (T) of T containing r, we use the
Move and State queries to find the prefix TE, the nodes NT (TE) neighboring TE, and for
all nodes x ∈ NT [TE] the partitions (C1 ∩ bag(x), C2 ∩ bag(x), C3 ∩ bag(x), S ∩ bag(x)).
Because T is subcubic, this can be done with O(|TE|) Move and State queries by using
them to implement a depth-first search that returns from a subtree as soon as it finds a
node x with bag(x) ⊆ Ci ∪ S.

Then, we construct the pruned improved tree decomposition for editable nodes. For this,
we need to determine the sets pull(x) for all editable nodes x. We observe that by the

4.4 Implementation in linear time 105

definition of pull(x), it holds that if x has children c1, c2, and c3, then

pull(x) = pull(c1) ∪ pull(c2) ∪ pull(c3) ∪ (S ∩ (bag(c1) ∪ bag(c2) ∪ bag(c3))) \ bag(x).

Therefore, by using Lemma 4.5 that pull(x) = ∅ for covered nodes x, the sets pull(x) can
be computed in a bottom-up manner in |TE| ·wO(1) time. After computing the sets pull(x),
computing the pruned improved tree decomposition T ′E = (T ′E, bag′E) for the editable
nodes TE can be done directly by definition (Definitions 4.6 and 4.8) in |TE| · wO(1) time.

Then, we use the Edit operation to replace the prefix of editable nodes by the constructed
T ′E. Here, the mapping π from NT (TE) to V (T ′E) is determined as follows. For a node
x ∈ NT (TE), let i ∈ [3] so that bag(x) is covered by Ci, and let p be the parent of x in
T . Now, p ∈ TE, and in V (T ′E) there are three copies p1, p2, and p3 corresponding to p.
The mapping π is set so that π(x) = pi. The node r′ in the Edit operation is set to be
an arbitrary node in T ′E. This implements the construction of the pruned improved tree
decomposition.

In total, we used one Split operation, O(|TE|) Move and State operations, and one Edit

operation with subtrees of size O(|TE|), and therefore the total running time is 2O(w)|TE|
which is 2O(w)t.

Now, by Lemma 4.10, the total time used in the improvement operations implemented as
described in the proof of Lemma 4.11 is bounded by Φw(T) · 2O(w) = 2O(w)n. What is left
is to show is that between the improvement operations, we can use the Move operations
to move the pointer r to the next node with a bag of size w + 1 so that the total number
of Move operations used is bounded by Φw(T). We do this with a depth-first-search type
algorithm as we next describe.

We traverse the tree decomposition in a depth-first order with Move operations. For
simplicity, we add an extra starting node z with an empty bag and degree 1 to the
tree decomposition and set the root pointer r to z initially. Note that a node with
an empty bag cannot be editable, so the node z will never be edited by the pruned
improvement operation. For all nodes there are three states: unseen, open, and closed.
At the start the node z is open and other nodes are unseen. Our algorithm traverses the
tree decomposition according to the following cases:

1. The node r is open and has an unseen neighbor node s: Apply Move(s) and set the
node s as open.

2. The node r is open and has no unseen neighbors:

106 Fast 2-approximation algorithm for treewidth

2a. It holds that r = z: We are done, return T .

2b. It holds that |bag(r)| ≤ w: Set r as closed and apply Move(s) where s is an
open neighbor of r.

2c. It holds that |bag(r)| = w + 1: Apply Lemma 4.11. If it returns that bag(r) is
not splittable, then return that the treewidth of G is larger than k. Otherwise,
the new nodes inserted by the pruned improvement operation are set as unseen,
and then the root r is moved to a node that is open and adjacent to a newly
inserted node.

Next we prove two key invariants for arguing the correctness and running time of the
above described procedure, in particular that despite the improvement operations, the
main properties of the procedure are similar to a standard depth-first-search. First, we
show that the open nodes form a path in the tree decomposition.

Lemma 4.12. The above described procedure maintains the invariant that the open nodes
form a path x1, . . . , xt in T , where x1 = z and xt = r.

Proof. The case 1 maintains the invariant by appending one vertex to the end of the
path and the case 2b by removing the last vertex of the path. For the case 2c, we first
observe that the editable subtree contains the node r but not z because bag(z) is empty.
Therefore, because T is a tree and x1, . . . , xt is a path from z to r, removing the editable
subtree removes a suffix xi, . . . , xt of the path, where i ≥ 2. Then, the only node on the
path x1, . . . , xi−1 adjacent to the newly inserted nodes is xi−1, which is then chosen as
the new root r, and thus the invariant is maintained.

Then, we show that the open and unseen nodes form a subtree of T .

Lemma 4.13. The above described procedure maintains the invariant that the open and
unseen nodes form a subtree of T .

Proof. The cases that could change the set of closed nodes are case 2b and case 2c. In
the case 2b, by Lemma 4.12 the neighbor of r that is on the path between r and z is
open, and the other neighbors of r are closed. Therefore, setting r as closed corresponds
to removing a leaf node of the subtree of open and unseen nodes.

In the case 2c, all the neighbors of the nodes removed in the pruned improvement
operation are connected to the subtree of new nodes inserted, which are all set to unseen
and are connected to the path of open nodes maintained by Lemma 4.12.

Finally, we put everything together in the following lemma.

4.4 Implementation in linear time 107

Lemma 4.14. There is an algorithm that, given an n-vertex graph G, integer k, and
a cubic tree decomposition T of G of width w, where 2k + 2 ≤ w ≤ 4k + 3, in time
2O(w)|T | either outputs a tree decomposition of G of width at most w − 1 or decides that
the treewidth of G is larger than k.

Proof. The algorithm implements the above described procedure with the data structure
of Subsection 4.4.2. We first prove that the algorithm is correct if it terminates, and then
show that it indeed terminates in 2O(w)|T | time.

First, the algorithm is correct when it returns that the treewidth of G is larger than
k because in that case we have a set bag(r) of size |bag(r)| = w + 1 ≥ 2k + 3 that is
not splittable, and by Lemma 4.1 this implies that the treewidth of G is larger than k.
Second, consider the case that the algorithm terminates in the case 2a. In this case, by
Lemma 4.12, the only open node is the node r = z, and as all neighbors of r are closed,
Lemma 4.13 guarantees that all nodes except r are closed. As a node can get closed only
in case 2b, in which case the bag of the node is guaranteed to have size at most w, this
implies that all bags in this case must have size at most w, and therefore the width of T
must be at most w − 1. Therefore the algorithm is correct if it terminates.

By Lemma 4.10, the total number of editable nodes over the course of the algorithm is
at most Φw(T) = 2O(w)|T |, and therefore the total number of nodes created by pruned
improvement operations is also at most 2O(w)|T |. It also implies that the total time spent
in case 2c of the procedure is bounded by 2O(w)Φw(T) = 2O(w)|T |.

For bounding the Move operations applied in case 1 and case 2b of the procedure, observe
that both of them advance the state of a node either from unseen to open, or from open
to closed. Therefore, the number of Move operations in these cases is bounded by two
times the total number of nodes over the course of the algorithm, which is bounded by
O(|T |+ Φw(T)). This gives a total running time of 2O(w)|T | for the algorithm.

By using Lemmas 2.13 and 2.14 we can assume that |T | = O(n). Therefore, Lemma 4.14
together with Theorem 3.8 implies Theorem 1.1.

4.4.4 Analysis of the 2O(k) factor

We briefly give an upper bound for the 2O(k) factor in the running time of our algorithm,
in order to support our claim that this factor in our algorithm is significantly smaller
than in the algorithms of Bodlaender et al. [2016a].

108 Fast 2-approximation algorithm for treewidth

First, we show that if the width w of the given tree decomposition is at least 3k+ 3, then
we can use splits where C3 = ∅.

Lemma 4.15. Let G be a graph of treewidth ≤ k. Any set of vertices W ⊆ V (G) of size
|W | ≥ 3k + 4 has a split of form (C1, C2, ∅, S).

Proof. Again, as in Lemma 4.1, let S be a balanced separator of W of size |S| ≤ k + 1,
and let us combine the two connected components Ci of G \ S with the smallest sizes
of Ci ∩W until we obtain a partition {C1, C2} of V (G) \ S. By considering the cases of
whether there is a component Ci with |W ∩ Ci| ≥ |W |/3 or not, we notice that we will
end up with |W ∩ Ci| ≤ 2|W |/3 for both i ∈ [2]. Therefore (C1, C2, ∅, S) is a split of W
because |(W ∩ Ci) ∪ S| ≤ 2|W |/3 + k + 1 < |W |.

Now, if the width w of the input tree decomposition is w ≥ 3k + 3, we apply a version
of the algorithm that only considers 2-way splits, i.e., fixes C3 = ∅. Note that this also
changes the definition of a minimum split to only minimize over splits with C3 = ∅, but
the proof of Lemma 4.4 still goes through identically, in particular noting that if Ci = ∅
in the original split, then the C ′i constructed for the contradiction argument will also be
empty.

Then, we note that the exponential factors 2O(w) in the running time of the data structure
come from the number of ways a partition (C1, C2, C3, S) of V (G) can intersect a bag
bag(x) of size at most w + 1. This is O(4w), and when C3 = ∅ this is O(3w). Therefore,
when w ≥ 3k + 3, the running time of the algorithm is bounded by (n+ Φw(T))3wwO(1),
and when w < 3k + 3 the running time is bounded by (n+ Φw(T))4wwO(1).

We note that also the factors 3|bag(x)| in the definition of the potential function can
be replaced by factors 2|bag(x)| in the case when C3 = ∅. Therefore, for the case when
w ≥ 3k + 3, the running time is 2w3wwO(1)n, which by w ≤ 4k + 3 is O(210.4kn). When
w < 3k + 3, the running time is 3w4wwO(1)n, which by w < 3k + 3 is O(210.8kn). Here
the factors polynomial in k are dominated by rounding up the exponential dependency
on k. Therefore, the total running time of the algorithm is O(210.8kn).

Chapter 5

Exact and (1 + ε)-approximation
algorithms for treewidth

In this chapter we prove the following theorem about computing treewidth exactly.

Theorem 1.2. There is an algorithm that, given an n-vertex graph G and an integer k,
in time 2O(k2)n4 either outputs a tree decomposition of G of width at most k or determines
that the treewidth of G is larger than k. Moreover, the algorithm runs in space nO(1).

With similar techniques, we also prove the following theorem about approximating
treewidth within a factor of (1 + ε), for any given rational ε with 0 < ε < 1.

Theorem 1.3. There is an algorithm that, given an n-vertex graph G, an integer k, and
a rational ε with 0 < ε < 1, in time kO(k/ε)n4 either outputs a tree decomposition of G of
width at most (1 + ε)k or determines that the treewidth of G is larger than k. Moreover,
the algorithm runs in space nO(1).

The proofs of both Theorem 1.2 and Theorem 1.3 cleanly split into two parts. In the first
part, we show that algorithms for a problem called Subset Treewidth imply algorithms
for treewidth, and algorithms for a problem called Partitioned Subset Treewidth imply
(1 + ε)-approximation algorithms for treewidth. Both of these are new problems that we
define soon. In the second part, we then give the algorithms for Subset Treewidth and
Partitioned Subset Treewidth, which then imply Theorem 1.2 and Theorem 1.3. The
first part can be seen as a generalization of the improvement operation introduced in the
previous chapter. Related techniques are also used in the second part.

110 Exact and (1 + ε)-approximation algorithms for treewidth

5.1 Subset Treewidth

We then introduce the Subset Treewidth problem. Let G be a graph and X ⊆ V (G).
Recall that torsoG(X) is the graph obtained from G[X] by making N(C) a clique for each
C ∈ cc(G\X). A torso tree decomposition in a graph G is a pair (X, T), where X ⊆ V (G)

and T is a tree decomposition of torsoG(X). The width of a torso tree decomposition
(X, T) is the width of T , and we say that (X, T) covers a set W ⊆ V (G) if X ⊇ W .

We are now ready to define the Subset Treewidth problem.

Definition 5.1 (Subset Treewidth). In the Subset Treewidth problem the input is a graph
G, integer k, and a set of vertices W ⊆ V (G) of size |W | = k + 2. The problem is to
either return a torso tree decomposition of width at most k that covers W or determine
that the treewidth of G is at least k + 1.

Note that torsoG(V (G)) = G, which implies that if the treewidth of G is at most k, then
any set W ⊆ V (G) can be covered by a torso tree decomposition of width at most k
simply by taking X = V (G). In particular, at least one of the cases of Subset Treewidth
can always be returned (sometimes either one of them).

In Section 5.2 we show the following connection between treewidth and Subset Treewidth.
In the statement, n denotes the number of vertices and k the treewidth.

Theorem 5.2. Given an algorithm for Subset Treewidth with running time T (k, n),
where T (k, n) is increasing in both k and n, an algorithm for treewidth with running
time T (2k, n) · O(nk) + kO(1)n4 can be constructed. Moreover, if the algorithm for Subset
Treewidth runs in space nO(1), then the algorithm for treewidth runs in space nO(1).

Then, in Section 5.5 we give the following algorithm for Subset Treewidth.

Theorem 5.3. There is a 2O(k2)n2 time nO(1) space algorithm for Subset Treewidth.

Combining Theorems 5.2 and 5.3 yields a 2O(k2)n3 + kO(1)n4 time algorithm for treewidth,
in particular, Theorem 1.2.

For the approximation result, we use a variant of Subset Treewidth called Partitioned
Subset Treewidth. This variant also turns up naturally when designing an algorithm for
Subset Treewidth.

Definition 5.4 (Partitioned Subset Treewidth). In the Partitioned Subset Treewidth
problem the input is a graph G, integer k, set of vertices W ⊆ V (G) of size |W | = k + 2,

5.2 Computing treewidth via Subset Treewidth 111

and a partition {W1, . . . ,Wt} of W into t cliques Wi of G. The problem is to either
return a torso tree decomposition of width at most k that covers W or determine that the
treewidth of G is at least k + 1.

Partitioned Subset Treewidth is like Subset Treewidth, but the given set W is partitioned
into t cliques, where t is an additional parameter. When t is small, we obtain a more
efficient algorithm for Partitioned Subset Treewidth than for Subset Treewidth. In
particular, in Section 5.4 we give the following algorithm.

Theorem 5.5. There is a kO(kt)n2 time nO(1) space algorithm for Partitioned Subset
Treewidth.

This algorithm is useful for (1 + ε)-approximation of treewidth via the following relation
we prove in Section 5.2.

Theorem 5.6. Given an algorithm for Partitioned Subset Treewidth with running time
T (k, t, n), where T (k, t, n) is increasing on all k, t, and n, a (1 + ε)-approximation
algorithm for treewidth with running time T (O(k),O(1/ε), n)·O(kn)·(1+1/ε)O(k)+kO(1)n4

for 0 < ε < 1 can be constructed. Moreover, if the algorithm for Partitioned Subset
Treewidth runs in space nO(1), then the algorithm for treewidth runs in space nO(1).

Combining Theorems 5.5 and 5.6 yields a kO(k/ε)n3 + kO(1)n4 time (1 + ε)-approximation
algorithm for treewidth, in particular, Theorem 1.3. We note that the proof of Theorem 5.5
is simpler than the proof of Theorem 5.3, in particular, the proof of Theorem 5.3 builds
on the proof of Theorem 5.5. Therefore, the algorithm of Theorem 5.5 is interesting not
only for the approximation result, but also for a simpler proof of Theorem 1.2 with a
slightly worse running time.

The rest of this chapter is organized as follows. In Section 5.2 we prove Theorems 5.2
and 5.6. Then in Section 5.3 we presents both known and new lemmas about objects
called “important separators”, which will be used in the later sections. Then in Section 5.4
we prove Theorem 5.5, and building on that, in Section 5.5 we prove Theorem 5.3.

5.2 Computing treewidth via Subset Treewidth

In this section we show that algorithms for Subset Treewidth and Partitioned Subset
Treewidth imply algorithms for treewidth. In particular, we prove Theorems 5.2 and 5.6.

112 Exact and (1 + ε)-approximation algorithms for treewidth

+T ⇒ T ′

C1 C2 C3

X

(X, TX)

r r
r

X

TC1

TC2

TC3

TX

r

TX

Figure 5.1: Transforming a tree decomposition T into an improved tree decomposition
T ′ by using a torso tree decomposition (X, TX). Here, cc(G \X) = {C1, C2, C2}.

5.2.1 Overview

The main intermediate lemma that implies Theorems 5.2 and 5.6 is that given a solution
(X, TX) for Subset Treewidth where the set W is a largest bag of a tree decomposition
T , we show that T can be transformed into a tree decomposition T ′ that is improved
compared to T . In particular, the width of T ′ is at most the width of T , and the number
of bags of size |W | in T ′ is strictly less than in T . This will be more formally stated as
Lemma 5.14.

We now briefly sketch the idea of the transformation of T into T ′ (see Figure 5.1). Assume
that W = bag(r) is a largest bag of T = (T, bag), which is rooted at the node r ∈ V (T),
and let (X, TX) be a torso tree decomposition that covers W and has width at most
|W | − 2. The improved tree decomposition T ′ is constructed by starting with TX , and
then for every connected component C ∈ cc(G \X) constructing a tree decomposition TC
and attaching TC to TX . The rooted tree decomposition TC = (T, bagC) is constructed
from T by first removing all vertices not in N [C], and then forcing the neighborhood
N(C) to be in the root bag bagC(r) of TC . This is similar to the construction of the tree
decomposition T i in Section 4.2, with C playing the role of Ci and N(C) playing the role
of S. Then, by the definition of torsoG(X), every set N(C) for C ∈ cc(G \X) is a clique
in torsoG(X), so for each TC there exists a bag in TX to which TC can be attached from
its root.

To bound the width of each TC , we will use similar argument as in Section 4.2, except now
we do not start by optimizing any criterion on X, but instead implement the exchange
argument algorithmically. This results in a procedure that given (X, TX), either improves
T or improves (X, TX), which we use iteratively until T is improved.

5.2 Computing treewidth via Subset Treewidth 113

We remark that this is a generalization of the improvement operation of the previous
chapter. In particular, a split (C1, C2, C3, S) of W , as defined in Section 4.2, can always
be turned into a torso tree decomposition (X, TX) with X = W ∪ S that has width at
most |W | − 2. The construction of TX is simply a star with three leaves, where the bag
of the center is S, and the bags of the leaves are (W ∩ Ci) ∪ S for all i ∈ [3].

While for 2-approximation such simple solution for Subset Treewidth with TX of bounded
size is guaranteed to exists, for approximation ratios below 2 we believe that the size of
TX cannot be bounded, and therefore work in the full generality of Subset Treewidth.

The rest of this section is organized as follows. In Subsection 5.2.2 we prove the “Pulling
Lemma” for manipulating torso tree decompositions without increasing their width.
Then in Subsection 5.2.3 we show the main intermediate lemma about improving tree
decompositions. Finally, in Subsection 5.2.4 we derive Theorems 5.2 and 5.6 from this
lemma.

5.2.2 Pulling Lemma

We prove a lemma that will be used throughout this section, Sections 5.4 and 5.5, and
also in Chapter 6, to argue that a separator S can be incorporated as a bag of a torso tree
decomposition if it satisfies certain properties. We call it the “Pulling Lemma” because
the separator S will be “pulled” along disjoint paths into a bag of the tree decomposition.
It is closely related to the techniques used in the previous chapter for improving tree
decompositions. A similar argument has also been used by [Bodlaender and Koster, 2006].

Before proving the Pulling Lemma, we start with a simple auxiliary lemma.

Lemma 5.7. Let (X, (T, bag)) be a torso tree decomposition in a graph G, and let
Y ⊆ V (G) so that G[Y] is connected. The nodes {t ∈ V (T) | bag(t) ∩ Y 6= ∅} induce a
(possibly empty) connected subtree of T .

Proof. By the definition of torsoG(X), any u-v-path in G[Y] with u, v ∈ X can be mapped
into an u-v-path in torsoG(X)[Y ∩ X], and therefore torsoG(X)[Y ∩ X] is connected.
Then, the conclusion follows from the corresponding property of tree decompositions
(Lemma 2.6).

Then we prove the Pulling Lemma.

Lemma 5.8 (Pulling Lemma). Let G be a graph and (X, (T, bag)) a torso tree decom-
position in G. Let (A, S,B) be a separation of G so that there exists a node r ∈ V (T)

114 Exact and (1 + ε)-approximation algorithms for treewidth

so that S is linked into bag(r) ∩ (S ∪ B). There exists a torso tree decomposition
((X ∩ A) ∪ S, (T ′, bag′)) so that

1. T ′ = T

2. for all t ∈ V (T), |bag′(t)| ≤ |bag(t)|, and

3. S ⊆ bag′(r).

Moreover, when G, (X, (T, bag)), (A, S,B), and r are given as inputs, the torso tree
decomposition ((X ∩ A) ∪ S, (T ′, bag′)) can be constructed in kO(1)(|V (T)| + m) time,
where k is the width of (X, (T, bag)).

Proof. Index the vertices of S by S = {s1, s2, . . . , s|S|}. Because S is linked into the set
bag(r)∩ (S ∪B), there are vertex-disjoint paths P1, . . . , P|S|, so that for each i ∈ [|S|], Pi
is a path from si to bag(r) ∩ (S ∪B), and all vertices of Pi are contained in S ∪B.

To construct (T ′, bag′), we set T ′ = T , and for each t ∈ V (T) we set

bag′(t) = (bag(t) \ (S ∪B)) ∪ {si | Pi ∩ bag(t) 6= ∅}.

We have that |bag′(t)| ≤ |bag(t)|, because for each inserted vertex si we removed a
vertex in Pi (note that the inserted vertex and the removed vertex could both be the
same vertex si). By definition every Pi intersects bag(r), and thus S ⊆ bag′(r). Denote
X ′ = (X ∩A)∪S. It remains to show that (T ′, bag′) is a tree decomposition of torso(X ′).

First, the tree decomposition (T ′, bag′) satisfies the vertex condition because no vertices
in X ∩A were removed, and as argued before S ⊆ bag′(r). Second, (T ′, bag′) satisfies the
connectedness condition because the occurrences of vertices in X ∩A were not altered,
and by Lemma 5.7 the sets {t ∈ V (T) | Pi ∩ bag(t) 6= ∅} induce connected subtrees of T .

For the edge condition, consider an edge uv ∈ E(torso(X ′)). There is a path between
u and v whose intermediate vertices are contained in V (G) \X ′. If there would be an
intermediate vertex in B, then u, v ∈ S, implying {u, v} ⊆ bag′(r), so it remains to
consider the cases where there are no intermediate vertices or all intermediate vertices
are in A \X ′ = A \X. It follows that if in this case u, v ∈ X, then uv ∈ E(torso(X)),
so the edge condition of (T ′, bag′) in this case holds by the edge condition of (T, bag).
Also if u, v ∈ S, then again {u, v} ⊆ bag′(r), so the remaining case is uv = siv, where
si ∈ S \X and v ∈ X \ S. Now, si and the intermediate vertices on the path between si
and v are in a connected component C of G \X. Because v ∈ X and bag(r) ⊆ X, this
implies that N(C) contains both v and at least one vertex on the path Pi, and therefore

5.2 Computing treewidth via Subset Treewidth 115

as N(C) is a clique in torso(X) there is a node t ∈ V (T) with N(C) ⊆ bag(t) and it will
hold that {si, v} ⊆ bag′(t).

Because (T, bag) has width k and |S| ≤ k + 1, the construction can be implemented in
kO(1)(|V (T)|+m) time.

Note that the condition |bag′(t)| ≤ |bag(t)| implies that the width of (T ′, bag′) is at most
the width of (T, bag).

5.2.3 Improving a tree decomposition

We will define a weighted version of linkedness. For a weight function d : V (G)→ Z and
a set S ⊆ V (G), we denote d(S) =

∑
v∈S d(v).

Definition 5.9 (d-linked). Let G be a graph, A,B ⊆ V (G), and d : V (G)→ Z a weight
function. The set A is d-linked into B if for every (A,B)-separator S it holds either that
|S| > |A|, or that |S| = |A| and d(S) ≥ d(A).

Note that if A is d-linked into B then A is linked into B. We say that an (A,B)-separator
S with |S| < |A|, or with |S| = |A| and d(S) < d(A) witnesses that A is not d-linked
into B. Then, we say that a torso tree decomposition (X, (T, bag)) is d-linked into a set
of vertices W ⊆ V (G) if for every node t ∈ V (T) it holds that bag(t) is d-linked into W .
We say that a pair (t, S), where t ∈ V (T) and S is a (bag(t),W)-separator witnessing
that bag(t) is not d-linked into W witnesses that (X, (T, bag)) is not d-linked into W .

Next we will show that if (X, T) is a torso tree decomposition that covers W , then given
a pair (t, S) that witnesses that (X, T) is not d-linked into W , we can, in some sense,
improve (X, T) while maintaining that it covers W and not increasing its width. We
define Φd(X) = |X| · n(k + 1) + d(X) as the measure in which sense we will improve
(X, T), where n is the number of vertices of G and k is the width of T .

Lemma 5.10. There is an algorithm, that takes as an input a graph G, a set of vertices
W ⊆ V (G), a torso tree decomposition (X, T) in G of width k that covers W , a weight
function d : V (G)→ [n], and a pair (t, S) that witnesses that (X, T) is not d-linked into
W , and in time kO(1)(|V (T)|+m) returns a torso tree decomposition (X ′, T ′) that covers
W , has width at most k, has at most |V (T)| nodes, and has Φd(X

′) < Φd(X).

Proof. Denote T = (T, bag). After a kO(1)m time flow computation we may assume
that S is a minimum size (bag(t),W)-separator, because if S was not a minimum size

116 Exact and (1 + ε)-approximation algorithms for treewidth

(bag(t),W)-separator then any minimum size (bag(t),W)-separator also witnesses that
bag(t) is not d-linked into W . This implies that S is linked into bag(t).

Let (A, S,B) be a separation withW ⊆ A∪S and bag(t) ⊆ B∪S. DenoteX ′ = (X∩A)∪S.
We apply the Pulling Lemma (Lemma 5.8) with the torso tree decomposition (X, (T, bag)),
the separation (A, S,B), and the node t to construct a torso tree decomposition (X ′, T ′)
of width at most k and at most |V (T)| nodes. As W ⊆ X and W ⊆ A ∪ S, we have that
W ⊆ X ′, so (X ′, T ′) covers W . It remains to prove that Φd(X

′) < Φd(X).

Because bag(t) ⊆ S ∪ B and bag(t) ⊆ X, we have that |X ′| ≤ |X| − |bag(t)|+ |S| and
d(X ′) ≤ d(X)− d(bag(t)) + d(S). Therefore, if |S| < |bag(t)|, then |X ′| < |X|, implying
Φd(X

′) < Φd(X) because d(S) < n(k + 1). If |S| = |bag(t)| and d(S) < d(bag(t)), then
|X ′| ≤ |X| and d(X ′) < d(X), implying Φd(X

′) < Φd(X).

Then, our goal is to show that either a torso tree decomposition (X, TX) of width k − 1

that covers a largest bag W of a tree decomposition T of width k can be used to improve
T , or we find a pair (t, S) witnessing that (X, TX) is not d-linked into W for a certain
function d, in which case we can improve (X, TX) by applying Lemma 5.10. The proof
will use similar ideas as we used in Section 4.2.

Let T = (T, bag) be a tree decomposition of G rooted at a node r ∈ V (T). We define
the weight function dT : V (G)→ [|V (T)|] so that dT (v) = depthT (forgetT (v)) + 1, i.e., as
the vertex-depth function plus one. Note that this is similar to the function used for the
definition of a minimum split in Subsection 4.2.1.

Lemma 5.11. Let T = (T, bag) be a tree decomposition of G of width k, rooted at a
node r with bag(r) = W and |W | = k + 1. There is an algorithm that given a torso tree
decomposition (X, TX), where TX = (TX , bagX), that covers W and has width at most
k − 1, in time kO(1)(|T |+ |TX |) either

1. constructs a tree decomposition of G of width at most k, having strictly less bags of
size k + 1 than T , and having at most n nodes, or

2. returns a pair (t, S) where t ∈ V (TX) and S ⊆ V (G) that witnesses that (X, TX) is
not dT -linked into W .

Proof. Our goal is to construct a tree decomposition T ′ = (T ′, bag′) of G, and then show
that if it does not satisfy the conditions of Item 1, then we find the pair (t, S) of Item 2.

First, for every connected component C of G \X, we will construct a tree decomposition
TC = (TC , bagC) of N [C], so that N(C) is in the root bag of TC . For a node t ∈ V (T),

5.2 Computing treewidth via Subset Treewidth 117

denote by pull(t, C) the vertices

pull(t, C) = {v ∈ N(C) | forgetT (v) is a strict descendant of t in T}.

To construct the tree decomposition TC , we first set

TC = T [{t ∈ V (T) | C ∩ bag(t) 6= ∅}],

i.e., TC is the subtree of T induced by the bags that intersect C. Observe that TC is
connected because G[C] is connected. Then for each t ∈ V (TC) we set

bagC(t) = (bag(t) ∩N [C]) ∪ pull(t, C).

We let the root node of TC to be the node rC ∈ V (TC) that is the closest to r in T . Note
that because TC is a connected subtree of T , the node rC is uniquely defined.

Claim 5.12. TC is a tree decomposition of N [C] and N(C) ⊆ bagC(rC).

Proof of the claim. First, for the vertices C and edges in G[C] the decomposition
clearly satisfies the vertex, edge, and connectedness conditions because T satisfied these
conditions. For the edge condition for edges between C and N(C) and the vertex condition
for vertices in N(C), note that each such edge must be in a bag that intersects C, and
because for every vertex of N(C) there exists such an edge we have that every vertex of
N(C) must occur in some bag that intersects C.

It remains to prove the connectedness condition for vertices in N(C) and the edge
condition for edges in G[N(C)]. For a vertex v ∈ N(C), either (1) v ∈ bag(rC) and v is
not in pull(t, C) for any t ∈ V (TC), or (2) forgetT (v) ∈ V (TC)\{rC} and v ∈ pull(t, C) for
all t on the path from the parent of forgetT (v) to the root rC . Therefore, the connectedness
condition is maintained for vertices in N(C). This also shows that N(C) ⊆ bagC(rC),
which implies the edge condition for edges in G[N(C)]. C

Now, our complete construction of T ′ is to attach the tree decompositions TC for all
components C of G \X from their roots to the tree decomposition TX . Because N(C) is
a clique in torso(X), the decomposition TX contains a bag containing N(C) to which TC
can be attached.

Next we show that this construction can be implemented in kO(1)(|T |+ |TX |) time. In
particular, first, the connected components C and their neighborhoods can be found in
kO(1)m = kO(1)|T | time. Then, we observe that the sum of |TC | over all components C is
at most (k + 1)|T | because T has width k and the components C are disjoint. By first

118 Exact and (1 + ε)-approximation algorithms for treewidth

computing pointers from vertices of G to bags containing them, and then using the fact
that |N(C)| ≤ k + 1, each tree decomposition TC can be constructed in kO(1)|TC | time,
which sums up to kO(1)|T |. Then, it remains to attach each tree decomposition TC to a
node of TX whose bag contains N(C). For this, observe that if we consider TX rooted,
then N(C) is contained in the bag of the node forgetTX (v) for the v ∈ N(C) for which
forgetTX (v) maximizes depthTX (forgetTX (v)).

Next we give the main argument for extracting the witness of Item 2 if (T ′, bag′) does
not satisfy Item 1.

Claim 5.13. Let C be a component of G \ X and x ∈ V (TX) a node of TX with
N(C) ⊆ bagX(x). For every node t ∈ V (TC) we have either that

(i) |bagC(t)| < |bag(t)| or bagC(t) = bag(t), or that

(ii) the set (bagX(x)\pull(t, C))∪(bag(t)\N [C]) witnesses that bagX(x) is not dT -linked
into W .

Proof of the claim. Item (i) is true if pull(t, C) is empty, so suppose pull(t, C) is non-
empty and |bagC(t)| ≥ |bag(t)|. By the definition of bagC(t) this implies |pull(t, C)| ≥
|bag(t) \N [C]|. Note that pull(t, C) ⊆ bagX(x). We will show that in this case

S = (bagX(x) \ pull(t, C)) ∪ (bag(t) \N [C])

separates bagX(x) from W . Therefore S witnesses that bagX(x) is not dT -linked into W ,
because by |pull(t, C)| ≥ |bag(t) \N [C]| we have that |S| ≤ |bagX(x)|, and moreover we
have dT (S) < dT (bagX(x)) because for every vertex v1 ∈ pull(t, C) and v2 ∈ bag(t), it
holds that dT (v1) > dT (v2) because forgetT (v1) is a strict descendant of t while forgetT (v2)

is an ancestor of t.

To show that S separates bagX(x) from W , it is sufficient to show that it separates
pull(t, C) fromW because bagX(x)\S = pull(t, C). Consider a shortest path in G\S that
starts in pull(t, C) and ends in W . If this path would intersect N [C] anywhere else than
in its first vertex, then it would intersect pull(t, C) twice because N(C) \ S = pull(t, C)

and W ∩ C = ∅, which would contradict that it is a shortest path. Therefore, it
intersects N [C] only in its first vertex. Then, because for each v ∈ pull(t, C) the node
t ∈ V (T) separates forgetT (v) from r in T , it holds that bag(t) separates pull(t, C) from
bag(r) = W . Therefore, the path must intersect bag(t), and therefore as bag(t) and
pull(t, C) are disjoint, it must intersect bag(t) \N [C]. However, bag(t) \N [C] ⊆ S, and
therefore no such path exists in G \ S. C

5.2 Computing treewidth via Subset Treewidth 119

Now, for all nodes of the constructed decompositions TC we check if Item (i) of Claim 5.13
holds, and if it does not hold we return the pair (x, (bagX(x)\pull(t, C))∪(bag(t)\N [C])).
This can be done in kO(1)|T | time.

Then, it remains to prove that if Item (i) of Claim 5.13 holds for all nodes of all of the
decompositions TC , then T ′ has width at most k and has strictly less bags of size k + 1

than T . First, clearly T ′ has width at most k as none of the decompositions TC have
larger width than T and TX has smaller width than T . It remains to prove that T ′ has
less bags of size k + 1 than T .

Consider any node t ∈ V (T), and suppose that there are two distinct components C1 and
C2 of G\X so that both C1 and C2 intersect bag(t) and |bagC1

(t)| = |bagC2
(t)| = |bag(t)|.

Now, by Item (i) of Claim 5.13 it holds that bagC1
(t) = bagC2

(t) = bag(t). Therefore,
as bagC1

(t) ⊆ N [C1] and bagC2
(t) ⊆ N [C2], it holds that bag(t) ⊆ N(C1) ∩ N(C2),

which implies that bag(t) is a clique in torso(X), and therefore has size at most k.
Therefore, for any node t ∈ V (T) with a bag of size |bag(t)| = k + 1, there is at most one
corresponding node t in the decompositions TC across all components C with a bag of
size |bagC(t)| = k + 1. For the root node r, as bag(r) ⊆ X, none of the components C
intersect bag(r), and therefore no decomposition TC contains a node corresponding to
it. All other bags of T ′ are from TX and have size at most k, so as |bag(r)| = k + 1, it
follows that T ′ has strictly less bags of size k + 1 than T .

Finally, by Lemma 2.13 we can reduce the number of nodes of T ′ to at most n within
the same time without increasing the width or the number of bags of size k + 1.

Then, we combine Lemmas 5.10 and 5.11 into a single lemma showing that to improve T
it is sufficient to find a torso tree decomposition in G that covers a largest bag of T and
has width smaller than T .

Lemma 5.14. Let T = (T, bag) be a tree decomposition of G of width k and |T | ≤ n,
rooted at a node r ∈ V (T) with bag(r) = W and |W | = k + 1. There is an algorithm that
given a torso tree decomposition (X, TX) that covers W and has width at most k − 1, in
time kO(1)(|TX | + n3) constructs a tree decomposition of G of width at most k, having
strictly less bags of size k + 1 than T , and having at most n nodes.

Proof. First, we apply Lemma 2.13 to reduce the number of nodes of TX to at most n.
Then, we repeatedly apply Lemma 5.11 together with Lemma 5.10. In particular, if
Lemma 5.11 returns the tree decomposition of Item 1 we are done, and if it returns a pair
(t, S) that witnesses that (X, TX) is not dT -linked into W then we apply Lemma 5.10,
which decreases ΦdT (X) by at least one. Because ΦdT (X) is initially O(kn2) and ΦdT (X)

120 Exact and (1 + ε)-approximation algorithms for treewidth

must be non-negative, the total number of iterations is at most O(kn2), giving a total
running time of kO(1)n3 plus kO(1)|TX | from the application of Lemma 2.13.

5.2.4 Reducing treewidth to Subset Treewidth

Now we can prove Theorem 5.2, in particular, that algorithms for Subset Treewidth imply
algorithms for treewidth.

Theorem 5.2. Given an algorithm for Subset Treewidth with running time T (k, n),
where T (k, n) is increasing in both k and n, an algorithm for treewidth with running
time T (2k, n) · O(nk) + kO(1)n4 can be constructed. Moreover, if the algorithm for Subset
Treewidth runs in space nO(1), then the algorithm for treewidth runs in space nO(1).

Proof. Our goal is to provide the algorithm A of Theorem 3.8 with α = 1 and TA(k, n) =

T (2k, n) · O(nk) + kO(1)n4. In particular, by Theorem 3.8 we can assume that the input
contains a tree decomposition of width at most 2k + 1, and our goal is to improve its
width to k or to determine that the treewidth of the input graph G is larger than k. Let
T = (T, bag) be the input tree decomposition. By Lemma 2.13 we assume that |T | ≤ n.

Then, we repeat the following process as long as the width of T is larger than k. Let
W = bag(r) be a largest bag of T , and note that in this case |W | ≥ k + 2. We use the
algorithm for Subset Treewidth to either get a torso tree decomposition that covers W
and has width at most |W | − 2 or to conclude that the treewidth of G is larger than
|W | − 2 ≥ k. If we conclude that the treewidth of G is larger than k we are ready and
can immediately return. If the algorithm returns such a torso tree decomposition, we
apply Lemma 5.14 to improve T , in particular, to decrease the number of bags of size
|W | and not increase the width, and maintain that |T | ≤ n.

We can decrease the number of largest bags while not increasing the width at most
n · (k + 1) times before the width decreases from 2k + 1 to k, and therefore the algorithm
works with O(nk) applications of the algorithm for Subset Treewidth and Lemma 5.14. In
all of the applications, the parameter k for Subset Treewidth is at most 2k, where k is the
original parameter for treewidth. The total running time from the applications of Subset
Treewidth is therefore T (2k, n) · O(nk), and the total running time from the applications
of Lemma 5.14 is kO(1)n3 · O(kn) = kO(1)n4, giving the desired running time.

We then turn to Theorem 5.6, in particular, to proving that algorithms for Partitioned
Subset Treewidth imply approximation algorithms for treewidth. The main idea for this

5.2 Computing treewidth via Subset Treewidth 121

is to show that we can always partition W into t parts and make them cliques, while
increasing the treewidth of G by only O(|W |/t).

Lemma 5.15. Let G be a graph of treewidth at most k, ε a rational with 0 < ε < 1, and
W ⊆ V (G) a set of vertices of size |W | ≤ 4k + 4. There exists a partition of W into
t = O(1/ε) parts W1, . . . ,Wt, so that after making each part into a clique the treewidth
of G is at most k + εk.

Proof. If ε < 1/k we can return the trivial partition of W into single vertices. Therefore
we can assume that εk ≥ 1.

Consider a rooted tree decomposition T = (T, bag) of G of width k, and assume that
T is a nice tree decomposition (recall the definition from Subsection 2.3.1). Note that
because T is nice, each node of T is a forget-node of at most one vertex of G. By further
subdividing T , we also assume that each forget-node has exactly one child. We say that
a node is a W -forget node if it is a forget-node of a vertex w ∈ W . Let us process T
from the leaves towards the root, i.e., in the post-order, and maintain a set of “deleted”
nodes D ⊆ V (T).

Suppose we are processing a node t ∈ V (T) and let R ⊆ descT (t) be the nodes of T that
are descendants of t and reachable from t in T \D. Note that t ∈ R and R ⊆ V (T) \D.
Now, if R contains at least εk/2 W -forget-nodes or t is the root we add a part to the
partition of W and modify the tree decomposition as follows. We let W ′ ⊆ W be the
vertices in W whose forget-nodes are in R. We add W ′ as a part of the partition, and
add W ′ to the bags of all nodes in R. Then, we add all nodes in R to D.

Observe that |W ′| ≤ εk follows from the facts that we process the tree in post-order, each
node can have at most two children, each node can be a forget-node of at most one vertex,
each forget-node has one child, and εk ≥ 1. Therefore, the sizes of the bags of nodes in
R increased by at most εk, and moreover they will not increase again because they were
added to D. Therefore, the resulting tree decomposition has width at most k + εk. We
also observe that the resulting tree decomposition is indeed a tree decomposition after
making such W ′ into a clique: All the new edges are contained in the bags of all nodes in
R, and the subtree condition is maintained because the forget-nodes of vertices in W ′ are
in R.

Now, each created part of the partition except the part corresponding to the root has size at
least εk/2, so in total the number of parts is at most |W |/(εk/2)+1 ≤ 16

ε
+1 = O(1/ε).

Now, by using Lemma 5.15 we can prove Theorem 5.6 similarly to Theorem 5.2.

122 Exact and (1 + ε)-approximation algorithms for treewidth

Theorem 5.6. Given an algorithm for Partitioned Subset Treewidth with running time
T (k, t, n), where T (k, t, n) is increasing on all k, t, and n, a (1 + ε)-approximation
algorithm for treewidth with running time T (O(k),O(1/ε), n)·O(kn)·(1+1/ε)O(k)+kO(1)n4

for 0 < ε < 1 can be constructed. Moreover, if the algorithm for Partitioned Subset
Treewidth runs in space nO(1), then the algorithm for treewidth runs in space nO(1).

Proof. Our goal is to provide the algorithm A of Theorem 3.8 with α = (1 + ε) and
TA(k, n) = T (O(k),O(1/ε), n) · O(nk) + kO(1)n4. In particular, by Theorem 3.8 we can
assume that the input contains a tree decomposition of width at most 2·(1+ε)·(k+1)−1 ≤
4k + 3, and our goal is to improve its width to at most (1 + ε)k or to determine that
the treewidth of the input graph G is larger than k. Let T = (T, bag) be the input tree
decomposition. By Lemma 2.13 we assume that |T | ≤ n.

Then, we repeat the following process as long as the width of (T, bag) is larger than k+εk.
LetW be a largest bag of (T, bag), and note that in this case k+εk+2 ≤ |W | ≤ 4k+4. We
try all partitions of W into t = O(1/ε) parts (where the bound for t is from Lemma 5.15).
For each partition W1, . . . ,Wt, we make the parts W1, . . . ,Wt into cliques in G, and
then use the algorithm for Partitioned Subset Treewidth with this partition of W . By
Lemma 5.15, there exists such a partition so that after making W1, . . . ,Wt into cliques
the treewidth of G is at most k + εk, and therefore if the algorithm for Partitioned
Subset Treewidth returns for every partition that the treewidth of G is larger than
|W | − 2 ≥ k + εk, we can return that the treewidth of G is larger than k. Otherwise,
the algorithm for Partitioned Subset Treewidth returned a torso tree decomposition that
covers W and has width at most |W | − 2, and we proceed applying Lemma 5.14 similarly
as in the proof of Theorem 5.2.

The running time follows from the fact that there are at most (1+1/ε)O(k) partitions ofW
into t = O(1/ε) parts, and we can decrease the number of largest bags while not increasing
the width at most O(nk) times, and therefore there we use in total O(nk) · (1 + 1/ε)O(k)

applications of the algorithm for Partitioned Subset Treewidth, with t = O(1/ε) and k at
most 4k + 2, where k is the original parameter for treewidth.

5.3 Important separators

Before going into the algorithms for Subset Treewidth and Partitioned Subset Treewidth,
in this section we provide preliminary results about objects called important separators.
The algorithms for Subset Treewidth and Partitioned Subset Treewidth will extensively
make use of them. Most of the results given in this section are from the prior literature,

5.3 Important separators 123

but we believe that Lemmas 5.23 and 5.24 are new, although they are not very difficult
to prove.

The notion of important separator was introduced by Marx [2006]. Before giving the
definition, let us start with some auxiliary definitions. Let G be a graph, A,B ⊆ V (G),
and S an (A,B)-separator in G. We say that S is a minimal (A,B)-separator if no subset
of S is an (A,B)-separator. When A, S ⊆ V (G), we denote by reachG(A, S) ⊆ V (G) \ S
the set of vertices reachable from A\S in G\S. Note that if A ⊆ S, then reachG(A, S) = ∅.
We define reachNG (A, S) = (A ∩ S) ∪ NG(reachG(A, S)) ⊆ S to denote the subset of S
that can be seen from A. Note that if S is an (A,B)-separator, then reachNG (A, S) is also
an (A,B)-separator and reachG(A, reachNG (A, S)) = reachG(A, S). It follows that if S is
a minimal (A,B)-separator, then S = reachNG (A, S) = reachNG (B, S). We may omit the
graph G from the subscript if it is clear from the context. Then we are ready to define
important separators.

Definition 5.16 (Important separator). Let A,B ⊆ V (G) be two sets of vertices. A
minimal (A,B)-separator S is called an important (A,B)-separator if there exists no
(A,B)-separator S ′ with |S ′| ≤ |S| and reach(A, S) ⊂ reach(A, S ′).

We remark that Definition 5.16 allows an important (A,B)-separator to be the empty
set in the case when B is not reachable from A in G, or when A or B is empty.

The following lemma is a straightforward consequence of Definition 5.16.

Lemma 5.17. For every (A,B)-separator S, there exists an important (A,B)-separator
S ′ so that |S ′| ≤ |S| and reach(A, S) ⊆ reach(A, S ′).

Proof. Take an (A,B)-separator S ′ with |S ′| ≤ |S| and reach(A, S) ⊆ reach(A, S ′) that
maximizes |reach(A, S ′)|, and subject to that minimizes |S ′|. The separator S ′ is a
minimal (A,B)-separator because deleting vertices from S ′ does not make |reach(A, S ′)|
smaller. Then, if S ′ was not an important separator, the definition of important separators
would give an (A,B)-separator S ′′ that would contradict the choice of S ′.

We say that an important (A,B)-separator S ′ dominates an (A,B)-separator S if S ′

satisfies the conditions of Lemma 5.17. For our algorithm, we need a property that a
smallest important separator that dominates S is linked into S in a certain way.

Lemma 5.18. Let S be an (A,B)-separator and S ′ a smallest important (A,B)-separator
that dominates S. It holds that S ′ is linked into S ∩ (reach(A, S ′) ∪ S ′).

Proof. Denote S ′′ = S ∩ (reach(A, S ′) ∪ S ′). Note that reachN(A, S) ⊆ reach(A, S ′) ∪ S ′,
which implies that reachN(A, S) ⊆ S ′′, which implies that S ′′ is an (A, S ′)-separator

124 Exact and (1 + ε)-approximation algorithms for treewidth

and reach(A, S ′′) = reach(A, S). Suppose that S ′ is not linked into S ′′, and let S? be
a minimum-size (S ′′, S ′)-separator. Now, S? is an (A,B)-separator of size |S?| < |S ′|
and because it is minimal (S ′′, S ′)-separator and S ′ is disjoint from reach(A, S ′′), it is
disjoint from reach(A, S ′′) = reach(A, S), implying reach(A, S) ⊆ reach(A, S?). Therefore,
an important (A,B)-separator that dominates S? would also dominate S and be smaller
than S ′, which contradicts the choice of S ′.

We also need the following observation about minimal separators.

Lemma 5.19. If S is a minimal (A,B)-separator and S ′ an (A,B)-separator with
reach(A, S) ⊆ reach(A, S ′), then S ′ is an (S,B)-separator.

Proof. This is implied by S = reachN(A, S) and reachN(A, S) ⊆ reach(A, S ′) ∪ S ′.

We will then prove upper bounds on the numbers of important separators and give
enumeration algorithms for them. The proofs of Lemmas 5.20 and 5.22 are from the
literature, but we present them here to make this chapter self-contained and to give
context for the similar proofs of Lemmas 5.23 and 5.24. The basic tool for proving
bounds on important separators will be the following property of important separators of
minimum size given by Marx [2006].

Lemma 5.20 (Marx [2006]). For any A,B ⊆ V (G), there exists exactly one important
(A,B)-separator S of size |S| = flow(A,B). Moreover, for this S, the set of important
(A,B)-separators is equal to the set of important (S,B)-separators. Also, this S can be
found in time O(|S| ·m).

Proof. Assume there exists an important (A,B)-separator S1 of size flow(A,B), and
an important (A,B)-separator S2 so that reach(A, S1) 6⊆ reach(A, S2). Define SA =

reachN(A, S1 ∪ S2) and SB = reachN(B, S1 ∪ S2). We will show that SB contradicts the
fact that S2 is an important (A,B)-separator.

We observe that if a vertex v is in both SA and SB, then v is in both S1 and S2, because if
v was not in Si for i ∈ [2], then Si would not be an (A,B)-separator because there would
be an A-B-path in G \ Si by first taking the path in reach(A, S1 ∪ S2) from A to v, and
then taking the path in reach(B, S1 ∪ S2) from v to B. As SA ∪ SB ⊆ S1 ∪ S2, it follows
that |SA| + |SB| ≤ |S1| + |S2|. Because SA is an (A,B)-separator we have |SA| ≥ |S1|,
implying |SB| ≤ |S2|.

We observe that reach(A, SB) ⊇ reach(A, S1) ∪ reach(A, S2). By the assumption
reach(A, S1) 6⊆ reach(A, S2), it follows that reach(A, S2) ⊂ reach(A, SB). This contradicts
the fact that S2 is an important (A,B)-separator.

5.3 Important separators 125

Therefore, if S is an important (A,B)-separator of size flow(A,B), then for every other
important (A,B)-separator S ′ it holds that reach(A, S) ⊆ reach(A, S ′). It follows that
there is a unique important (A,B)-separator S of size flow(A,B). By Lemma 5.19 all
other important (A,B)-separators are (S,B)-separators. As S = reachN(A, S) and for
every minimal (S,B)-separator S ′ it holds that reach(A, S ′) ⊇ reach(A, S), it follows that
the set of important (A,B)-separators is equal to the set of important (S,B)-separators.

For finding such S of size at most k in O(|S| ·m) time, we note that if we apply the
Ford-Fulkerson algorithm for computing flow(B,A) with a reduction that makes two
copies of each vertex, and so that the source corresponds to B, then such S corresponds
to the vertices whose one copy is reachable from the source in the residual graph and the
another copy is not.

All three main lemmas of this section (Lemmas 5.22 to 5.24) will be based on the recursion
provided by the following lemma.

Lemma 5.21 (Chen et al. [2009]; Marx and Razgon [2014]). Let S be the important
(A,B)-separator of size |S| = flow(A,B) and v ∈ S \ B. The set of important (A,B)-
separators S ′ with v /∈ S ′ is equal to the set of important (S ∪N(v), B)-separators.

Proof. As reach(A, S) ⊂ reach(A, S ′) and v ∈ reachN(A, S), we have v ∈ reach(A, S ′),
implying that every important (A,B)-separator S ′ with v /∈ S ′ is a (S∪N(v), B)-separator,
and in particular an important (S ∪ N(v), B)-separator, because every (S ∪ N(v), B)-
separator is also an (A,B)-separator. Moreover, because no important (S ∪ N(v), B)-
separator contains v, no such separator S ′ can be dominated by a separator S ′′ with
v ∈ S ′′, implying that the important (S ∪N(v), B)-separators are exactly the important
(A,B)-separators S ′ with v /∈ S ′.

The following upper bound on the number of important separators was given implicitly
by Chen et al. [2009] and explicitly in Marx and Razgon [2014].

Lemma 5.22 (Chen et al. [2009]; Marx and Razgon [2014]). For any A,B ⊆ V (G), there
are at most 4k important (A,B)-separators of size at most k, and they can be enumerated
in time 4kkO(1)m and space nO(1).

Proof. We will prove by that the number of important (A,B)-separators of size at most
k is at most 22k−flow(A,B) ≤ 4k. The proof is by induction on 2k − flow(A,B), and will
naturally give a recursive algorithm for enumerating them in time 22k−flow(A,B). Note that
if flow(A,B) > k, then there are no important (A,B)-separators of size at most k, and if

126 Exact and (1 + ε)-approximation algorithms for treewidth

flow(A,B) = 0, then the empty set is the unique important (A,B)-separator. Therefore,
the base case of 2k − flow(A,B) ≤ 0 holds.

Then assume k ≥ flow(A,B) ≥ 1, and by Lemma 5.20 let S be the unique important
(A,B)-separator of size |S| = flow(A,B). If S ⊆ B, then S is the only important (A,B)-
separator. Otherwise, choose v ∈ S \B arbitrarily. For every important (A,B)-separator
S ′ it holds either that v ∈ S ′ or that v /∈ S ′. If S ′ is of the former type, then S ′ \ {v} is
an important (S \ {v}, B \ {v})-separator in G \ {v}. As flowG\{v}(S \ {v}, B \ {v}) =

flow(A,B) − 1 and |S ′ \ {v}| = |S ′| − 1, the number of such separators S ′ of size
at most k is by induction at most 22(k−1)−(flow(A,B)−1) = 22k−flow(A,B)/2. If S ′ is of
the latter type, then by Lemma 5.21 S ′ is an important (S ∪ N(v), B)-separator. As
flow(S ∪N(v), B) ≥ flow(A,B) + 1, the number of such separators S ′ of size at most k
is by induction at most 22k−(flow(A,B)+1) = 22k−flow(A,B)/2. Therefore, the total number of
important (A,B)-separators of size at most k is at most 22k−flow(A,B).

We will next show that there exists a set of size at most k that intersects every important
(A,B)-separator of size at most k, i.e., a hitting set for important (A,B)-separators of
size at most k, and that such a hitting set can be computed efficiently. To the best of
our knowledge this is a novel lemma about important separators, though its proof is only
a small variant of the proof of Lemma 5.22.

Lemma 5.23 (Important Separator Hitting Lemma). There is an algorithm that given
two sets A,B ⊆ V (G) and an integer k, in time kO(1)m outputs a set H of size at most
k so that H intersects every non-empty important (A,B)-separator of size at most k.

Proof. When B is not reachable from A, we can let H be the empty set. When B is
reachable from A, we show by induction that there exists such a set H of size at most
max(0, k − flow(A,B) + 1), which implies the lemma because in this case flow(A,B) ≥ 1.

This holds in the base case k < flow(A,B) because then there exists no (A,B)-separators
of size at most k so we can take H as the empty set. Now assume that k ≥ flow(A,B)

and that this holds when the difference of k and flow(A,B) is smaller.

By Lemma 5.20, let S be the unique important (A,B)-separator of size flow(A,B). If
S intersects B, then all important (A,B)-separators intersect S ∩ B and we are done
by outputting any vertex of S ∩B. Otherwise, assume that S does not intersect B and
let v be any vertex v ∈ S. By Lemma 5.21, all important (A,B)-separators that do not
intersect v are important (S ∪N(v), B)-separators. As flow(S ∪N(v), B) > flow(A,B),
by induction assumption we construct H by taking the union of v and the hitting set for
important (S ∪N(v), B)-separators of size at most k.

5.4 Algorithm for Partitioned Subset Treewidth 127

We will also need the following bound on important separators, which is also proven by a
slight variation of the proof of Lemma 5.22. Note that we do not provide an enumeration
algorithm in this case, the combinatorial bound is enough for us.

Lemma 5.24. For any two sets A,B ⊆ V (G), there are at most kk−flow(A,B) important
(A,B)-separators of size at most k.

Proof. Again, we prove the lemma by induction on k − flow(A,B). By Lemma 5.20, it
holds in the base case k − flow(A,B) = 0, so assume k − flow(A,B) ≥ 1 and that the
lemma holds for smaller values of k − flow(A,B).

Let S be the unique important (A,B)-separator of size |S| = flow(A,B) < k. For any
important (A,B)-separator S ′ distinct from S there exists v ∈ S \S ′, and by Lemma 5.21
such S ′ is an important (S ∪N(v), B)-separator. As flow(S ∪N(v), B) > flow(A,B), we
get by induction that the total number of important (A,B)-separators of size at most k is

1 + |S| · kk−(flow(A,B)+1) ≤ 1 + (k − 1) · kk−flow(A,B)/k ≤ kk−flow(A,B).

5.4 Algorithm for Partitioned Subset Treewidth

This section is devoted to proving Theorem 5.5, in particular to giving a kO(kt)n2 time
algorithm for Partitioned Subset Treewidth. The algorithm will be a branching algorithm
that uses important separators.

Throughout this section we assume that the number of edges in the input graph is at
most kn, as if this would not hold, we could immediately return that the treewidth is
more than k. To make the problem suitable for branching, we now introduce a more
general definition of Partitioned Subset Treewidth than given in Section 5.1.

An instance of Partitioned Subset Treewidth is a triple I = (G, {W1, . . . ,Wt}, k), where
G is a graph, t and k are positive integers with t ≤ k + 2, and {W1, . . . ,Wt} is a set
of t terminal cliques, each Wi ⊆ V (G) being a clique of size at most k + 1 in G. We
denote the union of the terminal cliques by ŴI =

⋃t
i=1Wi. Note that unlike in the

definition of Section 5.1, we do not require that {W1, . . . ,Wt} is a partition of ŴI , and
neither we require that |ŴI | = k + 2. While these properties hold in the initial inputs, in
the recursive steps the set ŴI can become larger, and the terminal cliques can become
overlapping. The parameters t and k will not increase in the recursive steps, implying
that |ŴI | ≤ t(k + 1) always holds.

128 Exact and (1 + ε)-approximation algorithms for treewidth

A solution of an instance of Partitioned Subset Treewidth is a torso tree decomposition
(X, T) that covers ŴI and has width at most k. We say that an instance I is a yes-
instance if there exists a solution of it and a no-instance otherwise. Our algorithm will
either return a solution or conclude that I is a no-instance, in particular, it will not use
the freedom in the definition to return that the treewidth of G is larger than k without
concluding that I is a no-instance (other than for the bound on the number of edges in
the initial instance).

5.4.1 Overview

We now give an informal overview of the algorithm, without detailed proofs. All claims
that are only sketched here are proven with details in the subsequent subsections. We
will first sketch a kO(k)nO(1) time algorithm in the case when there are only two terminal
cliques W1 and W2. This showcases the most important ideas of our algorithm.

Reduction rule

Let W1,W2 be the two terminal cliques, S a minimum size (W1,W2)-separator, and
(A, S,B) the corresponding separation with W1 ⊆ A ∪ S and W2 ⊆ B ∪ S. We will
argue that we can make S into a new terminal clique and recursively solve the problem
on the graphs G[A ∪ S] and G[B ∪ S]. More formally, we denote by G ⊗ S the graph
obtained from G by making S a clique, and then denote by I / (A, S) the instance
(G[A∪ S]⊗ S, {W1, S}, k) and by I / (B, S) the instance (G[B ∪ S]⊗ S, {W2, S}, k). We
argue that there exists a solution of I if and only if there exists solutions of both I / (A, S)

and I / (B, S).

Observe that because both I / (A, S) and I / (B, S) contain the separator S as a
terminal clique but their graphs are disjoint otherwise, any solution of I / (A, S) can be
combined with any solution of I / (B, S) into a solution of I by simply connecting the
tree decompositions by an edge between the bags containing S. To argue that if there
exists a solution of I then there exists solutions of both I / (A, S) and I / (B, S), we apply
the Pulling Lemma (Lemma 5.8). Because S is a minimum size (W1,W2)-separator, S is
linked intoW1 and intoW2. Therefore, in order to show that a solution of I /(A, S) exists,
we consider a hypothetical solution (X, (T, bag)) of I, and apply the Pulling Lemma
(Lemma 5.8) with the separation (A, S,B) and r ∈ V (T) being a node with W2 ⊆ bag(r).
In particular, note that S is linked into bag(r) ∩ (S ∪B) ⊇ W2. This constructs a torso
tree decomposition ((X ∩ A) ∪ S, (T ′, bag′)) of width at most k where S is a bag, which
can be observed to be a torso tree decomposition also in G[A∪ S]⊗ S because S is a bag

5.4 Algorithm for Partitioned Subset Treewidth 129

of (T ′, bag′), and to cover W1 ∪ S because W1 ⊆ A ∪ S and W1 ⊆ X, and therefore is a
solution of I / (A, S). The existence of a solution of I / (B, S) is proven similarly.

Observe that this reduction rule makes progress as long as S 6= W1 and S 6= W2, and
thus we apply the rule as long as there exists such minimum size (W1,W2)-separator S.
Recall that we say that W1 is strongly linked into W2 if W1 is linked into W2 and the
only minimum size (W1,W2)-separators are W1, and W2 in the case when |W1| = |W2|.

Leaf pushing

Assume now that we cannot make any more progress by the reduction rule, and let
|W1| ≤ |W2|, implying that W1 is strongly linked into W2. Our goal is now to make
progress by increasing the size of W1. We observe that for any solution (X, (T, bag))

that minimizes |X|, it holds that if ` is a leaf node of T and p is the parent of `, then
bag(`)\bag(p) ⊆ W1∪W2. Furthermore, we can assume that bag(p) = bag(`)\{w}, where
w is a forget-vertex of `, and therefore bag(`)\bag(p) ⊆ W1 or bag(`)\bag(p) ⊆ W2. Then,
observe that if bag(`)\bag(p) intersectsWi, it must hold thatWi ⊆ bag(`) becauseWi is a
clique. Therefore, (T, bag) either contains a bag that contains both W1 and W2, in which
case |W1 ∪W2| ≤ k + 1 and there is a trivial single-bag solution, or (T, bag) has exactly
two leaves and for one of them it holds that W1 ⊆ bag(`) and bag(`) \ bag(p) ⊆ W1 \W2.

Now, our goal will be, informally, to increase the size of W1 by guessing a vertex in
bag(`) \W1 and adding it to W1. We let w be the forget-vertex of `, and observe that the
parent bag bag(p) = bag(`) \ {w} is a (W1,W2)-separator. This shows that bag(`) \W1

must be non-empty, because otherwise bag(p) would be a (W1,W2)-separator of size
|W1| − 1, contradicting that W1 is linked into W2. Denote G′ = G \ (W1 \ {w}), and

W2
W1

G

w ∈ W1
bag(p)

W2

G′

S

W2
W1

G

bag(`)

Figure 5.2: Illustration of the leaf pushing argument. The picture on the left depicts the
graph G along with the terminal cliques W1 and W2, and the leaf bag bag(`) ⊇ W1. The
picture in the middle depicts the parent bag bag(p) = bag(`) \ {w} and the forget-vertex
w ∈ W1. The picture on the right depicts the graph G′ = G\(W1\{w}) and an important
({w},W2 \W1)-separator S.

130 Exact and (1 + ε)-approximation algorithms for treewidth

observe that in the graph G′ the set bag(`) \W1 = bag(p) \W1 is a ({w},W2 \W1)-
separator. We will then show that the subset bag(`) \W1 of bag(`) can be replaced
by an important ({w},W2 \W1)-separator. In particular, we will argue that there is
an important ({w},W2 \W1)-separator S 6= {w} in the graph G′ so that there exists a
solution containing a bag W1 ∪ S. See Figure 5.2 for an illustration of these objects.

Let S be an important ({w},W2 \W1)-separator in the graph G′ so that it dominates
bag(`)\W1 and minimizes |S| among all such important separators. Denote the separation
corresponding to S by (A, S,B) = (reachG′({w}, S), S, V (G′)\ (S ∪ reachG′({w}, S))). By
Lemma 5.18, S is linked into (A∪ S)∩ (bag(`) \W1). Then, by adding W1 \ {w} back to
the graph and to the separation, we get that (A, S ∪W1 \ {w}, B) is a separation of G
and S ∪W1 \ {w} is linked into (A∪S ∪W1 \ {w})∩ bag(`) (the vertices in W1 \ {w} are
linked by trivial one-vertex paths). We then apply the Pulling Lemma (Lemma 5.8) with
the hypothetical solution (X, (T, bag)), the separation (B, S ∪W1 \{w}, A), and the node
`, to argue that there exists a torso tree decomposition ((X∩B)∪S∪W1 \{w}, (T ′, bag′))

of width at most k, containing a bag S ∪W1 \ {w}. As |S| ≤ |bag(`) \W1|, this can be
turned into a solution of I by inserting w into the bag S ∪W1 \ {w}. Therefore there
exists a solution of I with a bag W1∪S, and in particular it is safe to replace the terminal
clique W1 by W1 ∪ S, also replacing G by G⊗ (W1 ∪ S).

Now, we are able to increase the size of W1 by guessing the forget-vertex w ∈ W1 and an
important separator S and branching to (G⊗ (W1 ∪ S), {W1 ∪ S,W2}, k). However, by
applying the reduction rule we might immediately lose most of the progress by finding
a (W1 ∪ S,W2)-separator S ′ of size |S ′| < |W1 ∪ S| and ending up with an instance
with terminal cliques {S ′,W2}. Nevertheless, we can ensure that such S ′ must have size
|S ′| > |W1| by using the facts that W1 is strongly linked into W2 and the way S was
selected. In particular, in the end, after applying the reduction rule possibly several
times, we can guarantee that if initially |W1| = |W2|, then each resulting instance has
terminal cliques of sizes at least |W1|+ 1 and |W2|, and if initially |W1| < |W2|, then each
resulting instance has terminal cliques of sizes at least |W1|+ 1 and |W1|+ 1. It follows
that the depth of the resulting branching tree is at most 2k, as the sizes of the terminal
cliques are bounded by k + 1.

Then, as the number of important separators of size at most k is at most 4k (Lemma 5.22),
this results in a branching tree of degree k4k and depth 2k, resulting in a (k4k)2knO(1) =

2O(k2)nO(1) time algorithm. To improve this to kO(k)nO(1) time, we observe that in order
to make progress, it is sufficient to guess only one vertex of the important separator S
and add it to W1, instead of guessing the whole important separator S. To this end, we
use the Important Separator Hitting Lemma (Lemma 5.23) that gives a set of size k that
intersects all important separators of size at most k, and therefore allows to guess one

5.4 Algorithm for Partitioned Subset Treewidth 131

vertex in an important separator of size at most k by a branching degree of k instead of
4k, resulting in a (k2)2knO(1) = kO(k)nO(1) time algorithm.

More than two terminal cliques

Generalizing the just sketched kO(k)nO(1) time algorithm for two terminal cliques into
the kO(kt)nO(1) algorithm for t terminal cliques of Theorem 5.5 does not require major
new ideas, but requires several technical considerations. In the algorithm for t terminal
cliques, we will in addition to the leaf pushing branching do branching on merging two
different terminal cliques into one, which should be done whenever we guess that there
exists a solution where the two terminal cliques are in a same bag. The “real” definition of
the measure of the instance will also be more involved, in particular, instead of depending
on the sizes of terminal cliques, the measure depends on a notion of “flow potential” of a
terminal clique. The flow potential has a technical definition, but for all terminal cliques
Wi except for a uniquely largest one it will be equal to the flow from Wi into the union
of the other terminal cliques. The measure of a uniquely largest terminal clique must be
special to encode that we make progress, for example, in the case when there are two
terminal cliques W1 and W2 with |W1| = |W2| and after branching we end up with two
terminal cliques of sizes |W1|+ 1 and |W2|. The measure will also take into account the
number of terminal cliques, in particular, it will “encode” that decreasing the number
of terminal cliques with the expense of making the flow potential of one terminal clique
worse still means making overall progress.

The rest of this section is organized as follows. In Subsection 5.4.2 we introduce the
measure flow potential for quantifying the progress of the algorithm. In Subsection 5.4.3
we give a reduction rule to simplify instances by safe separations. In Subsection 5.4.4 we
give the two branching rules of the algorithm, and in Subsection 5.4.5 we describe the
algorithm and put together its correctness proof. Finally, in Subsection 5.4.6 we analyze
the running time.

5.4.2 Flow potential

We define the measure flow potential that will be used for quantifying the progress of the
algorithm. We warn the reader that this definition can be unintuitive, but we have not
managed to come up with a simpler alternative.

Let G be a graph and X, Y ⊆ V (G) two sets of vertices. If X ⊂ V (G), then the flow
potential from X to Y , denoted by flow-ΦG(X, Y) is the minimum order of a separation

132 Exact and (1 + ε)-approximation algorithms for treewidth

(A, S,B), where X ⊆ A ∪ S, Y ⊆ B ∪ S, and B 6= ∅. If X = V (G), then we define
flow-ΦG(X, Y) = |X|. We observe that

flowG(X, Y) ≤ flow-ΦG(X, Y) ≤ |X|.

Note that flowG(X, Y) < flow-ΦG(X, Y) if and only if |X| > |Y |, Y is strongly linked into
X, and X intersects all connected components of G \ Y . We will also use the property
that if Y1 ⊆ Y2, then flow-ΦG(X, Y1) ≤ flow-ΦG(X, Y2).

Let I = (G, {W1, . . . ,Wt}, k) be an instance. For a terminal clique Wi, we denote by
W I(Wi) =

⋃
j∈[t]\{i}Wj the union of the other terminal cliques in I. We define the flow

potential of Wi in I to be

flow-ΦI(Wi) = flow-ΦG(Wi,W I(Wi)).

Note that flow-ΦI(Wi) 6= flowG(Wi,W I(Wi)) can hold only if Wi is the unique largest
terminal clique of I.

5.4.3 Safe separations

We say that a separation (A, S,B) is a strict separation if both A and B are non-empty.
In this subsection we introduce a reduction rule based on identifying a strict separation
(A, S,B), making S a clique and enforcing S to be covered, and then solving the different
sides of S independently of each other. In particular, we show that this reduction is safe
if (A, S,B) satisfies certain conditions that we define next.

Definition 5.25 (Safe separation). Let I = (G, {W1, . . . ,Wt}, k) be an instance and
(A, S,B) a strict separation of G. We say that (A, S,B) is a safe separation of I if there
exists terminal cliques Wa and Wb (possibly a = b) so that S is linked into (A ∪ S) ∩Wa

and into (B ∪ S) ∩Wb.

We say that such terminal cliques Wa and Wb are the spanning terminal cliques of the
safe separation. Note that safe separations can be classified into two types: those where
S is a subset of some terminal clique Wi and we can take Wa = Wb = Wi, and those
where a 6= b and S is a minimum size (Wa,Wb)-separator. The purpose of our definition
is to be a common generalization of these two types.

Next we introduce notation for reduction by safe separations. In Section 5.5 this notation
will also be used with separations that are not necessarily safe.

5.4 Algorithm for Partitioned Subset Treewidth 133

Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a separation with |S| ≤ k + 1.
We denote by {W1, . . . ,Wt}/ (A, S) the set obtained from {W1, . . . ,Wt} by first removing
each Wi with Wi ∩ A = ∅, and then inserting S if no superset of S is present. Recall
that G ⊗ S denotes the graph obtained from G by making S a clique. We define
G / (A, S) = G[A ∪ S]⊗ S, and then I / (A, S) = (G / (A, S), {W1, . . . ,Wt} / (A, S), k).

Note that if (A, S,B) is a safe separation, then |S| ≤ k + 1 because S is linked into a
spanning terminal clique Wa and |Wa| ≤ k + 1. Also, observe that if (A, S,B) is a safe
separation, then I / (A, S) has at most t terminal cliques. This is because if all terminal
cliques of I intersect A, then (A, S,B) can be a safe separation only if the spanning
terminal clique Wb is a superset of S.

The reduction rule used in the algorithm will be that if there exists a safe separation
(A, S,B), then solve the instances I / (A, S) and I / (B, S) independently of each other.
If either of them returns NO, then return NO, and if both of them return a solution,
denoted by (XA, TA) and (XB, TB), respectively, then return the solution obtained by
combining these solutions on the separator S. More formally, if TA and TB are tree
decompositions that both contain a bag containing S, then we denote by TA ∪S TB the
tree decomposition obtained by taking the disjoint union of TA and TB and connecting
them by an edge between bags containing S. Then, the combined solution is denoted by
(XA ∪XB, TA ∪S TB).

In the next two lemmas we show that this reduction is correct. We start by proving that
if both I / (A, S) and I / (B, S) return a solution, then the constructed solution is a
solution of I. This holds in fact for any separation (A, S,B).

Lemma 5.26. Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a separation.
If (XA, TA) is a solution of I / (A, S) and (XB, TB) a solution of I / (B, S), then
(XA ∪XB, TA ∪S TB) is a solution of I.

Proof. First, note that both {W1, . . . ,Wt} / (A, S) and {W1, . . . ,Wt} / (B, S) contain
a superset of S, so both XA and XB are supersets S. Also, any terminal clique in
{W1, . . . ,Wt} is either in {W1, . . . ,Wt} / (A, S), in {W1, . . . ,Wt} / (B, S), or is a subset
of S, so XA ∪XB is a superset of ŴI .

Because S is a clique in both G/ (A, S) and in G/ (B, S), it is contained in a bag of both
TA and TB, and therefore the construction TA ∪S TB is well-defined. Because G / (A, S)

and G/(B, S) intersect only in S, it holds that XA∩XB = S, which implies that TA∪S TB
satisfies the connectedness condition to be a tree decomposition of torsoG(XA ∪ XB).
The vertex condition is trivially satisfied. For the edge condition, consider an edge
uv ∈ E(torsoG(XA ∪ XB)). Because (A, S,B) is a separation and S ⊆ XA ∪ XB, it

134 Exact and (1 + ε)-approximation algorithms for treewidth

must hold that u, v ∈ A ∪ S or u, v ∈ B ∪ S. If u, v ∈ S, then there clearly is a bag
containing them, so by assume without loss of generality that u ∈ A and v ∈ A ∪ S.
The internal vertices of the path between u and v must be in A \ XA, and therefore
uv ∈ E(torsoG/(A,S)(XA)), implying that uv is in some bag of TA. Therefore TA ∪S TB
satisfies the edge condition.

We then show the other direction of correctness by applying the Pulling Lemma
(Lemma 5.8).

Lemma 5.27. Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a safe separa-
tion. If I is a yes-instance, then both I / (A, S) and I / (B, S) are yes-instances.

Proof. By the symmetry of the definition of safe separation, it suffices to show that
I / (A, S) is a yes-instance.

Let Wa and Wb be the spanning terminal cliques of (A, S,B) and (X, (T, bag)) a solution
of I. Because Wb is a clique in G and is contained in X, there exists a node r ∈ V (T)

withWb ⊆ bag(r), which implies that S is linked into bag(r)∩(B∪S). We use the Pulling
Lemma (Lemma 5.8) with the separation (A, S,B) and the node r to obtain a torso tree
decomposition ((X ∩A)∪ S, (T ′, bag′)) of width at most k containing a bag containing S.
We observe that ((X ∩ A) ∪ S, (T ′, bag′)) is a torso tree decomposition also in G[A ∪ S],
and because it covers S and (T ′, bag′) contains a bag containing S, it is also a torso tree
decomposition in G / (A, S). Because every terminal clique in {W1, . . . ,Wt} / (A, S) is a
subset of (X ∩ A) ∪ S, we have that ((X ∩ A) ∪ S, (T ′, bag′)) covers ŴI/(A,S).

Next we will give three lemmas arguing that the flow potentials “behave well” when
breaking the instance by safe separations. In particular, properties that naturally hold for
flow also hold for flow potential. We start by considering a situation where the breaking
does not change the terminal cliques.

Lemma 5.28. Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a separation.
If {W1, . . . ,Wt} / (A, S) = {W1, . . . ,Wt}, then flow-ΦI/(A,S)(Wi) ≥ flow-ΦI(Wi) for all
terminal cliques Wi.

Proof. Observe that in this case, W I/(A,S)(Wi) = W I(Wi), and therefore it suffices to
prove that flow-ΦG(Wi,W I(Wi)) ≤ flow-ΦG/(A,S)(Wi,W I(Wi)).

We argue by the definition of flow potential. First, if Wi = A ∪ S, this holds trivially,
so assume that Wi ⊂ A ∪ S. Let (A′, S ′, B′) be a separation in G / (A, S) of minimum
order so that Wi ⊆ A′ ∪ S ′, W I(Wi) ⊆ B′ ∪ S ′, and B′ is non-empty. Now, S is a clique

5.4 Algorithm for Partitioned Subset Treewidth 135

in G/ (A, S), so either S ⊆ A′ ∪ S ′ or S ⊆ B′ ∪ S ′. If S ⊆ A′ ∪ S ′ then (A′ ∪B, S ′, B′) is
a separation in G, and if S ⊆ B′ ∪ S ′ then (A′, S ′, B′ ∪B) is a separation in G. In either
case, flow-ΦG(Wi,W I(Wi)) ≤ |S ′| = flow-ΦG/(A,S)(Wi,W I(Wi)).

We then argue that for most of the terminal cliques the flow potential does not decrease
when going from I to I / (A, S).

Lemma 5.29. Let I = (G, {W1, . . . ,Wt}, k) be an instance, (A, S,B) a separation, and
Wi a terminal clique of both I and I/(A, S) so that there exists some other terminal clique
Wj 6= Wi of I / (A, S) that is a superset of S. Then, flow-ΦI/(A,S)(Wi) ≥ flow-ΦI(Wi).

Proof. We observe that because Wj ⊇ S, it holds that W I/(A,S)(Wi) = (W I(Wi)∩A)∪S.
Therefore, it suffices to prove that

flow-ΦG(Wi,W I(Wi)) ≤ flow-ΦG/(A,S)(Wi, (W I(Wi) ∩ A) ∪ S).

We argue by the definition of flow potential. First, if Wi = A ∪ S, the lemma holds
trivially, so assume that Wi ⊂ A ∪ S. Let (A′, S ′, B′) be a separation in G / (A, S) of
minimum order so that Wi ⊆ A′ ∪ S ′, (W I(Wi) ∩A) ∪ S ⊆ B′ ∪ S ′, and B′ is non-empty.
Now, because S ⊆ B′ ∪ S ′, we have that (A′, S ′, B′ ∪B) is a separation in G. Note that
W I(Wi) ⊆ S ′ ∪B′ ∪B, so it follows that

flow-ΦG(Wi,W I(Wi)) ≤ |S ′| = flow-ΦG/(A,S)(Wi, (W I(Wi) ∩ A) ∪ S).

Then, we reduce the task of analyzing the flow potentials of I / (A, S) into three cases.

Lemma 5.30. Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a safe separa-
tion. At least one of the following holds:

1. I / (A, S) has less terminal cliques than I,

2. {W1, . . . ,Wt} / (A, S) = {W1, . . . ,Wt}, or

3. S is a terminal clique of I / (A, S) but not of I, and there exists a terminal clique
Wi of I with Wi ∩B 6= ∅ and flow-ΦI/(A,S)(S) ≥ flow-ΦI(Wi).

Proof. Let Wa and Wb be the spanning terminal cliques of (A, S,B). If Wb ⊆ A∪S, then
Wb is also a superset of S because S is linked into Wb ∩ (S ∪ B), and either Item 1 or

136 Exact and (1 + ε)-approximation algorithms for treewidth

Item 2 holds. Then, if Wb intersects B and also some other terminal clique intersects B,
Item 1 holds. It remains to prove that if Wb is the only terminal clique that intersects B
and I / (A, S) has the same number of terminal cliques as I, then Item 3 holds.

In this case, S is a terminal clique of I / (A, S) but not of I, and W I/(A,S)(S) = W I(Wb),
implying that it suffices to prove that flow-ΦG(Wb,W I(Wb)) ≤ flow-ΦG/(A,S)(S,W I(Wb)).
We argue by the definition of flow potential. Because (A, S,B) is a strict separation, it
holds that S ⊂ A ∪ S. Let (A′, S ′, B′) be a separation in G / (A, S) of minimum order so
that S ⊆ A′ ∪ S ′, W I(Wb) ⊆ B′ ∪ S ′, and B′ is non-empty. Now, because S ⊆ A′ ∪ S ′,
we have that (A′ ∪B, S ′, B′) is a separation in G. As Wb ⊆ A′ ∪B ∪ S ′, it follows that
flow-ΦG(Wb,W I(Wb)) ≤ |S ′| = flow-ΦG/(A,S)(S,W I(Wb)).

We then show that safe separations can be found efficiently.

Lemma 5.31. There is a kO(1)m time algorithm for finding a safe separation or deciding
that none exist.

Proof. We try all pairs of terminal cliques Wa and Wb and find safe separations whose
spanning terminal cliques Wa and Wb are.

Let (A, S,B) be a safe separation and Wa and Wb its spanning terminal cliques. First,
consider safe separators where (A, S,B) where S ⊆ Wa or S ⊆ Wb. Assume without
loss of generality that S ⊆ Wa. We can find such safe separations by checking if G \Wa

has at least two connected components, and also trying all w ∈ Wa and checking if
G \ (Wa \ {w}) has at least two connected components.

Then, consider safe separations (A, S,B) spanned by Wa and Wb so that S is not a
subset of Wa or Wb. In this case Wa intersects A and Wb intersects B, and S is a
(Wa,Wb)-separator. By the symmetry of the definition we may assume that |Wa| ≤ |Wb|.
If Wa is strongly linked into Wb, then no such safe separators exists. Then, if Wa is
not strongly linked into Wb, any minimum size (Wa,Wb)-separator S with S 6= Wa and
S 6= Wb corresponds to a safe separator, and can be found by standard flow computations
in kO(1)m time.

Then, we state the fact that applying safe separations makes all pairs of terminal cliques
strongly linked into each other.

Lemma 5.32. If I has no safe separations, then for each pair of terminal cliques Wi,Wj

with |Wi| ≤ |Wj|, it holds that Wi is strongly linked into Wj.

5.4 Algorithm for Partitioned Subset Treewidth 137

Proof. If Wi would not be strongly linked into Wj, then the separator contradicting
strong linkedness would give a safe separation.

5.4.4 Branching

We do two types of branching in our algorithm, terminal clique merging and leaf pushing.

Terminal clique merging

The first type of branching is that we guess that two terminal cliques Wi and Wj are in a
same bag in some solution, and therefore we can actually merge them into one terminal
clique. We introduce some notation for this operation and analyze the flow potential
under it.

Let I = (G, {W1, . . . ,Wt}, k) be an instance. For two distinct terminal cliques Wi and
Wj with |Wi ∪Wj| ≤ k + 1, we denote by {W1, . . . ,Wt} × (Wi,Wj) the set obtained by
removing Wi and Wj from {W1, . . . ,Wt} and inserting Wi ∪Wj (if Wi ∪Wj is already
present, nothing is inserted). We make Wi ∪Wj into a clique in this operation so we
denote G × (Wi,Wj) = G ⊗ (Wi ∪ Wj) and by I × (Wi,Wj) we denote the instance
(G× (Wi,Wj), {W1, . . . ,Wt} × (Wi,Wj), k).

Next we observe that the terminal clique merging does not decrease the flow potentials
of the other terminal cliques.

Lemma 5.33. Let I = (G, {W1, . . . ,Wt}, k) be instance and Wi,Wj,W` ∈ {W1, . . . ,Wt}
three distinct terminal cliques. It holds that flow-ΦI×(Wi,Wj)(W`) ≥ flow-ΦI(W`).

Proof. This follows directly from the facts that W I(W`) = W I×(Wi,Wj)(W`) and any
separation of G× (Wi,Wj) is also a separation of G.

We also observe that any solution of I × (Wi,Wj) is also a solution of I.

We say that I is maximally merged if for any pair of two distinct terminal cliques Wi and
Wj it holds that either |Wi ∪Wj| > k + 1 or I × (Wi,Wj) is a no-instance. In particular,
we can conclude that I is maximally merged after branching on all different ways to
merge two terminal cliques and not finding a solution.

138 Exact and (1 + ε)-approximation algorithms for treewidth

Leaf pushing

A terminal clique Wi is a potential forget-clique of I if there exists a solution (X, (T, bag))

of I so that T contains a leaf node ` with a parent p so that Wi ⊆ bag(`) and bag(p) =

bag(`) \ {w} for some w ∈ Wi \W I(Wi). The leaf pushing operation will make progress
by adding a vertex to a potential forget-clique.

Next we show that a maximally merged yes-instance has at least two potential forget-
cliques. The fact that there are at least two of them will be important since we do not
necessarily make progress by leaf pushing a uniquely largest terminal clique.

Lemma 5.34. Let I = (G, {W1, . . . ,Wt}, k) be a yes-instance that is maximally merged
and has t ≥ 2. The instance I has at least two potential forget-cliques.

Proof. Let (X, (T, bag)) be a solution of I that first minimizes |X| and subject to that
minimizes |V (T)|. First, if |V (T)| = 1, then all terminal cliques would be contained in
the only bag of (T, bag), and I would not be maximally merged. Therefore |V (T)| ≥ 2

and T has at least two leaves.

Claim 5.35. For any leaf node ` of T with parent p, it holds that bag(`) \ bag(p) ⊆ ŴI.

Proof of the claim. Suppose that bag(`) \ bag(p) contains a vertex x ∈ V (G) \ ŴI . Let
(T ′, bag′) be the tree decomposition obtained from (T, bag) by removing x from bag(`).
We claim that then (X \ {x}, (T ′, bag′)) is a solution of I that would contradict the
minimality of |X|. It holds that X \ {x} covers ŴI and that the width of (T ′, bag′) is at
most k, so it remains to argue that (T ′, bag′) is a tree decomposition of torsoG(X \ {x}).
Because x occurred only in the bag bag(`), (T ′, bag′) satisfies the vertex condition and
the connectedness condition. For the edge condition, it suffices to prove that any path
from x to X \ {x} intersects bag(`) \ {x}. This follows from Lemma 5.7 by considering a
modified version of (T, bag) where a bag containing bag(`) \ {x} is inserted between `
and p. C

Now, let `, p ∈ V (T) be some leaf-parent pair. We have that bag(`) \ bag(p) is non-empty
because otherwise we could decrease |V (T)| by removing `. Therefore, by Claim 5.35
there exists a terminal clique Wi that intersects bag(`) \ bag(p). Because Wi is a clique
and the decomposition covers Wi, we know that Wi ⊆ bag(`). We can modify (T, bag)

by adding nodes between ` and p so that the vertices in bag(`) \ bag(p) are forgotten
one-by-one, and that a vertex w ∈ Wi ∩ (bag(`) \ bag(p)) is the first to be forgotten.
In particular, this results in a decomposition where the parent of ` is a node p′ with
bag(p′) = bag(`) \ {w}. Now, if w would be in some other terminal clique Wj 6= Wi, then

5.4 Algorithm for Partitioned Subset Treewidth 139

Wj ⊆ bag(`) would hold because bag(`) is the only bag containing w, but then I would
not be maximally merged. Therefore, Wi is a potential forget-clique.

Finally, to show that there are at least two potential forget-cliques, note that if Wi

intersects bag(`) \ bag(p) for two different leaf-parent pairs `1, p1 and `2, p2, then because
Wi ⊆ bag(`1) and Wi ⊆ bag(`2), by the connectedness condition it would hold that
Wi ⊆ bag(p1), contradicting that Wi intersects bag(`1) \ bag(p1). Therefore, for every
leaf-parent pair `, p we can assign a unique terminal clique Wi, and therefore as there are
at least two leaves there are at least two potential forget-cliques.

We introduce notation for the leaf pushing operation. Let I = (G, {W1, . . . ,Wt}, k) be
an instance, Wi a terminal clique, and A ⊆ V (G) a set of vertices that is disjoint from
Wi and |Wi ∪ A| ≤ k + 1. We denote by {W1, . . . ,Wt}+ (Wi, A) the set obtained from
{W1, . . . ,Wt} by replacing the terminal clique Wi by Wi ∪ A. Again, if Wi ∪ A already
exists, we just remove Wi. We denote G+ (Wi, A) = G⊗ (Wi ∪A) and by I + (Wi, A) we
denote the instance (G+ (Wi, A), {W1, . . . ,Wt}+ (Wi, A), k). Observe that any solution
of I + (Wi, A) is also a solution of I. Observe also that if I + (Wi, A) is a yes-instance
and A′ ⊆ A, then I + (Wi, A

′) is also a yes-instance.

Next we prove the main leaf pushing lemma, in particular that we can increase the size
of a potential forget-clique by guessing an important separator.

Lemma 5.36. Let I = (G, {W1, . . . ,Wt}, k) be a maximally merged yes-instance with
t ≥ 2 and no safe separators and Wi a potential forget-clique of I. There exists a vertex
w ∈ Wi \W I(Wi) and in the graph G\ (Wi \{w}) a non-empty important ({w}, ŴI \Wi)-
separator S disjoint from Wi so that I + (Wi, S) is a yes-instance.

Proof. By the definition of potential forget-clique, let (X, (T, bag)) be a solution so
that (T, bag) contains a leaf node ` with a parent p so that Wi ⊆ bag(`) and bag(p) =

bag(`) \ {w} for w ∈ Wi \W I(Wi). Denote W f
i = Wi \ {w}.

By Lemma 5.7 it holds that bag(p) = bag(`) \ {w} separates w from X \ {w}, and
therefore separates w from ŴI \ {w}. Therefore, in the graph G \W f

i , the set bag(`) \Wi

is a ({w}, ŴI \Wi)-separator. The set ŴI \Wi is non-empty because I is maximally
merged and t ≥ 2.

Let S be a smallest important ({w}, ŴI \ Wi)-separator in G \ W f
i that dominates

bag(`)\Wi. The separator S does not contain w because w ∈ reachG\W f
i

({w}, bag(`)\Wi),
and therefore S is disjoint from Wi. The separator S is non-empty because otherwise W f

i

would separate w from ŴI \Wi and be a safe separator. Let (A, S,B) be the separation

140 Exact and (1 + ε)-approximation algorithms for treewidth

in G \W f
i with B = reachG\W f

i
({w}, S) and A = V (G) \ (W f

i ∪ B ∪ S), which implies
ŴI \Wi ⊆ A ∪ S. By Lemma 5.18, S is linked into (bag(`) \Wi) ∩ (B ∪ S) in G \W f

i .

By adding W f
i back to the graph and to the separator, we get that (A, S ∪W f

i , B) is a
separation of G, and moreover S∪W f

i is linked into bag(`)∩ (B∪S∪W f
i) (the vertices in

W f
i are linked by trivial one-vertex paths). Let X ′ = (X∩A)∪S∪W f

i and (X ′, (T ′, bag′))

be the torso tree decomposition obtained by applying the Pulling Lemma (Lemma 5.8)
with (X, (T, bag)), the separation (A, S ∪W f

i , B), and the node ` of T .

Now, (X ′, (T ′, bag′)) has width at most k and it covers ŴI \ {w}. Let t be the node of T ′

so that S ∪W f
i ⊆ bag′(t). We construct a torso tree decomposition (X ′∪{w}, (T ′′, bag′′))

by adding a leaf t′ adjacent to t with bag′′(t′) = S ∪Wi. Because |S| ≤ |bag(`) \Wi|,
it follows that |bag′′(t′)| ≤ |bag(`)| ≤ k + 1. Also, (X ′ ∪ {w}, (T ′′, bag′′)) covers S ∪ ŴI ,
and therefore it remains to prove that (T ′′, bag′′) is indeed a tree decomposition of
torso(X ′ ∪ {w}). It satisfies the vertex condition because (T ′, bag′) satisfied the vertex
condition for X ′ and the vertex w is in the bag bag′′(t′). It satisfies the connectedness
condition because (T ′, bag′) satisfied the connectedness condition, the vertex w is in no
bag of (T ′, bag′), and S ∪W f

i ⊆ bag′(t). It remains to prove that (T ′′, bag′′) satisfies
the edge condition, which follows from the edge condition of (T ′, bag′) and the fact that
S ∪W f

i separates w from X ′.

In the algorithm, we will apply Lemma 5.36 together with the Important Separator
Hitting Lemma (Lemma 5.23). In particular, we will add only a single vertex of S to Wi

in the actual leaf pushing branching. Next we show that if Wi is not a unique largest
terminal clique, adding any vertex to Wi increases its flow potential.

Lemma 5.37. Let I = (G, {W1, . . . ,Wt}, k) be an instance with t ≥ 2 that has no safe
separations. Let also i ∈ [t] so that |Wi| ≤ k and exists j 6= i so that |Wj| ≥ |Wi| and
Wj is not a superset of Wi, and let v ∈ V (G) \Wi. Then flow-ΦI+(Wi,{v})(Wi ∪ {v}) ≥
flow-ΦI(Wi) + 1.

Proof. It suffices to show that Wi ∪ {v} has flow potential flow-ΦI+(Wi,{v})(Wi ∪ {v}) =

|Wi ∪ {v}|. Suppose otherwise, in particular suppose that there exists a separation
(A, S,B) with Wi ∪ {v} ⊆ A ∪ S, W I+(Wi,{v})(Wi ∪ {v}) ⊆ B ∪ S, B non-empty, and
|S| < |Wi ∪ {v}|. Note that |S| < |Wi ∪ {v}| implies that also A is non-empty, and note
that because Wj 6= Wi ∪ {v}, we have that Wj ⊆ W I+(Wi,{v})(Wi ∪ {v}) ⊆ B ∪ S. In
particular, S is a (Wi,Wj)-separator. Because I has no safe separations, by Lemma 5.32,
Wi is strongly linked into Wj. Therefore, because |S| ≤ |Wi| ≤ |Wj|, either S = Wi or
S = Wj. However, in either case (A, S,B) would be a safe separation of I, which is a
contradiction.

5.4 Algorithm for Partitioned Subset Treewidth 141

Algorithm 1 A kO(kt)n2 time algorithm for Partitioned Subset Treewidth.
Input: Instance I = (G, {W1, . . . ,Wt}, k).
Output: Either a solution of I or NO.
1: if t = 1 or |V (G)| ≤ k + 2 then return Case-analysis(I) . Lemma 5.38
2: if Exists a safe separation (A, S,B) then
3: return Combine(Solve(I / (A, S)), Solve(I / (B, S)))
4: for all i, j ∈ [t] with i 6= j and |Wi ∪Wj| ≤ k + 1 do
5: sol← Solve(I × (Wi,Wj))
6: if sol 6= NO then return sol

7: if Exists i, j ∈ [t] with Wi ⊂ Wj then return NO
8: for all i ∈ [t] so that |Wi| ≤ k and exists j 6= i with |Wj| ≥ |Wi| do
9: for all w ∈ Wi \W I(Wi) do
10: H ← ImpSepHittingSetG\(Wi\{w})({w}, ŴI \Wi, k) . Lemma 5.23
11: for all v ∈ H \ {w} do
12: sol← Solve(I + (Wi, {v}))
13: if sol 6= NO then return sol

14: return NO

5.4.5 The algorithm

In this subsection, we put the reduction rules and branching together to a complete
algorithm for Partitioned Subset Treewidth, and analyze the algorithm.

First, we need the following lemma to handle corner cases.

Lemma 5.38. Instances with t = 1 or |V (G)| ≤ k + 2 can be solved in O(m) time.

Proof. If t = 1, then because |W1| ≤ k + 1, there is a trivial solution where X = W1 and
the tree decomposition has a single bag containing X. When |V (G)| ≤ k+ 2, we consider
the following cases. First, if |ŴI | ≤ k + 1, then again the trivial single-bag solution
suffices. Otherwise, we have that X = ŴI = V (G), and there exists a solution if and
only if G is not a complete graph.

The algorithm for Partitioned Subset Treewidth is presented in the pseudocode Algorithm 1
and described in detail below. In the pseudocode, we denote the recursive calls of the
algorithm by the function “Solve”.

First, on Line 1, Algorithm 1 handles the special cases of t = 1 and |V (G)| ≤ k + 2

by Lemma 5.38. Then, on Lines 2 and 3 the reduction by safe separations discussed in
Subsection 5.4.3 is implemented. In particular, if there exists a safe separation (A, S,B),
then the instances I / (A, S) and I / (B, S) are solved recursively, and if both of them
return a solution the solutions are combined to a solution of I, and if either of them

142 Exact and (1 + ε)-approximation algorithms for treewidth

returns NO, then we return NO. The function “Combine” on Line 3 denotes an operation
that returns NO if either of its arguments is NO, and if its arguments are a solution
(XA, TA) of I / (A, S) and a solution (XB, TB) of I / (B, S) then it returns the solution
(XA ∪XB, TA ∪S TB) of I.

Then, the terminal clique merging branching discussed in Subsection 5.4.4 is implemented
on Lines 4 to 6. In particular, the algorithm branches on merging all pairs of terminal
cliques Wi,Wj with |Wi ∪Wj| ≤ k + 1 and returns a solution if any of the resulting
instances were yes-instances. After this, I is maximally merged, and this is immediately
used on Line 7 to return NO if some terminal clique is a subset of some other terminal
clique.

Then, the leaf pushing branching discussed in Subsection 5.4.4 is implemented on Lines 8
to 13. The algorithm branches on all candidates for a potential forget-clique Wi that is
not a uniquely largest terminal clique, and a vertex w ∈ Wi for which there exists an
important ({w}, ŴI \Wi)-separator S in the graph G\ (Wi \{w}) so that w and S satisfy
the conditions of Lemma 5.36. The algorithm does not branch on all such important
separators S, but instead uses the Important Separator Hitting Lemma (Lemma 5.23) to
obtain a set of vertices H of size at most k that intersects all important ({w}, ŴI \Wi)-
separators S of size at most k in the graph G \ (Wi \ {w}). Then, a single vertex of such
an important separator can be guessed by guessing a single vertex in H, so the algorithm
branches on all vertices in H \ {w} to add to Wi. Finally, on Line 14 the algorithm
concludes that I is a no-instance if none of the branches returned a solution.

The algorithm runs in space nO(1), because each individual recursive call clearly runs in
time and space nO(1), and the depth of the recursion is nO(1) because at each recursive call
either the number of vertices of the graph decreases, or the number of terminal cliques
decreases, or the sum of the sizes of the terminal cliques increases, but the number of
terminal cliques never increases.

We then prove the correctness of Algorithm 1. Its running time will be analyzed in
Subsection 5.4.6.

We start by proving that Algorithm 1 is correct when it returns a solution.

Lemma 5.39. If Algorithm 1 returns a solution, then it is a solution of I.

Proof. For the case analysis of Line 1 this is by Lemma 5.38. Then, we use induction on
the recursion tree, assuming that the lemma holds for recursive calls of the algorithm.

Now, whenever Algorithm 1 returns on Line 3 after finding a safe separation (A, S,B)

and combining solutions of I / (A, S) and I / (B, S) into a solution of I, it is correct

5.4 Algorithm for Partitioned Subset Treewidth 143

by induction and Lemma 5.26. The cases when the algorithm returns a solution after
terminal clique merging on Line 6 or after leaf pushing on Line 13 are correct by induction
and the facts that any solution of I × (Wi,Wj) is also a solution of I and any solution of
I + (Wi, {v}) is also a solution of I.

We then show that Algorithm 1 is correct when it returns NO.

Lemma 5.40. If Algorithm 1 returns NO, then I is a no-instance.

Proof. For the case analysis of Line 1 this is by Lemma 5.38. Then we use induction on
the recursion tree, assuming that the lemma holds for recursive calls of the algorithm. The
correctness of safe separation reduction on Line 3 follows from induction and Lemma 5.27.

Then, after the safe separation reduction of Lines 2 and 3 we can assume that I has no
safe separations, and by the terminal clique merging of Lines 4 to 6 and induction we
can assume that I is maximally merged. The correctness of returning NO on Line 7 if
there are terminal cliques Wi ⊂ Wj follows from the facts that I is maximally merged
and if I would be a yes-instance, then I × (Wi,Wj) would also be a yes-instance.

It remains to argue that if Algorithm 1 returns from the final Line 14, then I is a
no-instance. For the sake of contradiction, assume that Algorithm 1 returns NO from
Line 14 but I is a yes-instance. Now, by Lemma 5.34, I has at least two potential forget-
cliques. Let Wi be a smallest potential forget-clique of I. By Lemma 5.36 we have that
|Wi| ≤ k, and therefore Wi satisfies the conditions of Line 8. By Lemma 5.36, there exists
a vertex w ∈ Wi and in G \ (Wi \ {w}) a non-empty important ({w}, ŴI \Wi)-separator
S disjoint from Wi so that I + (Wi, S) is a yes-instance. Some iteration of Line 9 will
choose this vertex w ∈ Wi, and it holds that H ∩ S 6= ∅, so some iteration of Line 11
will choose a vertex v ∈ S. Because I + (Wi, S) is a yes-instance, I + (Wi, {v}) is also a
yes-instance, so by induction we get that Algorithm 1 would return on Line 13, which is
a contradiction.

5.4.6 Running time analysis

We then prove that the running time of Algorithm 1 is kO(kt)n2. For this, we introduce
the measures ΦI(Wi) of a terminal clique and Φ(I) of the instance.

We define the measure of a terminal clique based on its flow potential as

ΦI(Wi) = 3k + 3− flow-ΦI(Wi).

144 Exact and (1 + ε)-approximation algorithms for treewidth

Observe that 2k + 2 ≤ ΦI(Wi) ≤ 3k + 3, which in particular implies that the sum of
measures of two terminal cliques is always at least k + 1 larger than the measure of a
single terminal clique.

Then, the measure of the instance is defined as

Φ(I) =
t∑
i=1

ΦI(Wi).

Note that (2k + 2)t ≤ Φ(I) ≤ (3k + 3)t. We will show the running time of the algorithm
to be of form kO(Φ(I))n2 = kO(kt)n2.

To this end, we will show that breaking the instance by a safe separation does not increase
the measure, and that both the terminal clique merging branching of Line 5 and the leaf
pushing branching of Line 12 decrease the measure by at least one. We start by proving
the property for safe separations, using Lemmas 5.28 to 5.30.

Lemma 5.41. Let I = (G, {W1, . . . ,Wt}, k) be an instance and (A, S,B) a safe separa-
tion. It holds that Φ(I / (A, S)) ≤ Φ(I).

Proof. We consider the three cases of Lemma 5.30. First, if I / (A, S) has less terminal
cliques than I, let t′ < t be the number of terminal cliques of I / (A, S). Recall from the
definition of I / (A, S) that all terminal cliques of I / (A, S) except possibly S are also
terminal cliques of I, and moreover I / (A, S) has at least one terminal clique that is a
superset of S. Therefore, the conditions of Lemma 5.29 apply for at least t′ − 1 terminal
cliques Wi of I / (A, S), in particular, for them flow-ΦI/(A,S)(Wi) ≥ flow-ΦI(Wi) holds
by Lemma 5.29 and therefore for them ΦI/(A,S)(Wi) ≤ ΦI(Wi). Because the measure of a
terminal clique is at least 2k + 2 and at most 3k + 3, it follows that

Φ(I / (A, S)) ≤ Φ(I) + 3k + 3− (2k + 2)(t− (t′ − 1))

≤ Φ(I) + 3k + 3− (2k + 2) · 2

≤ Φ(I)− k − 1.

Then, if {W1, . . . ,Wt} / (A, S) = {W1, . . . ,Wt}, the lemma follows directly from
Lemma 5.28.

Then, if both I and I / (A, S) have t terminal cliques and there is a terminal clique Wi

of I with Wi ∩ B 6= ∅, then I does not contain any terminal clique that is a subset of
A∪ S and a superset of S and therefore for all terminal cliques Wj of I / (A, S) except S

5.4 Algorithm for Partitioned Subset Treewidth 145

we have by Lemma 5.29 that flow-ΦI/(A,S)(Wj) ≥ flow-ΦI(Wj). Therefore, we have that

Φ(I / (A, S)) ≤ Φ(I) + ΦI/(A,S)(S)− ΦI(Wi),

which by flow-ΦI/(A,S)(S) ≥ flow-ΦI(Wi) (Lemma 5.30) implies Φ(I / (A, S)) ≤ Φ(I).

Next, we observe that the terminal clique merging branching of Line 5 decreases the
measure of the instance.

Lemma 5.42. Let I = (G, {W1, . . . ,Wt}, k) be an instance and Wi, Wj two distinct
terminal cliques. It holds that Φ(I × (Wi,Wj)) ≤ Φ(I)− k − 1.

Proof. This follows from Lemma 5.33 and the facts that ΦI(Wi) + ΦI(Wj) ≥ 4k + 4 and
ΦI×(Wi,Wj)(Wi ∪Wj) ≤ 3k + 3.

Then, we observe that Lemma 5.37 implies that the leaf pushing branching of Line 12
decreases the measure of the instance.

Lemma 5.43. Let I = (G, {W1, . . . ,Wt}, k) be an instance with t ≥ 2 that has no safe
separations. Let also i ∈ [t] so that |Wi| ≤ k and exists j 6= i so that |Wj| ≥ |Wi| and Wj

is not a superset of Wi, and let v ∈ V (G) \Wi. It holds that Φ(I + (Wi, {v})) ≤ Φ(I)− 1.

Proof. Observe that adding a vertex to a terminal clique does not decrease the flow
potentials of other terminal cliques. Therefore, the lemma holds by Lemma 5.37.

Then for the reduction by safe separations we have to argue that the sum of the sizes of
the instances I / (A, S) and I / (B, S) is less than the size of I. For this, we formally
define the size of I to be

size(I) = max(1, (k + 2)|V (G)| − (k + 2)2).

Note that size(I) = 1 if and only if |V (G)| ≤ k + 2.

We show that if (A, S,B) is a strict separation and |S| ≤ k + 1, then with respect to
the size(I) measure, the instances I / (A, S) and I / (B, S) are in total smaller than I if
|V (G)| ≥ k + 3.

Lemma 5.44. Let I = (G, {W1, . . . ,Wt}, k) be instance with |V (G)| ≥ k+3 and (A, S,B)

a strict separation with |S| ≤ k+ 1. Then size(I / (A, S)) + size(I / (B, S)) ≤ size(I)− 1.

146 Exact and (1 + ε)-approximation algorithms for treewidth

Proof. First, because (A, S,B) is a strict separation, |V (G)| ≥ k + 3, and k ≥ 1, both of
size(I / (A, S)) + 2 ≤ size(I) and size(I / (B, S)) + 2 ≤ size(I) hold. This implies that
the lemma holds whenever size(I / (A, S)) = 1 or size(I / (B, S)) = 1. It remains to
consider the case where size(I / (A, S)) > 1 and size(I / (B, S)) > 1, in particular where
|A ∪ S| ≥ k + 3 and |B ∪ S| ≥ k + 3.

In this case

size(I / (A, S)) + size(I / (B, S))

=(k + 2)|A ∪ S| − (k + 2)2 + (k + 2)|B ∪ S| − (k + 2)2

=(k + 2)(|A ∪ S|+ |B ∪ S|)− 2(k + 2)2

=(k + 2)(|V (G)|+ |S|)− 2(k + 2)2

=(k + 2)(|V (G)|+ |S| − k − 2)− (k + 2)2

≤size(I)− 1.

We then put the running time analysis together.

Lemma 5.45. Algorithm 1 runs in time kO(kt)n2.

Proof. First, we observe that all of the operations in a single call of the recursive procedure
can be performed in kO(1)m′ time, where m′ is the number of edges in the instance given
to the recursive call. In particular, the case analysis of Line 1 can be implemented in
kO(1)m′ time by Lemma 5.38, reducing by safe separations on Lines 2 and 3 can be
implemented in kO(1)m′ time by Lemma 5.31, for terminal clique merging on Lines 4 to 6
this is trivial, and for leaf pushing on Lines 8 to 13 it is an application of the Important
Separator Hitting Lemma (Lemma 5.23).

By the definition of I / (A, S), observe that at each recursive call the current graph can
be obtained from an induced subgraph of the original graph by adding all edges inside
the terminal cliques, and therefore we can bound m′ ≤ kO(1)m ≤ kO(1)n, where m is the
number of original edges. Therefore, the running time of the algorithm can be bounded
by kO(1)n ·R(I), where R(I) is the total number of recursive calls.

We show by induction that the number of recursive calls is bounded by

R(I) ≤ size(I) · ((k + 2)3)Φ(I) = kO(1)n · kO(kt) = kO(kt)n.

5.5 Faster algorithm for Subset Treewidth 147

First, when the algorithm returns on Line 1, this holds because size(I) ≥ 1 and Φ(I) ≥ 1

always. Then we can assume that t ≥ 2 and |V (G)| ≥ k + 3. If there exists a safe
separation (A, S,B), then the number of recursive calls is

R(I) =1 +R(I / (A, S)) +R(I / (B, S))

≤1 + (size(I / (A, S)) + size(I / (B, S))) · ((k + 2)3)Φ(I) (by Lemma 5.41)

≤size(I) · ((k + 2)3)Φ(I). (by Lemma 5.44)

If no safe separators exist, then all recursive calls are from terminal clique merging on
Line 5 and leaf pushing on Line 12. By Lemma 5.42, for recursive calls made from
terminal clique merging on Line 5 it holds that Φ(I × (Wi,Wj)) ≤ Φ(I) − 1, and
by Lemma 5.43, for recursive calls made from leaf pushing on Line 12 it holds that
Φ(I + (Wi, {v})) ≤ Φ(I)− 1. The total number of recursive calls from Lines 5 and 12 is
at most t2 + tk2 ≤ (k + 2)3 − 1, so we get that

R(I) ≤1 + ((k + 2)3 − 1) · size(I) · ((k + 2)3)Φ(I)−1 ≤ size(I) · ((k + 2)3)Φ(I).

This finishes the proof of Theorem 5.5, and together with Theorem 5.6 they imply
Theorem 1.3.

5.5 Faster algorithm for Subset Treewidth

This section is devoted to proving Theorem 5.3, in particular, to giving a 2O(k2)n2

time algorithm for Subset Treewidth. The algorithm of the previous section already
gives a kO(k2)n2 time algorithm for Subset Treewidth, so this section can be seen as
an optimization of the base of the exponent from kO(1) to O(1). We will re-use many
definitions and lemmas of Section 5.4. In particular, we use the definition of an instance
of Partitioned Subset Treewidth from Section 5.4, observing that an instance of Subset
Treewidth can be seen as an instance of Partitioned Subset Treewidth having initially
t = |W | = k + 2 terminal cliques of size 1.

The algorithm for Subset Treewidth will use similar concepts to the algorithm for
Partitioned Subset Treewidth, but a different approach for making progress in the
branching. The main measure of progress will be parameter q that states that there are
no solutions that contain “internal separations” of order < q. Here, an internal separation

148 Exact and (1 + ε)-approximation algorithms for treewidth

of a solution (X, T) means a separation (A, S,B) so that S is a subset of some bag of
T , and the terminal cliques intersect both A and B. The goal will be to increase q, by
first pushing two terminal cliques to be of size at least ≥ q by using a version of leaf
pushing that guesses the whole important separator instead of only one vertex, and then
guessing how a hypothetical internal separation of order q would split the terminal cliques
and breaking the instance by an important separator of size q pushed towards the side
with two terminal cliques of size ≥ q. We will also argue about internal separations that
contain only a small number of “original” terminal vertices behind them, in particular, we
will use an observation that if a solution has an internal separation (A, S,B) so that at
most k + 1− |S| original terminal vertices are “behind” the terminal cliques intersecting
A, then the whole A-side of the solution can be replaced by just a single bag containing
S and the original terminal vertices behind it.

The rest of this section is organized as follows. In Subsection 5.5.1 we introduce the
concept of a terminal clique covering an original terminal vertex and based on that the
concept of a degenerate separation. In Subsection 5.5.2 we introduce a new parameter to
measure the progress of the algorithm and argue how different operations on instances
preserve so called “valid instances”. In Subsection 5.5.3 we discuss the branching rules
of the algorithm and in Subsection 5.5.4 we describe the algorithm and put together its
correctness proof. In Subsection 5.5.5 we analyze the running time.

5.5.1 Terminal covers and degenerate separations

We extend the definition of an instance of Partitioned Subset Treewidth given in Section 5.4.
We now keep track also of the original input graph GO and the set of original terminal
verticesWO, which were the original input to the Subset Treewidth problem. In particular,
|WO| = k + 2. Observe that the recursive algorithm of Section 5.4 maintains that if
I = (G, {W1, . . . ,Wt}, k) is an instance in some recursive call, then V (G) ⊆ V (GO)

and E(G) ⊇ E(torsoGO(V (G))). The operations I × (Wi,Wj) and I + (Wi, A) trivially
maintain this because they change G only by adding edges, and the I / (A, S) operation
with a separation (A, S,B) maintains this because S becomes a clique in G / (A, S).

Terminal covers

Let I = (G, {W1, . . . ,Wt}, k) be an instance, GO the original graph, and WO the set of
original terminal vertices. We say that a terminal clique Wi covers an original terminal
vertex w ∈ WO if Wi is a ({w}, V (G))-separator in GO. We observe that in the algorithm
of the previous section, at every point for every original terminal vertex there exists a

5.5 Faster algorithm for Subset Treewidth 149

terminal clique that covers it, and moreover every terminal clique covers at least one
original terminal vertex.

In the algorithm of this section we maintain a mapping tc : WO → {W1, . . . ,Wt} from
the original terminal vertices to the current terminal cliques, so that for all w ∈ WO,
the terminal clique tc(w) covers w. We extend the definition of an instance to include
the mapping tc, in particular an instance is now a 4-tuple I = (G, {W1, . . . ,Wt}, k, tc).
(The instance also implicitly contains GO and WO, but we do not write them explicitly
because they do not change in the branching.)

Let us now define how the mapping is maintained under the operation I / (A, S), where
(A, S,B) is a separation. Let S ′ be a terminal clique of I / (A, S) that is a superset of
S. If there are multiple such terminal cliques, then let S ′ be the lexicographically first
choice. Then, we define

tc(w) / (A, S) =

S ′ if tc(w) ⊆ B ∪ S

tc(w) otherwise.

Now, we define I /(A, S) = (G/(A, S), {W1, . . . ,Wt}/(A, S), k, tc/(A, S)). The following
lemma shows that this correctly maintains the mapping tc.

Lemma 5.46. Let I = (G, {W1, . . . ,Wt}, k, tc) be an instance, GO the original graph,
and w ∈ WO an original terminal vertex. Let also (A, S,B) be a separation of G. If
tc(w) ⊆ B ∪ S, then any terminal clique of I / (A, S) that is a superset of S covers w in
I / (A, S). Otherwise, tc(w) is a terminal clique of I / (A, S) and covers w in I / (A, S).

Proof. First, if tc(w) intersects A, in which case tc(w) ∈ {W1, . . . ,Wt} / (A, S), the fact
that tc(w) covers w in I / (A, S) holds directly by the fact that tc(w) covers w in I.

Then, consider the case when tc(w) ⊆ B ∪ S. Recall that by definition tc(w) is a
({w}, V (G))-separator in GO. We will show that S is a ({w}, V (G / (A, S)))-separator in
GO. Consider any path from w to V (G / (A, S)) = A ∪ S in GO. Because tc(w) covers w
in I, this path intersects tc(w), and therefore it has a suffix that is a tc(w)-A ∪ S-path
in GO. Now, because E(G) ⊇ E(torsoGO(V (G))), we can map the suffix into a tc(w)-
A ∪ S-path in G by just removing vertices in GO \ V (G) from it. Then, because S is a
(tc(w), A ∪ S)-separator in G, this path must intersect S, and therefore the path from
w to A ∪ S in GO must also intersect S, and therefore S is a ({w}, A ∪ S)-separator in
GO.

150 Exact and (1 + ε)-approximation algorithms for treewidth

We also define the maintenance of tc under terminal clique merging by

tc(w)× (Wi,Wj) =

Wi ∪Wj if tc(w) = Wi or tc(w) = Wj

tc(w) otherwise.

Now, I × (Wi,Wj) = (G × (Wi,Wj), {W1, . . . ,Wt} × (Wi,Wj), k, tc × (Wi,Wj)). This
maintains the mapping tc correctly because if Wi is a ({w}, V (G))-separator in GO, then
also Wi ∪Wj is a ({w}, V (G))-separator in GO.

Similarly, when adding vertices to terminal cliques it is defined by

tc(w) + (Wi, A) =

Wi ∪ A if tc(w) = Wi

tc(w) otherwise.

Then, I + (Wi, A) = (G+ (Wi, A), {W1, . . . ,Wt}+ (Wi, A), k, tc + (Wi, A)). Again, this
clearly maintains the mapping tc correctly.

For a terminal clique Wi, we denote by #tcI(Wi) the number of original terminal vertices
mapped toWi by tc, i.e., #tcI(Wi) = |{w ∈ WO | tc(w) = Wi}|. Note that the operations
I × (Wi,Wj) and I + (Wi, A) preserve the invariant that #tcI(Wi) ≥ 1 for all terminal
cliques Wi, and the operation I / (A, S) for a separation (A, S,B) preserves this if there
is at least one terminal clique that is a subset of B ∪ S or a superset of S, which will be
always the case when this operation is used.

Degenerate separations

Let I = (G, {W1, . . . ,Wt}, k, tc) be an instance, and (X, (T, bag)) a solution of I. We
say that a separation (A, S,B) of G is an internal separation of the solution (X, (T, bag))

for I if S ⊆ bag(t) for some t ∈ V (T) and ŴI intersects both A and B.

We say that an internal separation (A, S,B) is degenerate if

|S|+
∑

Wi|Wi∩A 6=∅

#tcI(Wi) ≤ k + 1.

Note that if a solution contains a degenerate internal separation (A, S,B), then for
the purpose of obtaining a solution of the original instance we can, slightly informally
speaking, replace the decomposition on the A-side of the separation by just a single bag
S ∪{w ∈ WO | tc(w)∩A 6= ∅} because the definition states that this bag has size at most

5.5 Faster algorithm for Subset Treewidth 151

k+1. In particular, we observe that for the original instance there always exists a solution
where every degenerate internal separation is a separation between a leaf bag and the rest
of the decomposition, with the leaf bag containing only the separator S and the original
terminal vertices “behind” S. Now, our goal is to perform a pre-branching step that by
using important separators guesses, in some sense, a maximal set of degenerate internal
separations, and after that arrives to an instance where no solution has a degenerate
internal separation.

We say that an instance I = (G, {W1, . . . ,Wt}, k, tc) is valid if it is a yes-instance and
has no solution (X, (T, bag)) that has a degenerate internal separation for I. Otherwise,
we say that I is invalid. Next we show that by performing the pre-branching step, we
can assume that we start with a valid instance.

Lemma 5.47 (Pre-branching). There is an algorithm, that given a graph G, integer k,
and a setW with |W | = k+2, in time 2O(k2)m and space nO(1) enumerates 2O(k2) instances
(G, {W1, . . . ,Wt}, k, tc) with t ≤ k + 2 so that any solution of any of the instances can
in time kO(1)m be turned into a torso tree decomposition of width at most k in G that
covers W , and moreover if such a torso tree decomposition exists, then at least one of the
returned instances is valid.

Proof. Let the initial instance be I = (G, {W1, . . . ,W|W |}, k, tc), where {W1, . . . ,W|W |}
is a partition of W = WO into single vertices and tc(w) = {w}. We then branch on all
possible ways to perform terminal clique merging operations (recall the definitions from
Subsection 5.4.4). There are kO(k) possible sequences of terminal clique merging.

Observe that any solution of any of the resulting instances is a torso tree decomposition
of width at most k in G that covers W , and moreover if a solution exists, then at least
one of the resulting instances is a maximally merged yes-instance. Notice also that
#tcI(Wi) = |Wi| holds for all terminal cliques Wi in instances obtained in this manner.
We will then prove the lemma with the assumption that we start with an instance for
which #tcI(Wi) = |Wi| holds, and in particular, if the starting instance is a maximally
merged yes-instance, then at least one of the outputs will be a valid instance.

We will do branching that maintains a partition of terminal cliques into processed
terminal cliques and unprocessed terminal cliques. Initially, all of the terminal cliques are
unprocessed. This branching will always maintain that for unprocessed terminal cliques
Wi it holds that #tcI(Wi) ≥ |Wi|, and in the “success” branches the following invariants
will be maintained

1. I is a yes-instance,

152 Exact and (1 + ε)-approximation algorithms for treewidth

2. for every processed terminal clique Wi there exists no solution that contains a
degenerate internal separation (A, S,B) so that A intersects Wi, and

3. there exists no solution that contains a degenerate internal separation (A, S,B) so
that more than one terminal clique intersects A.

Initially, the invariant #tcI(Wi) ≥ |Wi| holds as discussed earlier. Also, if I is initially
a maximally merged yes-instance, the invariant of Item 1 holds by definition, and the
invariant of Item 2 initially holds by the fact that there are no processed terminal cliques.
The invariant of Item 3 initially holds if I is maximally merged, because if there would be
a solution (X, (T, bag)) with a degenerate internal separation (A, S,B), so that at least
two terminal cliques intersect A, then by the definition |S|+

∑
Wi|Wi∩A 6=∅#tcI(Wi) ≤ k+1

and the fact that #tcI(Wi) ≥ |Wi| we could replace the solution on the subgraph induced
by A ∪ S by just a single bag S ∪

⋃
Wi|Wi∩A 6=∅Wi, and conclude that I is not maximally

merged.

The branching works as follows. While there exists an unprocessed terminal clique Wi, we
branch on the cases that either there exists no solution that contains a degenerate internal
separation (A, S,B) with Wi ∩ A 6= ∅, recursing to the case where we just mark Wi as
processed, or that there exists a solution that contains a degenerate internal separation
(A, S,B) so that Wi ∩ A 6= ∅, and in this case we recurse on all cases that are obtained
by taking an important (Wi,W I(Wi))-separator S ′ of size |S ′| ≤ k + 1 − #tcI(Wi),
letting (A′, S ′, B′) = (reachG(Wi, S

′), S ′, V (G) \ (reachG(Wi, S
′) ∪ S ′)), and recursing to

the instance I /(B′, S ′) with S ′ marked as processed if it is a terminal clique of I /(B′, S ′).

Observe that the branching cannot decrease #tcI(Wi) for any unprocessed terminal clique
Wi, so the invariant that #tcI(Wi) ≥ |Wi| for them is maintained. Note also that in each
branch, the number of unprocessed terminal cliques decreases. In particular, in the corner
case when S ′ is not a terminal clique of I / (B′, S ′), it holds that the terminal cliques of
I / (B′, S ′) are a subset of the terminal cliques of I but do not containWi. As the number
of important separators S ′ of size at most k is at most 4k by Lemma 5.22, we branch to
at most 4k + 1 directions every time, and therefore as initially there are at most k + 2

unprocessed terminal cliques, the branching tree has size at most (4k + 1)k+2 = 2O(k2).

The leaves of the branching tree have no unprocessed terminal cliques and will be the
instances we output. Note that because when taking the important separator S ′ we
impose the condition |S ′| ≤ k + 1−#tcI(Wi), which by #tcI(Wi) ≥ |Wi| implies that
|S ′| + |Wi| ≤ k + 1, we can construct from a solution of I / (B′, S ′) a solution of I by
just attaching a bag Wi ∪ S ′ as a neighbor of a bag containing S ′. Therefore, from any
solution of the outputted instance we can construct a solution of the original instance.

5.5 Faster algorithm for Subset Treewidth 153

Note that if the invariants of Items 1 to 3 hold for some outputted instance, then it is
a valid instance. Therefore, it remains to argue that if the invariants of Items 1 to 3
initially hold, then they hold for at least one of the branches.

Suppose that the invariants of Items 1 to 3 hold for I, and let Wi be an unprocessed
terminal clique that we are branching on. First, if there exists no solution that contains
a degenerate internal separation (A, S,B) so that A intersects Wi, the invariants are
clearly maintained by just marking Wi processed as it does not change the set of solutions
of the instance or the set Ŵ . Then, suppose there exists a solution (X, (T, bag)) that
contains a degenerate internal separation (A, S,B) so that A intersects Wi. First, by
Item 3, Wi must be the only terminal clique that intersects A. Then, we consider a
hypothetical solution (X, (T, bag)) and a degenerate internal separation (A, S,B) of it so
that reachG(Wi, S) is the largest possible over all such (X, (T, bag)) and (A, S,B). We
note that Wi ⊆ A ∪ S and W I(Wi) ⊆ B ∪ S, so S is a (Wi,W I(Wi))-separator. Then
we let S ′ to be a smallest important (Wi,W I(Wi))-separator that dominates S, and
will argue that the branch that selects S ′ as the important separator will maintain the
invariants. We denote (A′, S ′, B′) = (reachG(Wi, S

′), S ′, V (G) \ (reachG(Wi, S
′) ∪ S ′)).

Note that Wi intersects A′ because Wi intersects reachG(Wi, S). We will argue that
I / (B′, S ′) satisfies the invariants of Items 1 to 3.

Item 1. First, to show that I / (B′, S ′) is a yes-instance, we use that by Lemma 5.18,
S ′ is linked into S ∩ (A′ ∪ S ′). We apply the Pulling Lemma (Lemma 5.8) with the
separation (B′, S ′, A′), the torso tree decomposition (X, (T, bag)), and the bag of (T, bag)

that contains S, and obtain a torso tree decomposition ((X ∩B′) ∪ S ′, (T ′, bag′)) of no
larger width that covers ŴI/(B′,S′), showing that I / (B′, S ′) is a yes-instance.

Item 3. Then, to argue that I / (B′, S ′) does not have solutions with degenerate
internal separations (A, S,B) with multiple terminal cliques intersecting A, suppose that
(Xd, (Td, bagd)) is a solution of I / (B′, S ′) that contains a degenerate internal separation
(Ad, Sd, Bd) so that at least two terminal cliques of I / (B′, S ′) intersect Ad. Now, because
Wi is the only terminal clique of I that intersects A′ and by the fact that |S ′| ≤ |S| and
|Wi|+ |S| ≤ k + 1 we can turn (Xd, (Td, bagd)) into a solution (Xd ∪Wi, (T

′
d, bag′d)) of I

by just attaching a bag Wi ∪ S ′ to a bag of (T ′d, bag′d) that contains S ′.

Then, if S ′ ⊆ Sd ∪ Bd, we consider the separation (Ad, Sd, Bd ∪ A′) of G. The set ŴI
intersects Ad because at least two terminal cliques of I / (B′, S ′) intersect Ad, and it
intersects Bd ∪ A′ because Wi intersects A′, and therefore (Ad, Sd, Bd ∪ A′) is an internal
separation for the solution (Xd∪Wi, (T

′
d, bag′d)) of I. In this case, as Ad ⊆ B′, all terminal

cliques of I / (B′, S ′) that intersect Ad are also terminal cliques of I that intersect Ad and

154 Exact and (1 + ε)-approximation algorithms for treewidth

vice versa, and therefore at least two terminal cliques of I intersect Ad and (Ad, Sd, Bd∪A′)
is degenerate also for I, which would contradict that I satisfies the invariant of Item 3.

The other case is that S ′ intersects Ad and is a subset of Ad ∪ Sd, in which case we
consider the separation (Ad ∪ A′, Sd, Bd) of G. The set ŴI intersects Ad ∪ A′ because
Wi intersects A′, and it intersects Bd because Bd ⊆ B′ and ŴI ∩ B′ = ŴI/(B′,S′) ∩ B′,
and therefore it is an internal separation for the solution (Xd ∪Wi, (T

′
d, bag′d)) of I. At

least two terminal cliques of I intersect Ad ∪ A′ because Wi intersects A′, and some
terminal clique of I / (B′, S ′) that is also a terminal clique of I must intersect Ad because
all but at most one terminal clique of I / (B′, S ′) is a terminal clique of I and at least
two terminal cliques of I / (B′, S ′) intersect Ad. Now, because S ′ intersects Ad and all
terminal vertices covered by terminal cliques of I that are subsets of A′∪S ′ were mapped
into S ′ or to the superset of S ′ in I / (B′, S ′), the internal separation (Ad ∪A′, Sd, Bd) is
degenerate for I, which would contradict that I satisfies the invariant of Item 3.

Item 2. Then, to argue that I / (B′, S ′) has no solution with a degenerate internal
separation (A, S,B) with a processed terminal clique intersecting A, letWj be a processed
terminal clique of I / (B′, S ′) and suppose that (Xd, (Td, bagd)) is a solution of I / (B′, S ′)

that contains a degenerate internal separation (Ad, Sd, Bd) so thatWj intersects Ad but no
other terminal clique of I / (B′, S ′) intersects Ad. (Note that if also some other terminal
clique intersects Ad, then we are in the already proven case of Item 3.) Again, because
Wi is the only terminal clique of I that intersects A′ and by the facts that |S ′| ≤ |S| and
|Wi|+ |S| ≤ k + 1 we can turn (Xd, (Td, bagd)) into a solution (Xd ∪Wi, (T

′
d, bag′d)) of I

just by attaching a bag Wi ∪ S ′ to a bag of (Td, bagd) that contains S ′.

Then, if S ′ ⊆ Sd ∪Bd, we consider the separation (Ad, Sd, Bd ∪ A′) of G. Now, because
S ′ ⊆ Sd ∪ Bd but Wj intersects Ad, we have that Wj 6= S ′, implying that Wj is also a
terminal clique of I and therefore Ad intersects ŴI , and Bd ∪ A′ intersects ŴI because
Wi intersects A′, and therefore (Ad, Sd, Bd ∪ A′) is an internal separation of the solution
(Xd ∪Wi, (T

′
d, bag′d)) for I. Because Wj is a processed terminal clique of I / (B′, S ′) and

a terminal clique of I, and Wj 6= Wi and Wj 6= S ′, Wj is also a processed terminal clique
of I, and moreover because Ad ⊆ B′, also no other terminal cliques of I intersect Ad,
and therefore we contradict that I satisfies the invariant of Item 2.

The other case is that S ′ intersects Ad and is a subset of Ad ∪ Sd. Note that in this
case S ′ ⊆ Wj and Wj is the only terminal clique of I / (B′, S ′) that is a superset of
S ′. We then consider the separation (Ad ∪ A′, Sd, Bd) of G. Because Wi intersects A′

and Bd ⊆ B′ this is an internal separation for I. Note that because Wi ⊆ A′ ∪ S ′,
the original terminal vertices mapped to Wi in I are mapped to Wj in I / (B′, S ′).

5.5 Faster algorithm for Subset Treewidth 155

If any other terminal clique of I than Wi intersects Ad ∪ A′, then it must either be
also a terminal clique of I / (B′, S ′) that intersects Ad (in particular, Wj) or a subset
of A′ ∪ S ′ whose covered original terminal vertices are mapped to Wj in I / (B′, S ′).
In that case, we contradict that I satisfies the invariant of Item 3. Then, if the only
terminal clique of I that intersects Ad ∪ A′ is Wi, we observe that Sd is a (Wi,W I(Wi))-
separator, and moreover because Sd does not intersect A′ and S ′ intersects Ad we have
that reachG(Wi, S

′) ⊂ reachG(Wi, Sd). Because #tcI/(B′,S′)(Wj) ≥ #tcI(Wi), it holds
that |Wi|+ |Sd| ≤ k+1, and therefore (Ad∪A′, Sd, Bd) is a degenerate internal separation
for I, and therefore as reachG(Wi, S) ⊆ reachG(Wi, S

′) ⊂ reachG(Wi, Sd), it contradicts
the choice of (A, S,B).

5.5.2 Maintaining valid instances

We introduce a new parameter of the instance based on the minimum order of a an
internal separation in a solution. In particular, we maintain a integer q so that, informally
speaking, in the success branches it is guaranteed that there exists no solution that
contains an internal separation of order less than q. More formally, we further extend the
definition of an instance to now be a 5-tuple I = (G, {W1, . . . ,Wt}, k, tc, q), re-using all
previous definitions but now also including an integer q ∈ [0, k + 2]. We now say that I
is valid if it is a yes-instance, there exists no solution that contains a degenerate internal
separation, and there exists no solution that contains an internal separation of order less
than q. Otherwise, we say that I is invalid. Note that a valid instance in the sense of
Subsection 5.5.1 can be turned into valid instance of this sense by just setting q = 0. The
definitions /, ×, and + used for manipulating the instance are extended so that they do
not change q. The rest of this section will be devoted to designing a branching algorithm
for either finding a solution of I or concluding that I is invalid.

We first give a general lemma that will be used for arguing that if we break the instance
by a separation (A, S,B), then the resulting instances I / (A, S) and I / (B, S) are valid.

Lemma 5.48. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be a valid instance and (A, S,B) a
separation of G so that at least one terminal clique either intersects A or is a superset
of S and at least one terminal clique either intersects B or is a superset of S. If both
I / (A, S) and I / (B, S) are yes-instances, then both I / (A, S) and I / (B, S) are valid.

Proof. By symmetry it suffices to prove that I / (A, S) is valid, so for the sake of
contradiction suppose that I / (A, S) is invalid. Because I / (A, S) is a yes-instance, it
has a solution that contains a degenerate internal separation or an internal separation of

156 Exact and (1 + ε)-approximation algorithms for treewidth

order < q. Let (XA, TA) be such a solution of I / (A, S) and (XB, TB) any solution of
I / (B, S).

By Lemma 5.26, (XA ∪XB, TA ∪S TB) is a solution of I. Let (A′, S ′, B′) be the internal
separation of (XA, TA). Now, as S is a clique in G / (A, S), we have two cases, either
S ⊆ B′ ∪ S ′ or S ⊆ A′ ∪ S ′ and S intersects A′.

First, if S ⊆ B′ ∪ S ′, then consider the separation (A′, S ′, B ∪B′) of G. In this situation
we have that ŴI intersects A′ because ŴI/(A,S) intersects A′ and S ⊆ B′ ∪ S ′, and that
ŴI intersects B ∪ B′ because if it does not intersect B, then ŴI/(A,S) = ŴI , in which
case it must intersect B′. Therefore, (A′, S ′, B ∪ B′) is an internal separation of the
solution (XA ∪ XB, TA ∪S TB) of I, and therefore if |S ′| < q we are done in this case.
If (A′, S ′, B′) is degenerate internal separation of (XA, TA) in I / (A, S), then it is also
a degenerate internal separation of (XA ∪XB, TA ∪S TB) because the original terminal
vertices mapped to terminal cliques that intersect A′ are the same in both I and I / (A, S)

because A′ ⊆ A.

Then, if S ⊆ A′ ∪ S ′ and S intersects A′, consider the separation (A′ ∪ B, S ′, B′) of
G. By the same arguments as in the earlier case, we get that (A′ ∪ B, S ′, B′) is an
internal separation of the solution (XA ∪XB, TA ∪S TB) of I, and again if |S ′| < q we are
immediately done. Now, if (A′, S ′, B′) is a degenerate internal separation of (XA, TA) in
I / (A, S), then (A′ ∪B, S ′, B′) is degenerate in I because all original terminal vertices
mapped to terminal cliques intersecting B in I are mapped to a superset of S in I /(A, S),
which intersects A′.

It follows that breaking the instance by safe separations preserves the validity.

Lemma 5.49. If I is valid and (A, S,B) is a safe separation, then both I / (A, S) and
I / (B, S) are valid.

Proof. By Lemma 5.27 both I / (A, S) and I / (B, S) are yes-instances. Because (A, S,B)

is a safe separation, at least one terminal clique intersects A or is a superset of S and at
least one terminal clique intersects B or is a superset of S. Therefore by Lemma 5.48
both I / (A, S) and I / (B, S) are valid.

Then, we observe that safe separations (A, S,B) of order < q can be turned into internal
separations of order < q if ŴI intersects both A and B.

Lemma 5.50. If an instance I = (G, {W1, . . . ,Wt}, k, tc, q) has a safe separation
(A, S,B) of order < q so that ŴI intersects both A and B, then I is invalid.

5.5 Faster algorithm for Subset Treewidth 157

Proof. If I would be valid, then by Lemma 5.27 both I / (A, S) and I / (B, S) are
yes-instances. Let (XA, TA) be a solution of I / (A, S) and (XB, TB) be a solution of
I / (B, S). By Lemma 5.26, (XA ∪ XB, TA ∪S TB) is a solution of I. However, now
(A, S,B) is an internal separation of order < q and thus I is invalid.

Then, we show that the notion of maximally merged plays well together with the definition
of valid instances.

Lemma 5.51. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance. If for all pairs of
distinct terminal cliques Wi,Wj either |Wi ∪Wj| > k+ 1 holds or I × (Wi,Wj) is invalid,
then I is either maximally merged or invalid.

Proof. Suppose this holds and I is valid but not maximally merged. Now, there exists a
pair of distinct terminal cliques Wi,Wj so that |Wi ∪Wj| ≤ k + 1 and I × (Wi,Wj) is
a yes-instance but invalid. Let (X, (T, bag)) be a solution of I × (Wi,Wj) and (A, S,B)

an internal separation of (X, (T, bag)) that is either degenerate or has |S| < q. Now,
(X, (T, bag)) is also a solution of I, and because ŴI = ŴI×(Wi,Wj), (A, S,B) is also
an internal separation for I. First, if |S| < q, then I is invalid. Then, if (A, S,B) is
degenerate for I× (Wi,Wj), then for I only a smaller number of original terminal vertices
are mapped into terminal cliques that intersect A, so (A, S,B) is degenerate for I.

5.5.3 Branching

In our algorithm, if there are less than 2 terminal cliques of size ≥ q we will perform
leaf pushing branching to create more terminal cliques of size ≥ q. Unlike in the leaf
pushing of Section 5.4, in the leaf pushing of this section we will add the whole important
separator to the terminal clique. We show that like this, we can make a terminal clique
of size < q into size ≥ q by guessing a single important separator.

Lemma 5.52. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be a maximally merged valid instance
with t ≥ 2, no safe separators, and Wi a potential forget-clique of I. There is a
vertex w ∈ Wi \ W I(Wi) and in the graph G \ (Wi \ {w}) a non-empty important
({w}, ŴI \Wi)-separator S disjoint from Wi so that I + (Wi, S) is a valid instance and
q + 1 ≤ |Wi ∪ S| ≤ k + 1.

Proof. Let w and S be chosen so that I + (Wi, S) is a yes-instance, which can be done
by Lemma 5.36. Now, suppose that I + (Wi, S) is invalid and let (X, T) and (A′, S ′, B′)

be the solution and the internal separation that show that I + (Wi, S) is invalid. Note
that (X, T) is also a solution of I.

158 Exact and (1 + ε)-approximation algorithms for treewidth

First, if ŴI intersects both A′ and B′, then (X, T) and (A′, S ′, B′) directly show that
also I is invalid. In particular, in the case when (A′, S ′, B′) is degenerate for I + (Wi, S),
note that if a terminal clique of I intersects A′ then also the corresponding terminal
clique of I + (Wi, S) also intersects A′, and therefore (A′, S ′, B′) is also degenerate for I.

Then, if ŴI does not intersect A′ but S does, we have that Wi ⊆ S ′ and S ⊆ A′ ∪ S ′.
In this case, denote Rw = reachG({w}, S ∪ Wi \ {w}) and consider the separation
(A′′, S ′′, B′′) = (A′ ∪Rw, S

′ \Rw, B
′ \Rw). This is a separation because the neighborhood

of Rw is a subset of S∪Wi ⊆ A′∪S ′. Moreover, it is an internal separation of (X, T) for I
because w ∈ A′′ and ŴI ∩B′ = ŴI ∩B′′ because Rw ∩ ŴI = {w} and w /∈ B′. If |S ′| < q

then this immediately shows that I is invalid. If (A′, S ′, B′) is degenerate for I + (Wi, S),
then (A′′, S ′′, B′′) is degenerate for I, because by the fact that w ∈ Wi \W I(Wi), the
only terminal clique of I that intersects A′′ is Wi, and #tcI(Wi) = #tcI+(Wi,S)(Wi ∪ S)

in this case.

Then, if ŴI does not intersect B′ but S does, we do an analogous argument, in par-
ticular we again denote Rw = reachG({w}, S ∪Wi \ {w}) and consider the separation
(A′′, S ′′, B′′) = (A′ \Rw, S

′ \Rw, B
′ ∪Rw). By the same argument as previously, this is

an internal separation of (X, T) for I. Again, if |S ′| < q then I is invalid. If (A′, S ′, B′)

is degenerate for I + (Wi, S), then (A′′, S ′′, B′′) is degenerate for I, because if a terminal
clique of I intersects A′′ then a corresponding terminal clique of I + (Wi, S) intersects A′.

Finally, to show that |Wi ∪ S| ≥ q + 1, we have that if |Wi ∪ S| ≤ q would hold, then
(Wi \ {w}) ∪ S would be a ({w}, ŴI \Wi)-separator of size < q. This would give an
internal separation (A, (Wi \ {w}) ∪ S,B) with w intersecting A and ŴI \ (Wi ∪ S)

intersecting B. Note that ŴI \ (Wi∪S) 6= ∅ because otherwise I would not be maximally
merged.

Then, once there are at least two terminal cliques of size ≥ q, the algorithm will guess
how a hypothetical internal separation of order q would separate the terminal cliques, and
find a corresponding separation by guessing an important separator. For this argument it
will be crucial that the separator S of such an internal separation (A, S,B) will be linked
into the terminal cliques of size ≥ q.

Lemma 5.53. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be a valid instance, and (A, S,B) an
internal separation of a solution of I of order |S| = q. Then S is linked into any terminal
clique of I of size at least q.

Proof. Let Wi be a terminal clique of I of size |Wi| ≥ q and suppose S is not linked into
Wi. By symmetry suppose Wi ⊆ A ∪ S, and by definition of internal separation let Wj

5.5 Faster algorithm for Subset Treewidth 159

be a terminal clique that intersects B. Now, let S ′ be a minimum size (Wi, S)-separator,
in particular having size |S ′| < q and S ′ linked into both Wi and S. Note that S ′ also
separates Wj from Wi, in particular S ′ gives a separation (A′, S ′, B′) so that Wi ⊆ A′∪S ′

and B ⊆ B′, implying that Wi ∩ A′ 6= ∅ and Wj ∩B′ 6= ∅.

Let (X, T) be the solution of I whose internal separation (A, S,B) is. Note that T has a
bag containing S, and a bag containing Wi. We use the Pulling Lemma (Lemma 5.8)
with (X, T), (A′, S ′, B′) and the bag containing S to construct a solution of I / (A′, S ′)

and then with (X, T), (B′, S ′, A′) and the bag containing Wi to construct a solution
of I / (B′, S ′). Now, by combining the solutions of I / (A′, S ′) and I / (B′, S ′) using
Lemma 5.26 we get a solution of I whose internal separation (A′, S ′, B′) is. This implies
that I is invalid because |S ′| < q, Wi intersects A′, and Wj intersects B′.

We then introduce notation for arguing about guessing how a hypothetical internal
separation of order q separates the terminal cliques. Let I = (G, {W1, . . . ,Wt}, k, tc, q)

be an instance. For t′ ⊆ [t], we denote ŴI [t′] =
⋃
i∈t′ Wi. Let (tL, tR) be a partition of [t]

into two non-empty sets, in particular representing a partition of the terminal cliques.
We call (tL, tR) q-biased if |Wi| ≥ q implies that i ∈ tR.

We then give the main lemma that asserts how internal separations of order q can be
guessed by guessing the partition (tL, tR) of terminal cliques induced by them and an
important (ŴI [tL], ŴI [tR])-separator.

Lemma 5.54. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be a maximally merged valid instance
that has no safe separations and has at least two terminal cliques of size at least q.
Suppose that I has a solution that has an internal separation of order q. Then, there
exists a q-biased partition (tL, tR) of [t] and an important (ŴI [tL], ŴI [tR])-separator S
of size |S| = q with reachG(ŴI [tL], S) 6= ∅, corresponding to a separation (A, S,B) =

(reachG(ŴI [tL], S), S, V (G)\(reachG(ŴI [tL], S)∪S)) so that both I /(A, S) and I /(B, S)

are valid instances.

Proof. Let (A, S,B) be an internal separation of order q of a solution (X, T) of I. Note
that because I does not have safe separations, either all terminal cliques of size ≥ q

intersect A or all terminal cliques of size ≥ q intersect B. By permuting A and B if
necessary, assume that all terminal cliques of size ≥ q intersect B. Let (tL, tR) be the
partition of [t] that is obtained by assigning terminal cliques that intersect B into tR and
the others into tL. Note that at least one terminal clique intersects A because (A, S,B)

is an internal separation and at least two terminal cliques of size ≥ q intersect B.

Now, S is a (ŴI [tL], ŴI [tR])-separator. Moreover, S is a minimal (ŴI [tL], ŴI [tR])-
separator, because otherwise the subset of S would give an internal separation of order

160 Exact and (1 + ε)-approximation algorithms for treewidth

< q, meaning that I would not be valid. Let Wi be a terminal clique of size ≥ q.
By Lemma 5.53, S is linked into Wi. Let S ′ be a smallest important (ŴI [tL], ŴI [tR])-
separator that dominates S. Because S is a minimal (ŴI [tL], ŴI [tR])-separator, by
Lemma 5.19 S ′ is a (S, ŴI [tR])-separator, which implies that |S ′| = q and S ′ is linked
into Wi. Also, by minimality of S and Lemma 5.18, we have that S ′ is linked into S.
Moreover, as ŴI [tL] intersects A, we have that ŴI [tL] intersects reachG(ŴI [tL], S ′) and
in particular reachG(ŴI [tL], S ′) 6= ∅.

Now, let (A′, S ′, B′) = (reachG(ŴI [tL], S ′), S ′, V (G) \ (reachG(ŴI [tL], S ′) ∪ S ′)). Observe
that S ⊆ A′ ∪ S ′ and Wi ⊆ B′ ∪ S ′. We then use the Pulling Lemma (Lemma 5.8) to
construct solutions of I/(A′, S ′) and I/(B′, S ′). A solution of I/(A′, S ′) is constructed by
applying the lemma with the torso tree decomposition (X, T), the separation (A′, S ′, B′),
and the node of T whose bag contains Wi. Symmetrically, a solution of I / (B′, S ′)

is constructed by applying the lemma with the torso tree decomposition (X, T), the
separation (B′, S ′, A′), and the node of T whose bag contains S.

Now, both I / (A′, S ′) and I / (B′, S ′) are yes-instances, so it remains to prove that they
are valid. First, because I is maximally merged and there are at least two terminal
cliques of size ≥ q, it holds that |ŴI [tR]| ≥ q + 1, implying that ŴI [tR] intersects B′.
Also, as argued before ŴI [tL] intersects A′. Therefore, by Lemma 5.48 both I / (A′, S ′)

and I / (B′, S ′) are valid.

5.5.4 The algorithm

We then describe the 2O(k2)n2 time algorithm for Subset Treewidth.

Given input (G,W, k), the algorithm first uses pre-branching (Lemma 5.47) to enumerate
2O(k2) instances of Partitioned Subset Treewidth, so that any solution to any of the
instances can in kO(1)m time be turned into a torso tree decomposition in G of width k
that covers W , and moreover if such a torso tree decomposition exists, then at least one
of the instances is valid. For each resulting instance, we then use a recursive procedure
that either concludes that a given instance is invalid, or returns a solution to the instance.
This recursive procedure is described in pseudocode Algorithm 2, and we also give a
detailed description of it next.

First, on Line 1 the algorithm uses Lemma 5.38 to handle the corner cases of t = 1 and
|V (G)| ≤ k + 2. Then, on Lines 2 to 6 the reduction by safe separations is performed. In
particular, if there exists a safe separation (A, S,B), then if |S| < q and Ŵ intersects
both A and B, we can by Lemma 5.50 conclude that the instance is invalid. Otherwise,

5.5 Faster algorithm for Subset Treewidth 161

Algorithm 2 Recursive procedure of a 2O(k2)n2 time algorithm for Subset Treewidth.
Input: Instance I = (G, {W1, . . . ,Wt}, k, tc, q).
Output: Either a solution of I or INVALID.
1: if t ≤ 1 or |V (G)| ≤ k + 2 then return Case-analysis(I) . Lemma 5.38
2: if Exists a safe separation (A, S,B) then
3: if |S| < q and ŴI intersects both A and B then
4: return INVALID
5: else
6: return Combine(Solve(I / (A, S)), Solve(I / (B, S)))
7: for all i, j ∈ [t] with i 6= j and |Wi ∪Wj| ≤ k + 1 do
8: sol← Solve(I × (Wi,Wj))
9: if sol 6= INVALID then return sol

10: if q > k + 1 then return INVALID
11: if Less than 2 terminal cliques of size ≥ q then . Lemma 5.52
12: for all i ∈ [t] so that |Wi| < q and exists j 6= i with |Wj| ≥ |Wi| do
13: for all w ∈ Wi do
14: for all Important ({w}, ŴI \ Wi)-separators S in G \ (Wi \ {w}) with
|S| ≤ k do

15: if q + 1 ≤ |Wi ∪ S| ≤ k + 1 then
16: sol← Solve(I + (Wi, S))
17: if sol 6= INVALID then return sol

18: else . Lemma 5.54
19: for all q-biased bipartitions (tL, tR) of [t] do
20: for all Important (ŴI [tL], ŴI [tR])-separators S with |S| = q do
21: Let (A, S,B) = (reachG(ŴI [tL], S), S, V (G) \ (reachG(ŴI [tL], S) ∪ S))
22: if

∑
Wi|Wi∩A 6=∅#tcI(Wi) > k + 1− q then

23: sol← Combine(Solve(I / (A, S)), Solve(I / (B, S)))
24: if sol 6= INVALID then return sol

25: return Solve((G, {W1, . . . ,Wt}, k, tc, q + 1))

we recursively solve the instances I / (A, S) and I / (B, S) (recursive application of the
algorithm is denoted by the function “Solve” in the pseudocode), and if both of them
return a solution then we return the solution obtained from combining them, and if either
of them return INVALID then we return INVALID. In particular, the function “Combine”
on Line 6 denotes an operation that returns INVALID if either of its arguments is INVALID,
and if its arguments are a solution (XA, TA) of I / (A, S) and a solution (XB, TB) of
I / (B, S) then it returns the solution (XA ∪XB, TA ∪S TB) of I.

Then, on Lines 7 to 9 the algorithm does terminal clique merging branching. In particular,
the algorithm branches on merging all pairs of terminal cliques Wi,Wj with |Wi ∪Wj| ≤
k + 1 and returns a solution if any of the branches returned a solution. After this, by
Lemma 5.51 we can assume that I is either maximally merged or invalid. This is used
on Line 10 to justify that if q > k + 1 we can return INVALID because any solution of a

162 Exact and (1 + ε)-approximation algorithms for treewidth

maximally merged instance with at least two terminal cliques must contain an internal
separation.

For the main branching of the algorithm there are two cases. Either there are less than 2
terminal cliques of size ≥ q, or there are at least 2 terminal cliques of size ≥ q. We first
describe the case when there are less than 2 terminal cliques of size ≥ q. In this case, on
Lines 11 to 17 the algorithm performs leaf pushing branching according to Lemma 5.52.
In particular, the algorithm guesses a potential forget-clique Wi that is not a uniquely
largest terminal clique, a vertex w ∈ Wi, and an important ({w}, Ŵ \Wi)-separator S in
the graph G \ (Wi \ {w}) so that q + 1 ≤ |Wi ∪ S| ≤ k + 1, and branches on adding S to
Wi. For iterating over such important separators, we use the algorithm of Lemma 5.22
to iterate over all important separators of size at most k and check the conditions. The
purpose of this branching is to increase the number of terminal cliques of size ≥ q.

When there are at least 2 terminal cliques of size ≥ q, the algorithm branches on Lines 18
to 24 on how the internal separation of order q would partition the terminal cliques in the
solution, according to Lemma 5.54. The algorithm guesses the q-biased bipartition (tL, tR)

of [t] and an important (Ŵ [tL], Ŵ [tR])-separator S of size q. Then we denote the separation
corresponding to it by (A, S,B) = (reachG(ŴI [tL], S), S, V (G) \ (reachG(ŴI [tL], S)∪ S)),
and if this separation would not be a degenerate internal separation solves the instances
I / (A, S) and I / (B, S) recursively and combines the solutions in the same manner
as when recursing on safe separations. Again, we use the algorithm of Lemma 5.22 for
iterating over such important separators. Finally, on Line 25, if none of the branches
returned a solution the algorithm does a recursive call with an increased value of q.

The algorithm can clearly be implemented in space nO(1), in particular, on Lines 14
and 20 we use the nO(1) space enumeration of important separators of Lemma 5.22.
We then prove the correctness of Algorithm 2. Its running time will be analyzed in
Subsection 5.5.5.

First we show that the algorithm is correct when it returns a solution.

Lemma 5.55. If Algorithm 2 returns a solution, then it is a solution of I.

Proof. We prove the lemma by induction on the recursion tree. When the algorithm
returns on Line 1 from the case analysis, this follows from the correctness of the case
analysis.

When breaking the instance by a safe separation (A, S,B) and returning on Line 6 a
solution formed by combining solutions of I / (A, S) and I / (B, S), the correctness
follows from induction and Lemma 5.26. For terminal clique merging on Line 9 and

5.5 Faster algorithm for Subset Treewidth 163

leaf pushing on Line 17 this follows from induction and the fact that any solution of
I × (Wi,Wj) or I + (Wi, S) is also solution of I. When combining solutions on Line 24
the correctness again follows Lemma 5.26 and induction. For the final line Line 25 it
follows from induction.

Then we show that the algorithm is correct when it returns that I is invalid.

Lemma 5.56. If Algorithm 2 returns INVALID, then I is invalid.

Proof. We prove the lemma by induction on the recursion tree. When the algorithm
returns on Line 1 from the case analysis, this follows from the correctness of the case
analysis.

When returning INVALID on Line 4 if a safe separation (A, S,B) with |S| < q and ŴI
intersecting both A and B exists, the correctness is given in Lemma 5.50. For returning
INVALID from the safe separation recursion on Line 6, we have that if I is valid, then
by Lemma 5.49 both I / (A, S) and I / (B, S) are valid, and therefore the correctness
follows from induction.

After terminal clique merging on Lines 7 to 9, by induction and Lemma 5.51 we may
assume that I is either invalid or maximally merged, and in particular in the rest of this
proof we may assume that I is maximally merged, as the conclusion trivially holds when
I is invalid. Then, for returning INVALID on Line 10 if q > k + 1, we have that in this
case if t ≥ 2 and I is maximally merged it must be invalid because then any solution
must either contradict that I is valid or have all of the terminal cliques in a single bag,
which would contradict that I is maximally merged.

For returning INVALID on the final Line 25 there are two cases depending on the number
of terminal cliques of size ≥ q.

First, if there are less than 2 terminal cliques of size ≥ q, we use Lemma 5.52. Towards
contradiction assume that I is valid but we return INVALID from Line 25. By Lemma 5.34,
I has at least two potential forget-cliques, and some iteration of Line 12 fixed such
potential forget-clique Wi, and some iteration of Lines 13 to 15 fixed a vertex w ∈ Wi

and an important ({w}, ŴI \Wi)-separator S in G \ (Wi \ {w}) satisfying the conditions
of Lemma 5.52. Now, by Lemma 5.52, I + (Wi, S) is a valid instance, so by induction
Algorithm 2 would return on Line 17.

Then, if there are at least 2 terminal cliques of size ≥ q, we use Lemma 5.54. To-
wards contradiction assume that I is valid but we return INVALID from Line 25.
By induction, (G, {W1, . . . ,Wt}, k, tc, q + 1) is invalid, implying that either I is in-

164 Exact and (1 + ε)-approximation algorithms for treewidth

valid or there exists a solution of I that contains an internal separation of order q.
Therefore, we can assume that I satisfies the preconditions of Lemma 5.54. Now,
let (tL, tR) be the q-biased partition of [t] and S the important (ŴI [tL], ŴI [tR])-
separator of size |S| = q with reachG(ŴI [tL], S) 6= ∅ given by Lemma 5.54, and let
(A, S,B) = (reachG(ŴI [tL], S), S, V (G) \ (reachG(ŴI [tL], S) ∪ S)). By Lemma 5.54,
both I / (A, S) and I / (B, S) are valid. Some iteration of Lines 19 and 20 will fix
such (tL, tR) and S, and therefore some iteration of Line 21 will fix such (A, S,B). If∑

Wi|Wi∩A 6=∅#tcI(Wi) > k+ 1− q holds, we would have returned from Line 24 and obtain
a contradiction.

It remains to show that if I is valid, then
∑

Wi|Wi∩A 6=∅#tcI(Wi) > k+ 1− q indeed holds
for such (A, S,B). Because reachG(ŴI [tL], S) 6= ∅, we have that ŴI [tL] intersects A, and
because there are at least two terminal cliques of size ≥ q and I is maximally merged,
we have that ŴI [tR] intersects B. Therefore, because both I / (A, S) and I / (B, S) are
valid, we can construct from their solutions a solution of I so that (A, S,B) is its internal
separation. However, if

∑
Wi|Wi∩A 6=∅#tcI(Wi) ≤ k + 1− q would hold, then this would

be a degenerate internal separation.

5.5.5 Running time analysis

We analyze the running time of Algorithm 2. Throughout, we let δ = k + 2− k/ log k,
and consider q ≥ δ to be large and q < δ to be small (recall that log denotes the base-2
logarithm). In order to simplify the analysis we will also assume that k ≥ 64. If k < 64

we use the algorithm of Section 5.4, which runs in O(n2) time in this case.

Informally, the idea of choosing δ = k + 2− k/ log k is that once q ≥ δ, a single leaf push
takes a terminal clique to size at least δ, and after that the terminal clique is only k/ log k

vertices away from the maximum size, implying that we can “pay” kO(1) branching degree
for increasing the size by one and still end up with 2O(k2)nO(1) running time. In the other
case, when q < δ, we use the absence of degenerate internal separations to argue that
there should be at least k/ log k original terminal vertices behind any internal separation
of order q and amortize the cost of the branching on the original terminal vertices. We
note that any choice of δ between k + 2− k/ log k and k + 2− log k would be sufficient
for the analysis, but we fix the value δ = k + 2− k/ log k.

We now define the measure of a terminal clique based on cases depending on q and δ. We
note that even though we use similar notation to Section 5.4, the measure of this section
is unrelated to the measure of Section 5.4. The measure of a terminal clique Wi is

5.5 Faster algorithm for Subset Treewidth 165

ΦI(Wi) =


(k + 2−min(q, |Wi|)) · log k + 4k if q ≥ δ and |Wi| ≥ δ

6k if q ≥ δ and |Wi| < δ

(k + 2−min(q, |Wi|)) ·#tcI(Wi) + 6k if q < δ.

Note that if q ≥ δ and |Wi| ≥ δ, then 4k ≤ ΦI(Wi) ≤ 5k, implying that when q ≥ δ, we
have 4k ≤ ΦI(Wi) ≤ 6k, implying

∑t
i=1 ΦI(Wi) ≤ 6kt ≤ O(k2). If q < δ, then we have a

lower bound of 6k ≤ ΦI(Wi) on the measure of a single terminal clique, and the sum is
upper bounded by

∑t
i=1 ΦI(Wi) ≤ 6kt+ |WO|(k + 2) ≤ O(k2).

We then let #q(I) = min(2, number of terminal cliques of size ≥ q) and define the
measure of the instance to be

Φ(I) =

(k + 2− q) · 3k + (2−#q(I)) · k +
∑t

i=1 ΦI(Wi) if t ≥ 2 and

1 if t = 1.

Note that Φ(I) ≤ O(k2) and if t ≥ 2 then Φ(I) ≥ 8k.

We then give a general lemma for arguing that breaking the instance by separations of
order at least q does not increase the measure, and moreover decreases the measure by at
least k if this decreases the number of terminal cliques.

Lemma 5.57. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance with t ≥ 2 terminal
cliques and (A, S,B) a separation with |S| ≥ q. If the number of terminal cliques of
I / (A, S) is t, then Φ(I / (A, S)) ≤ Φ(I), and if the number of terminal cliques of
I / (A, S) is less than t, then Φ(I / (A, S)) ≤ Φ(I)− k.

Proof. First, consider the case when the number of terminal cliques of I/(A, S) is t. In this
case {W1, . . . ,Wt}/(A, S) = {W1, . . . ,Wt}∪{S ′}\{Wi} for some S ′ ⊇ S andWi ⊆ B∪S
or Wi = S ′. Note that now, #tcI/(A,S)(S

′) = #tcI(Wi) and min(q, |Wi|) ≤ min(q, |S ′|)
because |S ′| ≥ q, so ΦI/(A,S)(S

′) ≤ ΦI(Wi), implying together with #q(I/(A, S)) ≥ #q(I)

that Φ(I / (A, S)) ≤ Φ(I).

Then, when the number of terminal cliques of I / (A, S) is less than t, first consider the
case when q ≥ δ. In this case, ΦI(Wi) ≥ 4k for anyWi and ΦI/(A,S)(S

′) ≤ 5k when S ′ ⊇ S

because |S| ≥ q, so we decrease the measure by at least 3k from the sum over terminal
cliques, and increase by at most k from the #q(I) measure as #q(I)−#q(I /(A, S)) ≤ 1,
so in total we decrease the measure by at least 2k.

166 Exact and (1 + ε)-approximation algorithms for treewidth

Then, when q < δ, first consider the case when {W1, . . . ,Wt} contains a terminal clique
S ′ ⊇ S with S ′ ⊆ A ∪ S, in which case {W1, . . . ,Wt} / (A, S) ⊂ {W1, . . . ,Wt}. In this
case we have that

#tcI/(A,S)(S
′) = #tcI(S

′) +
∑

Wi∈{W1,...,Wt}\{W1,...,Wt}/(A,S)

#tcI(Wi).

Therefore, as min(|Wi|, q) ≤ min(|S ′|, q), we have that

ΦI/(A,S)(S
′) ≤ ΦI(S

′) +
∑

Wi∈{W1,...,Wt}\{W1,...,Wt}/(A,S)

ΦI(Wi)− 6k,

implying

Φ(I / (A, S)) ≤ Φ(I)− 6k · |{W1, . . . ,Wt} \ {W1, . . . ,Wt} / (A, S)| ≤ Φ(I)− 6k.

In the final case {W1, . . . ,Wt} does not contain a terminal clique S ′ ⊇ S with S ′ ⊆ A∪S,
so {W1, . . . ,Wt}/ (A, S) = {W1, . . . ,Wt}∪{S}\{Wi ∈ {W1, . . . ,Wt} | Wi ⊆ S ∪B} and

#tcI/(A,S)(S) =
∑

Wi∈{W1,...,Wt}|Wi⊆S∪B

#tcI(Wi).

By min(|Wi|, q) ≤ min(|S|, q) this implies that

ΦI/(A,S)(S) ≤ 6k +
∑

Wi∈{W1,...,Wt}|Wi⊆S∪B

ΦI(Wi)− 6k,

which by |{Wi ∈ {W1, . . . ,Wt} | Wi ⊆ S ∪ B}| ≥ 2 and #q(I) − #q(I / (A, S)) ≤ 1

implies that Φ(I / (A, S)) ≤ Φ(I)− 5k.

We then show that breaking the instance by a safe separation on Line 6, i.e., when the
safe separation (A, S,B) has either order ≥ q or ŴI intersects only one of A and B, does
not increase the measure.

Lemma 5.58. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance with t ≥ 2 and (A, S,B)

a safe separation with |S| ≥ q or ŴI ⊆ A∪S or ŴI ⊆ B∪S. Then Φ(I / (A, S)) ≤ Φ(I).

Proof. First, if ŴI ⊆ B∪S, then I/(A, S) has only one terminal clique so Φ(I/(A, S)) = 1.
Then, if ŴI ⊆ A∪S, there is a terminal clique S ′ ⊇ S with S ′ ⊆ A∪S because (A, S,B)

is a safe separator, and therefore we have that {W1, . . . ,Wt} / (A, S) ⊆ {W1, . . . ,Wt},
and moreover all terminal cliques Wi ∈ {W1, . . . ,Wt} \ {W1, . . . ,Wt} / (A, S) are subsets
of S and thus have size |Wi| ≤ |S| ≤ |S ′| and the original terminal vertices mapped

5.5 Faster algorithm for Subset Treewidth 167

to them get mapped to S ′ in I / (A, S), implying that Φ(I / (A, S)) ≤ Φ(I). Then, if
|S| ≥ q, this follows from Lemma 5.57.

We then show that terminal clique merging decreases the measure by at least k.

Lemma 5.59. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance with t ≥ 2. It holds
that Φ(I × (Wi,Wj)) ≤ Φ(I)− k.

Proof. Observe that

Φ(I × (Wi,Wj)) ≤ Φ(I) + ΦI×(Wi,Wj)(Wi ∪Wj)− ΦI(Wi)− ΦI(Wj) + k

(where the +k comes from the fact that #q(I × (Wi,Wj)) = #q(I) − 1 might hold).
Therefore, Φ(I × (Wi,Wj)) ≤ Φ(I) − k holds when q ≥ δ because in that case
ΦI×(Wi,Wj)(Wi ∪Wj) ≤ 6k and ΦI(Wi) + ΦI(Wj) ≥ 8k.

When, q < δ, first if Wi ∪ Wj ∈ {W1, . . . ,Wt}, we just map more original terminal
vertices into a larger terminal clique and decrease the measure by at least 12k. In
the other case, we have that #tcI×(Wi,Wj)

(Wi ∪Wj) = #tcI(Wi) + #tcI(Wj), which by
|Wi ∪Wj| ≥ max(|Wi|, |Wj|) implies that ΦI(Wi) + ΦI(Wj)−ΦI×(Wi,Wj)(Wi ∪Wj) ≥ 6k,
implying Φ(I × (Wi,Wj)) ≤ Φ(I)− 5k.

We then show that increasing the value of q decreases the measure by at least k.

Lemma 5.60. Let I1 = (G, {W1, . . . ,Wt}, k, tc, q) and I2 = (G, {W1, . . . ,Wt}, k, tc, q+1)

and t ≥ 2. It holds that Φ(I2) ≤ Φ(I1)− k.

Proof. Observe that the measures of each terminal cliques do not decrease, in particular,
if q + 1 ≥ δ and q < δ, then the measure goes from at least 6k to at most 6k. Then, the
measure of the instance decreases 3k from the term (k + 2− q) · 3k and increases by at
most 2k from the term (2−#q(I)) · k.

We then show that if the instance has less than 2 terminal cliques of size ≥ q, then
increasing the size of a terminal clique from less than q to at least q decreases the measure
by at least k.

Lemma 5.61. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance with t ≥ 2, Wi a
terminal clique of I, and S ⊆ V (G). If #q(I) < 2, |Wi| < q, and |Wi ∪ S| ≥ q, then
Φ(I + (Wi, S)) ≤ Φ(I)− k.

168 Exact and (1 + ε)-approximation algorithms for treewidth

Proof. If Wi ∪ S ∈ {W1, . . . ,Wt}, then I + (Wi, S) = I × (Wi,Wi ∪ S) and this holds by
Lemma 5.59. Otherwise, observe that increasing the size of a terminal clique (while keeping
the mapping tc same) cannot decrease its measure, and therefore as #q(I + (Wi, S)) ≥
#q(I) + 1, it holds that Φ(I + (Wi, S)) ≤ Φ(I)− k.

We then argue how the measure behaves when we break the instance by a separation
(A, S,B) of order q and I / (B, S) has the same number of terminal cliques as I. In
particular, this corresponds to Line 23 of Algorithm 2 when |tL| = 1. This lemma is the
main motivation of the somewhat involved definition of the measure and δ.

Lemma 5.62. Let I = (G, {W1, . . . ,Wt}, k, tc, q) be an instance with t ≥ 2. Let (A, S,B)

be a separation so that |S| ≥ q and there is a terminal cliqueWi withWi ⊆ A∪S, |Wi| < q,
and #tcI(Wi) > k + 1− q. It holds that Φ(I / (B, S)) ≤ Φ(I)−min(k, (q − |Wi|) log k).

Proof. First, if I / (B, S) has less terminal cliques than I, then Φ(I / (B, S)) ≤ Φ(I)− k
by Lemma 5.57. Then, we assume that Wi is the only terminal clique that is a subset of
A ∪ S and I / (B, S) has the same number of terminal cliques as I. In this case, because
#q(I / (B, S)) ≥ #q(I), we have Φ(I / (B, S)) ≤ Φ(I) + ΦI/(B,S)(S)−ΦI(Wi). We also
have that #tcI/(B,S)(S) = #tcI(Wi). We consider the cases q < δ and q ≥ δ.

First, when q < δ

#tcI(Wi) > k + 1− δ > k + 1− (k + 2− k/ log k) > k/ log k − 1 ≥ log k,

where the last inequality follows from k ≥ 64. This implies that

Φ(I / (B, S)) ≤Φ(I) + (k + 2− q) ·#tcI/(B,S)(S)− (k + 2− |Wi|) ·#tcI(Wi)

≤Φ(I)− (q − |Wi|) ·#tcI(Wi)

≤Φ(I)− (q − |Wi|) · log k.

Then, consider the case when q ≥ δ. If |Wi| < δ, then ΦI/(B,S)(S) ≤ 5k and ΦI(Wi) = 6k,
implying that Φ(I / (B, S)) ≤ Φ(I)− k. Then, if |Wi| ≥ δ,

Φ(I / (B, S)) ≤ Φ(I) + (k + 2− q) · log k − (k + 2− |Wi|) · log k

≤ Φ(I)− (q − |Wi|) · log k.

We then put the lemmas together to prove the running time of Algorithm 2.

5.5 Faster algorithm for Subset Treewidth 169

Lemma 5.63. Algorithm 2 runs in time 2O(k2)n2.

Proof. First we observe that all of the operations in a single call of the recursive procedure
can be performed in 2O(k)m′ time, where m′ is the number of edges in the instance given to
the recursive call. In particular, the case analysis of Line 1 can be implemented in O(m′)

time by Lemma 5.38, safe separations can be found in kO(1)m′ time by Lemma 5.31,
the terminal clique merging of Lines 7 to 9 can be implemented in kO(1) time, the
branching on Lines 11 to 17 when there are less than 2 terminal cliques of size ≥ q can
be implemented in kO(1)4km′ = 2O(k)m′ time by Lemma 5.22, and also the branching on
Lines 18 to 24 when there are at least 2 terminal cliques of size ≥ q can be implemented
in kO(1)2t4km′ = 2O(k)m′ time.

By the definition of I / (A, S), observe that at each recursive call the current graph can
be obtained from an induced subgraph of the original graph by adding all edges inside
the terminal cliques, and therefore we can bound m′ ≤ kO(1)m ≤ kO(1)n, where m is the
number of original edges. Therefore, the running time of the algorithm can be bounded
by 2O(k)n ·R(I), where R(I) is the total number of recursive calls.

We show by induction that the number of recursive calls is bounded by

R(I) ≤ size(I) · 16Φ(I) ≤ 2O(k2)n

(where size(I) is defined in Subsection 5.4.6), which then implies the conclusion because
2O(k)n · 2O(k2)n = 2O(k2)n2.

First, when the algorithm returns from the case analysis of Line 1, this holds because
size(I) ≥ 1 and Φ(I) ≥ 1. Then we can assume that t ≥ 2 and |V (G)| ≥ k + 3. If there
exists a safe separation (A, S,B), then the number of recursive calls is

R(I) =1 +R(I / (A, S)) +R(I / (B, S))

≤1 + (size(I / (A, S)) + size(I / (B, S))) · 16Φ(I) by Lemma 5.58 and induction

≤size(I) · 16Φ(I). by Lemma 5.44

Now, let R1(I) denote the total number of calls in the recursion trees from terminal
clique merging on Line 8. By Lemma 5.59, induction, and the fact that k ≥ 64, we have
that

R1(I) ≤ (k + 2)2 · size(I) · 16Φ(I)−k ≤ size(I) · 16Φ(I)/5.

170 Exact and (1 + ε)-approximation algorithms for treewidth

Then, let R2(I) denote the total number of calls in the recursion tree from the final
Line 25 where q is incremented. By induction and Lemma 5.60, we have that

R2(I) ≤ size(I) · 16Φ(I)−k ≤ size(I) · 16Φ(I)/5.

Now, consider the case when there are less than two terminal cliques of size ≥ q, and
let R3(I) denote the total number of calls in the recursion tree from Line 16 where the
leaf pushing branching is done. By induction, Lemma 5.22, Lemma 5.61, and k ≥ 64, we
have that

R3(I) ≤ (k + 2)2 · 4k · size(I) · 16Φ(I)−k ≤ size(I) · 16Φ(I)/5.

This finishes the running time analysis in the case when there are less than 2 terminal
cliques of size ≥ q, as in this case we have that

R(I) ≤ 1 +R1(I) +R2(I) +R3(I) ≤ size(I) · 16Φ(I).

It remains to consider the case when there are at least two terminal cliques of size ≥ q.
Let R4(I) denote the total number of calls in the recursion tree from Line 23 when
|tL| ≥ 2 and R5(I) the total number of calls when |tL| = 1. Recall that in all cases
|tR| ≥ 2.

First, let |tL| ≥ 2 and consider a single call from Line 23. As ŴI [tL] ⊆ A ∪ S and
ŴI [tR] ⊆ B ∪ S, we have that both I / (A, S) and I / (B, S) have less terminal cliques
than I, and therefore by induction, Lemma 5.57, and Lemma 5.44 the number of calls
for fixed (A, S,B) is at most

size(I) · (16Φ(I/(A,S)) + 16Φ(I/(B,S))) ≤ 2 · size(I) · 16Φ(I)−k.

Then, the total number of calls from Line 23 in this case is

R4(I) ≤ 2t · 4k · 2 · size(I) · 16Φ(I)−k ≤ size(I) · 16Φ(I)/5.

Now, let |tL| = 1 and consider a single call from Line 23. As |tR| ≥ 2, we again have by
Lemma 5.57 that Φ(I / (A, S)) ≤ Φ(I)− k. Let Wi be the single terminal clique with
i ∈ tL. We have by Lemma 5.62 that Φ(I / (B, S)) ≤ Φ(I)−min(k, (q − |Wi|) log k).

Because I has no safe separations, |Wi| < q, and there is a terminal clique of size
≥ q, we have that flowG(Wi,W I(Wi)) = |Wi|, which implies by Lemma 5.24 that the
number of important (Wi,W I(Wi))-separators of size q is at most kq−|Wi|. Combining

5.5 Faster algorithm for Subset Treewidth 171

with Lemma 5.22 and the fact that q ≤ k here, we actually obtain an upper bound of

min(kq−|Wi|, 4k) ≤ 4min(k,(q−|Wi|) log k).

Now, for fixed Wi, by induction and Lemma 5.44 the number of recursive calls is

R5(I, i) ≤ 4min(k,(q−|Wi|) log k) · size(I) · (16Φ(I)−min(k,(q−|Wi|) log k) + 16Φ(I)−k)

≤ size(I) · 4min(k,(q−|Wi|) log k) · 2 · 16Φ(I) · 16−min(k,(q−|Wi|) log k)

≤ size(I) · 2 · 16Φ(I) · (1/4)min(k,(q−|Wi|) log k)

≤ size(I) · 2 · 16Φ(I)/20k ≤ size(I) · 16Φ(I)/10k.

Then, over all terminal cliques this is

R5(I) =
t∑
i=1

R5(I, i) ≤ (k + 2) · size(I) · 16Φ(I)/10k ≤ size(I) · 16Φ(I)/5.

This finishes the running time analysis of the case when there are at least 2 terminal
cliques of size ≥ q, as in this case we have that

R(I) ≤ 1 +R1(I) +R2(I) +R4(I) +R5(I) ≤ size(I) · 16Φ(I).

Putting together with the pre-branching of Lemma 5.47, this finishes the proof of
Theorem 5.3, and together with Theorem 5.2 they imply Theorem 1.2.

172 Exact and (1 + ε)-approximation algorithms for treewidth

Chapter 6

Dynamic treewidth

In this chapter we give a data structure for maintaining tree decompositions of bounded
width. In particular, we prove the following theorem.

Theorem 1.4. There is a data structure that is initialized with an initially edgeless
n-vertex dynamic graph G and a parameter k. The data structure supports updating G by
edge insertions and deletions, and maintains a tree decomposition of G of width at most
6k+ 5 whenever the treewidth of G is at most k. When the treewidth of G is more than k,
the data structure contains a marker “Treewidth too large”. The amortized initialization
time is 2k

O(1)
n and the amortized update time is 2k

O(1)
√

logn log logn.

Moreover, the data structure can be provided a CMSO2 sentence ϕ upon initialization,
in which case it maintains whether ϕ is true in G whenever the marker “Treewidth too
large” is not present. In this case, the amortized initialization time is f(k, ϕ) · n and the
amortized update time is f(k, ϕ) · 2kO(1)

√
logn log logn, where f is a computable function.

The proof of Theorem 1.4 builds on the Subset Treewidth problem and torso tree
decompositions introduced in the previous chapter, but also uses several other techniques
from the literature of treewidth computing.

6.1 Overview

In this section we give an informal overview of the proof of Theorem 1.4. We first
give a high-level description of the data structure in Subsection 6.1.1, and then in
Subsections 6.1.2 and 6.1.3 we sketch the proofs of the most important technical ingredients.
At the end of this section, we overview the organization of the rest of this chapter.

174 Dynamic treewidth

We remark that some statements made in this section are simplified compared to the their
formal versions presented later, and thus may not be formally true. However, their intent
is to be “morally correct” in the sense that analogous, but more technical, statements are
proved in the later sections. Lemma statements that are not marked as “informal” are
formally correct.

6.1.1 High-level description

Let n be the number of vertices and k the given parameter that bounds the treewidth of
the dynamic graph G. Our goal is to maintain a binary tree decomposition T of height
at most h = 2O(k log k

√
logn log logn) and width at most 6k + 5, and at the same time any

dynamic programming scheme, or more formally, a “tree decomposition automaton”, on
T . In this overview, we assume that the treewidth of G is always at most k. Relaxing this
assumption to the setting of Theorem 1.4 is relatively straightforward with the technique
of “delaying invariant-breaking insertions” of Eppstein et al. [1996].

The goal of maintaining such a tree decomposition is reasonable because of a lemma of
Bodlaender and Hagerup [1998] that states that any tree decomposition of width k can
be turned into a binary tree decomposition of height O(log n) and width at most 3k + 2.

Now, assuming T is a binary tree decomposition of height hgt(T) ≤ h and width O(k), the
operations of adding an edge or deleting an edge can be implemented in time f(k) ·hgt(T),
for some function f depending on the dynamic programming we are maintaining, as
follows. Let us assume that we store the existence of an edge uv at the highest node
whose bag contains both u and v, i.e., at the node forgetT (uv). Now, when deleting the
edge uv, it suffices to find the node forgetT (uv), update information about the existence
of this edge stored in this node, and then update dynamic programming tables of the
nodes on the path from this node to the root, taking f(k) · hgt(T) time.

In the edge addition operation between vertices u and v, we let Pu and Pv be the paths
in T from forgetT (u) and forgetT (v), respectively, to the root, add u and v to all bags on
Pu ∪ Pv, add the information about the existence of the edge uv to the root node, and
update dynamic programming tables on Pu ∪ Pv, again taking in total f(k) · hgt(T) time.
Let us emphasize that only the node forgetT (uv) is “aware” of the existence of the edge
uv, as opposed to the more intuitive alternative of all the bags containing both u and v
being “aware” of uv. This is crucial for the fact that the dynamic programming tables of
only O(hgt(T)) nodes have to be recomputed after an edge addition or deletion.

6.1 Overview 175

Now, the only issue is that the edge addition operation could cause the width of T to
increase to more than 6k+ 5. In this case we have to modify T in order to make its width
smaller, while still maintaining small height. The main technical contribution of this
chapter is to show that such changes to tree decompositions can indeed be implemented
efficiently.

Recall that in the edge addition operation, we increased the sizes of bags in a subtree
consisting of the union Pu ∪ Pv of two paths, each between a node and the root. In
particular, all of the nodes with too large bags are contained in the prefix Pu ∪ Pv of T
of size at most 2 · hgt(T) (recall that a prefix of a rooted tree is a connected set of nodes
that contains the root). Now, our idea is to generalize the improvement operation of
Chapter 5, so that instead of improving only a single bag, it can be given a prefix of T
and it improves the whole prefix. Roughly speaking, we will solve the Subset Treewidth
problem with W = bags(Pu ∪ Pv), and then use the torso tree decomposition to improve
T as in Chapter 5. Of course, several additional techniques will be needed for bounding
the height, and for implementing the operation in time roughly linear in |Tpref |. However,
compared to Chapter 5 we have the advantage of being allowed a worse dependence on k,
and being required to maintain only an approximately optimal tree decomposition.

This generalization of the improvement operation that we develop for maintaining tree
decompositions in the dynamic setting will be called the refinement operation. The defini-
tion and properties of the operation are technical and will be described in Subsection 6.1.2,
but let us give here an informal description of what is achieved by the operation. The
refinement operation takes as an input a prefix Tpref of the tree decomposition T that we
are maintaining, and informally stated, replaces Tpref by a tree decomposition of width
at most 6k + 5 and height at most O(log n). The operation also edits other parts of T ,
but in a way that makes them only better in terms of sizes of bags, in a similar fashion
as the amortization in Chapter 4. In particular, if we use the refinement operation on
Tpref = Pu ∪ Pv after an edge addition operation that made the width exceed 6k + 5 in
the nodes in Pu ∪ Pv, the operation brings the width of T back to at most 6k + 5. The
amortized running time of the refinement operation is 2k

O(1)|Tpref | log n (times factors
depending on the dynamic programming maintained), and it can increase the height of
T by at most O(log n).

With the refinement operation, we have a tool for keeping the width of the maintained
tree decomposition T bounded by 6k + 5. However, each application of the refinement
operation can increase the height of T by Ω(log n), so we need also a tool for decreasing
the height. We develop such a tool by a combination of a carefully chosen potential
function and a strategy to decrease the potential function “for free” by using the refinement

176 Dynamic treewidth

operation if the height is too large. In particular, the potential function we use is

Φ(T) =
∑
t∈V (T)

(γ · k)|bag(t)| · hgt(t),

where γ is a fixed constant that we define in Subsection 6.5.1. This function has the
properties that it does not increase too much in the edge addition operation (the increase
is at most kO(k)hgt(T)2), it plays well together with the details of the amortized analysis
of the refinement operation (the factor (γ · k)|bag(t)| comes from there in a similar fashion
as we had 3|bag(t)| in the potential in Chapter 4), and because of the factor hgt(t), it
naturally admits smaller values on trees of smaller height.

In Subsection 6.1.3 we outline a strategy that, provided the height of T exceeds
2Ω(k log k

√
logn log logn), selects a prefix Tpref so that applying the refinement operation on

Tpref decreases the value of Φ(T), and moreover the running time of the refinement opera-
tion can be bounded by this decrease. In particular, this means that as long as the height
is more than 2Ω(k log k

√
logn log logn), we can apply such a refinement operation “for free” in

terms of amortized running time, and moreover decrease the value of the potential. As
the potential cannot keep decreasing forever, repeated applications of such an operation
eventually lead to improving the height to at most 2O(k log k

√
logn log logn).

6.1.2 The refinement operation

We then overview how the refinement operation works (see Figure 6.1 for an illustration
of it). First, given the prefix Tpref that we wish to improve, we find a set of vertices
X ⊇ bags(Tpref) so that torsoG(X) has treewidth at most 2k + 1 (here we have 2k + 1

instead of k for a technical reason we will explain), i.e., we solve a variant of Subset
Treewidth. Then, we compute an optimum-width tree decomposition T X of torsoG(X) and
use the lemma of Bodlaender and Hagerup [1998] to make it a binary tree decomposition
of height O(log n), resulting in T X having width at most 6k + 5. Now T X will form a
prefix of the new refined tree decomposition. It remains to construct tree decompositions
T C for each connected component C of G \X and attach them to T X .

Recall that a node of T is an appendix of Tpref if it is not in Tpref but its parent is. For
each appendix a ∈ app(Tpref) of Tpref , let Ta = (Ta, baga) = T �desc(a) be the restriction of
T to the subtree rooted at a. Note that because of X ⊇ bags(Tpref), for each connected
component C of G \ X there exists a unique appendix a of Tpref such that all bags
containing vertices from C are in Ta. Moreover, the restriction (Ta, baga�N [C]) to the
closed neighborhood N [C] of C is a tree decomposition of the induced subgraph G[N [C]]

minus the edges inside N(C).

6.1 Overview 177

T X

T C3 T C4

T C5

C1

Tpref

C2

C3 C4

C5

→

T C1

T C2

Figure 6.1: The refinement operation. The left picture illustrates the tree decomposition T ,
with the prefix Tpref encircled and the vertices in X ⊇ bags(Tpref) depicted in gray. The
appendices of Tpref are circled by boldface, and the components of G \X are denoted by
C1, . . . , C5. The right picture illustrates the tree decomposition constructed from T by
the refinement using X, in particular, by taking the tree decomposition T X of torsoG(X),
and gluing the tree decompositions T Ci for components Ci of G \X to it. The subtree
consisting of the three nodes above T C3 , T C4 , T C5 is constructed in order to keep the
tree binary after reattaching T C3 , T C4 , T C5 .

Because T X is a tree decomposition of torsoG(X), it has a bag that contains N(C). We
wish to attach (Ta, baga�N [C]) from its root a under this bag. In order to achieve this
while satisfying the connectedness condition of tree decompositions, we need to have
the set N(C) in the root of (Ta, baga�N [C]). We denote by T C = (TC , bagC) the tree
decomposition obtained from (Ta, baga�N [C]) by “forcing” N(C) to be in the root bag
bagC(a), in particular, by inserting N(C) to bagC(a) and then fixing the connectedness
condition by inserting each vertex v ∈ N(C) to all bags on the unique path from a

to forgetTa(v). Then, T C is a tree decomposition of G[N [C]] whose root bag contains
N(C), and therefore it can be attached to the bag of T X that contains N(C). These
attachments may make the resulting tree decomposition non-binary, so finally we need
to expand high-degree nodes into binary trees. This concludes the informal description
of the refinement operation. The actual definition is a bit more involved, as it will be
necessary to (1) select X in a particular way, (2) treat in some cases multiple different
components C in Ta as if they were one component, and (3) prune out unnecessary bags
of T C in a similar fashion as in the amortization in Chapter 4.

From the description of the refinement operation sketched above it should be clear that
the resulting tree decomposition is indeed a tree decomposition of G. Also, because the
height of T X is at most O(log n) and the height of each attached decomposition T C is at
most hgt(T), the height of the resulting tree decomposition is at most hgt(T) +O(log n).
Recall that our goal is that if all bags of size more than 6k + 6 are contained in Tpref ,

178 Dynamic treewidth

then the width of the refined tree decomposition is at most 6k + 5. The width of T X

is clearly at most 6k + 5. To bound the sizes of the bags of T C after the insertions of
vertices in N(C), we have to argue similarly as in Chapters 4 and 5, and for this we need
to assert extra properties of X.

Let us call a set of vertices X ⊆ V (G) a k-closure of Tpref if X ⊇ bags(Tpref) and the
treewidth of torsoG(X) is at most 2k + 1. In particular, the set X in the refinement
operation is a k-closure of Tpref . We say that a k-closure X is linked into Tpref if for each
component C of G \ X, the set N(C) is linked into bags(Tpref). The key property for
controlling the width of T C is that if X is linked into Tpref , then each bag of T C has size
at most the size of the corresponding bag in T . In particular, let Ta = (Ta, baga) be a
subtree of T rooted at an appendix a of Tpref , and C a component of G \X contained in
the bags in Ta. We can bound the size of bagC(t) for any t ∈ V (Ta) as follows.

Lemma 6.1. If X is linked into Tpref , then |bagC(t)| ≤ |baga(t)|.

The proof of Lemma 6.1 is similar to the proofs in Section 5.2. It implies that if Tpref

contains all bags of size more than 6k + 6 and X is linked into Tpref , then the tree
decomposition resulting from refinement will have width at most 6k + 5. We note
that the existence of a k-closure of Tpref that is linked into Tpref is non-trivial, but
before going into that let us immediately generalize the notion of linkedness in order
to obtain a stronger form of Lemma 6.1. For a set of vertices S, we again denote by
d(S) =

∑
v∈S depthT (forgetT (v)) the sum of the values of the vertex-depth function on

vertices in S, and say that a k-closure X is d-linked into Tpref if it is linked into Tpref , and
additionally for each neighborhood N(C), there are no separators S with |S| = |N(C)|
and d(S) < d(N(C)) separating N(C) from bags(Tpref).

Recall that our potential function is Φ(T) =
∑

t∈V (T)(γ · k)|bag(t)| · hgt(t). By using d-
linkedness similarly as in Section 5.2 and the potential function similarly as in Section 4.3
we can prove that the actual definition of the refinement operation satisfies the following
properties.

Lemma 6.2 (Informal). Let X be a d-linked k-closure of Tpref, a an appendix of Tpref,
and C1, . . . , C` the connected components of G \X that are contained in Ta. It holds that∑`

i=1 Φ(T Ci) ≤ Φ(Ta), and moreover, we can construct the tree decompositions T Ci for all
i in time f(k) · (Φ(Ta)−

∑`
i=1 Φ(T Ci)), together with their updated dynamic programming

tables.

We note that Lemma 6.2 would hold also for a potential function without the hgt(t) factor.
This factor is included in the potential only for the purposes of the height reduction
scheme that will be outlined in Subsection 6.1.3. Also, in the actual refinement operation

6.1 Overview 179

each Ci in Lemma 6.2 can actually be the union of multiple different components with the
same neighborhood N(Ci), and we can actually charge a bit extra from the potential for
each of these “connected components”. This extra potential will be used for constructing
the binary trees for the high-degree attachment points.

After setting technical details aside, the main takeaway of Lemma 6.2 is that constructing
the decompositions T C is “free” in terms of the potential. The only place where we could
use a lot of time or increase the potential a lot is finding the set X and constructing the
tree decomposition T X . For bounding this, we give a lemma asserting that we can assume
X to have size at most kO(1)|Tpref |, and in addition to have an even stronger structural
property that will be useful in the height reduction scheme. We prove the following
statement using the Dealternation Lemma of Bojańczyk and Pilipczuk [2022]. The bound
2k + 1 in the definition of k-closure comes from this proof. Recall the definition that
cmp(t) = bags(desc(t)) \ bag(t) for a node t of T .

Lemma 6.3. Let G be a graph of treewidth at most k, and T a tree decomposition of G
of width O(k). For any prefix Tpref of T , there exists a k-closure X of Tpref so that for
each appendix a ∈ app(Tpref) it holds that |X ∩ cmp(a)| ≤ O(k4).

As T is a binary tree, Tpref has at most |Tpref | + 1 appendices, so by Lemma 6.3, Tpref

admits a k-closure with at most O(k4|Tpref |) vertices. By using such a k-closure, we
can bound the size of T X by kO(1)|Tpref |. As each node in T X has potential at most
kO(k)(hgt(T)+ log n) in the resulting decomposition, we get that the refinement operation
increases the total potential by at most kO(k)(|Tpref |·(hgt(T)+log n)). In particular, in the
refinement operation applied directly after edge insertion, we have that |Tpref | ≤ 2|hgt(T)|,
so the potential function increases by at most kO(k)hgt(T)2 (note that hgt(T) ≥ log n).

Let us now turn to two issues that we have delayed for some time. How to guarantee
that the k-closure X is d-linked, and how to actually find such an X? We say that a
k-closure is c-small if it satisfies the condition of Lemma 6.3 for some concrete bound
c ≤ O(k4) that can be obtained from the proof of Lemma 6.3. The following lemma that
uses similar ideas to the proofs in Section 4.2 and Section 5.2 gives a way to guarantee
d-linkedness.

Lemma 6.4. Let Tpref be a prefix of a tree decomposition. If X is a c-small k-closure of
Tpref that among all c-small k-closures of Tpref primarily minimizes |X|, and secondarily
minimizes d(X), then X is d-linked into Tpref .

With Lemma 6.4, we can use dynamic programming for finding c-small k-closures that
are d-linked. In particular, we adapt the dynamic programming of Bodlaender and
Kloks [1996] for computing treewidth into computing c-small k-closures that optimize for

180 Dynamic treewidth

the conditions in the lemma. This is similar to the dynamic programming in Section 4.4,
but with a lot of technical details related to running Bodlaender-Kloks with the graph
torsoG(X). By maintaining these dynamic programming tables throughout the algorithm,
we get that given Tpref , we can in time 2k

O(1)|Tpref | find an c-small k-closure X of Tpref

that is d-linked, and also the graph torsoG(X).

6.1.3 Height reduction

In this subsection we sketch the height reduction scheme, in particular, the following
lemma.

Lemma 6.5 (Height reduction). Let T be the tree decomposition we are maintaining. If
hgt(T) > 2Ω(k log k

√
logn log logn), then there exists a prefix Tpref of T so that the refinement

operation on Tpref results in a tree decomposition T ′ with Φ(T ′) < Φ(T) and runs in time
2k

O(1)
(Φ(T)− Φ(T ′)).

To sketch the proof of Lemma 6.5, let us build a certain model of accounting how the
potential Φ(T) changes in a refinement operation with a prefix Tpref . First, recall that
Lemma 6.2 takes care of the potential in the tree decompositions T C for components C of
G \X, and the only place we need to worry about increasing the potential are the nodes
of T X . In the previous section we bounded this increase by kO(k)(|Tpref | · (hgt(T) + log n)),
where in particular the factor hgt(T) + log n comes from the fact that after attaching the
tree decomposition T C , the height of a node in T X could be as large as hgt(T) + log n.
This upper bound was sufficient for the refinement operation performed after an edge
addition to control the width, but to prove Lemma 6.5 we need a more fine-grained view.

Consider the following model. We start with the tree decomposition T X of heightO(log n),
and attach the tree decompositions of the components T C to it one by one. Each time we
attach a tree decomposition T C , we increase the height of at most O(log n) nodes in T X

(because hgt(T X) ≤ O(log n)), and this height is increased by at most hgt(T C), which is
at most hgt(a), where a is the appendix of Tpref whose subtree contains C. While there
can be many components C contained in Ta, observe that Lemma 6.3 implies that in
fact such components can have only at most kO(k) different neighborhoods N(C), and
therefore at most kO(k) different attachment points in T X . In particular, after handling
technical details about the binary trees used to flatten high-degree attachment points,
we can assume that an appendix a of Tpref is responsible for increasing the height of at
most kO(k) log n nodes in T X . Moreover, it increases the height of those nodes by at most
hgt(a) each, so in total it is responsible for increasing the potential by kO(k) · hgt(a) · log n.

6.1 Overview 181

Figure 6.2: Construction of Tpref in height reduction. The consecutive paths extracted by
the construction procedure are depicted in red, blue, and green. Their union constitutes
Tpref . Big trees are depicted in sea-green, shallow trees are depicted in cyan.

Denote Φ(Tpref) =
∑

t∈Tpref
(γ · k)|bag(t)| · hgt(t), i.e., the value of the potential on the nodes

in Tpref . The above discussion, combined with Lemma 6.2, leads to the following lemma.

Lemma 6.6 (Informal). Let Tpref be a prefix of a tree decomposition T and T ′ the tree
decomposition resulting from refining T with Tpref . It holds that

Φ(T ′) ≤ Φ(T)− Φ(Tpref) + kO(k) · |Tpref | · log n+
∑

a∈app(Tpref)

kO(k) · hgt(a) · log n.

Now, in order to prove Lemma 6.5, it is sufficient to prove that if T has too large height,
then there exists a prefix Tpref so that

Φ(Tpref) > ck log n

|Tpref |+
∑

a∈app(Tpref)

hgt(a)

 ,

where ck is some large enough number depending on k. (Here, the required ck comes
from the number of attachment points and the potential function, so some ck = kO(k) is
sufficient.) In our proof, the left hand side Φ(Tpref) in fact will be larger than the right
hand side ck log n

(
|Tpref |+

∑
a∈app(Tpref)

hgt(a)
)
by an arbitrary constant factor, which

gives also the required property that the refinement operation on such a prefix Tpref will
run in time 2k

O(1)
(Φ(T)− Φ(T ′)).

We first sketch how to find such Tpref when hgt(T) > nε for some ε > 0 and k is small
compared to n. See Figure 6.2 for an illustration. Assume for simplicity that |V (T)| = n.

182 Dynamic treewidth

The natural strategy is to start by setting Tpref to be the path from the root to the deepest
leaf in T . Then we have Φ(Tpref) ≥ Ω(n2ε). However, Tpref may have nε/2 appendices that
each have height nε/2, so it is possible that

∑
a∈app(Tpref)

hgt(a) · log n ≥ n2ε · log n/4. The
key observation is that in this case, many subtrees rooted at the appendices a ∈ app(Tpref)

must be even more unbalanced than T is, having height at least nε/2 while containing at
most 4 · n1−ε nodes. In particular, let us say that a subtree rooted on an appendix a is
big if it contains more than ck · n1−ε · log n nodes, and shallow if hgt(a) ≤ nε/(ck · log n).
Now, there can be at most n/(ck · n1−ε · log n) = nε/(ck · log n) big subtrees, so they
contribute at most kO(k) · n2ε/ck to the sum

∑
a∈app(Tpref)

kO(k) · hgt(a) · log n. Similarly,
the shallow subtrees also contribute at most kO(k) · n2ε/ck to the sum, so by making the
constant ck large enough, the sum coming from subtrees that are big or shallow is only a
tiny fraction of Φ(Tpref).

Then, there are subtrees rooted at appendices that are neither big nor shallow. These
subtrees are small and deep, hence they seem even more unbalanced than T . We apply
the same strategy to those trees recursively. For each appendix a whose subtree is small
and deep, we insert to Tpref the path Pa from a to its deepest descendant. As the subtree
is deep, we have that Φ(Tpref) increases by Φ(Pa) = Ω(n2ε/(ck · log n)2). Now, when
analyzing the appendices of Pa, we again apply the strategy to handle subtrees that are
big or shallow by charging them from Φ(Pa), and then handling subtrees that are both
small and deep recursively. This time, the right definition of big will be to have at least
n1−2ε(log n · ck)3 nodes, and the right definition of shallow will be to have height at most
nε/(ck · log n)2. More generally, on the i-th level of such recursion we can call a subtree
big if it contains more than n1−iε(log n · ck)i·(i+1)/2 nodes, and shallow if its height is at
most nε/(ck · log n)i. When ε is a constant, this recursion can continue only for a constant
number of levels before no subtree can be both small and deep, simply because it would
require the subtree to have larger height than the number of nodes. Therefore, in the
end we are able to find a prefix Tpref that satisfies the requirements of Lemma 6.5.

It is not surprising that selecting the height limit to be nε is not optimal. In particular, the
same strategy as outlined above will work if we select the initial height to be of the form
2Ω(k log k

√
logn log logn), resulting in showing that we can maintain height 2O(k log k

√
logn log logn)

and thus obtain amortized update time of 2k
O(1)
√

logn log logn.

Organization

The rest of this chapter is organized as follows. First, in Section 6.2 we give a framework
for formalizing the maintenance of dynamic programming schemes on dynamic tree
decomposition. Then, in Section 6.3 we introduce k-closures and prove structural results

6.2 Dynamic dynamic programming 183

about them. In Section 6.4 we give our data structure for computing k-closures and
auxiliary objects related to them. Section 6.5 is dedicated to the refinement operation
and Section 6.6 to the height improvement scheme. Finally, after gathering all of the
ingredients, we put the proof of Theorem 1.4 together in Section 6.7. We remark that the
material with the most novelty is presented in Sections 6.3, 6.5, and 6.6, while Sections 6.2
and 6.4 are mostly about definitions and relatively straightforward consequences of known
results.

6.2 Dynamic dynamic programming

In this section1 we introduce a framework for dynamic maintenance of dynamic pro-
gramming tables, and other information, on tree decompositions, under specific types of
updates called prefix-rebuilding updates. To this end, we also formalize dynamic program-
ming on tree decompositions by tree decomposition automata. We also give applications of
this framework, although the applications presented in this section are simple corollaries
of known results. A more involved application, namely our data structure for computing
k-closures, will be given in Section 6.4.

We remark that maintenance of runs of automata on dynamic trees and tree decompo-
sitions has already been investigated in the literature, even for the much more general
problem of dynamic enumeration. See for example the works of Hagerup [2000], Niew-
erth [2018], and Amarilli et al. [2019], and the bibliographic discussion within. In
particular, many (although not all) results contained in this section could be in princi-
ple derived from [Amarilli et al., 2018, Lemma 7.3], but not in a black-box manner and
without concrete bounds on update time. The material in Section 4.4 could also be con-
sidered to be a predecessor of the material in this section, for the special case we needed
in Chapter 4.

6.2.1 Prefix-rebuilding data structures

In our algorithm, we will maintain dynamic programming schemes on tree decompositions
that are updated by prefix rebuilding-updates. These updates, informally speaking, change
some rooted tree decomposition T = (T, bag) by editing some prefix Tpref ⊆ V (T) of the
tree T and the bags of the prefix. A prefix-rebuilding data structure is responsible for
maintaining some information on the tree decomposition under prefix-rebuilding updates,
so that the time to update the data structure is proportional to the size |Tpref | of the

1We attribute the joke in the title of the section to Chen et al. [2021].

184 Dynamic treewidth

changed prefix, times some overhead per node, which typically depends only on the width.
This generalizes the ideas used in Section 4.4 for re-computing the dynamic programming
tables only for the editable nodes.

The tree decompositions maintained by prefix-rebuilding data structures will store in
addition the edges of the dynamic graph G we maintain, and thus represent also G.
Furthermore, we will require that the maintained tree decomposition is binary (i.e., the
tree T is a binary tree), for the same reasons as the tree decomposition in Chapter 4 was
required to be subcubic.

Formally, we define an annotated tree decomposition of a graph G to be a triple T =

(T, bag, edges), where

• (T, bag) is a binary tree decomposition of G, and

• the function edges : V (T)→ 2E(G) maps each node t ∈ V (T) to the set edges(t) =

{uv ∈ E(G) | forget(T,bag)(uv) = t}, that is, to the set of edges for which t is the
unique node closest to the root containing both endpoints of the edge.

Note that edges is uniquely determined from G and (T, bag), and conversely, G is uniquely
determined from (T, bag, edges). Given a set X ⊆ V (T), the restriction of (T, bag, edges)

to X, denoted (T, bag, edges)�X , is the tuple (T [X], bag�X , edges�X).

Next, consider an update changing an annotated tree decomposition (T, bag, edges) to
another annotated tree decomposition (T ′, bag′, edges′). This update can also change
the underlying graph G, in particular, it changes G to be the graph uniquely deter-
mined by (T ′, bag′, edges′). The update is a prefix-rebuilding update if (T ′, bag′, edges′)

is created from (T, bag, edges) by replacing a prefix Tpref of T with a new rooted tree
T ? and then “re-attaching” the subtrees of T rooted at the appendices of Tpref be-
low the nodes of T ′pref . Formally, a prefix-rebuilding update is described by a tuple
u = (Tpref , T

′
pref , T

?, bag?, edges?, π) where

• Tpref ⊆ V (T) is a prefix of T ,

• T ′pref ⊆ V (T ′) is a prefix of T ′ satisfying

(T, bag, edges)�V (T)\Tpref
= (T ′, bag′, edges′)�V (T ′)\T ′

pref

• (T ?, bag?, edges?) = (T ′, bag′, edges′)�T ′
pref

and

• π : app(Tpref) → T ′pref is a function that maps the appendices of Tpref to nodes of
T ′pref such that for each appendix a ∈ app(Tpref), the parent of a in T ′ is π(a).

6.2 Dynamic dynamic programming 185

It is straightforward that (T ′, bag′, edges′) can be uniquely determined from (T, bag, edges)

and the tuple u as above. The tuple u is called a description of the prefix-rebuilding
update. The size of u, denoted |u|, is defined as |Tpref |+ |T ′pref |. It is also straightforward
that given u, a representation of (T, bag, edges) can be turned into a representation of
(T ′, bag′, edges′) in time `O(1) · |u|, where ` is the maximum of the widths of (T, bag, edges)

and (T ′, bag′, edges′).

A dynamic data structure is an `-prefix-rebuilding data structure with overhead τ , where
τ is typically a function of `, if it stores an annotated tree decomposition (T, bag, edges)

of width at most ` and supports the following operations.

• Initialize(T, bag, edges): Initializes (T, bag, edges) with the given annotated tree
decomposition of width at most `. Runs in time `O(1) · τ · |V (T)|.

• Update(u): Applies the prefix-rebuilding update described by u to the stored
annotated tree decomposition (T, bag, edges). Assumes that the result is indeed an
annotated tree decomposition of width at most `. Runs in time `O(1) · τ · |ū|.

Usually, the overhead τ will correspond to the time necessary to recompute any auxiliary
information associated with each node of the decomposition undergoing the update. For
example, the height of a node t in an annotated tree decomposition can be inferred in
O(1) time from the heights of the (at most two) children of t, so the overhead required
to recompute the heights of the nodes after the update is τ = O(1).

Prefix-rebuilding data structures will usually implement an additional operation allowing
to efficiently query the current state of the data structure. For example, next we state
a data structure that allows us to access various auxiliary information about the tree
decomposition.

Lemma 6.7. For every integer `, there exists an `-prefix-rebuilding data structure with
overhead O(1) that maintains an annotated tree decomposition T = (T, bag, edges) of a
dynamic graph G, and additionally implements the following operations.

• hgt(t): Given a node t ∈ V (T), returns the height of t in T . Runs in time O(1).

• size(t): Given a node t ∈ V (T), returns the number of nodes in the subtree of T
rooted at t, i.e., |descT (t)|. Runs in time O(1).

• forget(v): Given a vertex v ∈ V (G), returns the node forgetT (v), i.e., the unique
bag closest to the root that contains v. Runs in time O(1).

186 Dynamic treewidth

The proof of Lemma 6.7 uses standard arguments on dynamic programming on tree
decompositions. It will be proved in Subsection 6.2.4, after we first introduce more
definitions that make its proof streamlined. More generally, any typical bottom-up
dynamic programming scheme on tree decompositions can be turned into a prefix-
rebuilding data structure. In particular, in several places in this chapter we need to
maintain dynamic programming schemes on tree decompositions under prefix-rebuilding
updates. In every case, we state a suitable lemma about the existence of a prefix-rebuilding
data structure.

Finally, we show that the assumption that the function edges? is given in the description
of a prefix-rebuilding update can be lifted in prefix-rebuilding updates that do not
change the underlying graph G. Consider a prefix-rebuilding update that does not
change the graph G, and let us say that a weak description of the update is a tuple
û = (Tpref , T

′
pref , T

?, bag?, π) that is required to satisfy the same properties as a description
of a prefix-rebuilding update except for the edges function. Because the graph G is
not changed, the new annotated tree decomposition (T ′, bag′, edges′) can be determined
uniquely from (T, bag, edges) and û. We again denote |û| = |Tpref |+ |T ′pref |.

We show that a weak description û of a prefix-rebuilding update can be turned into a
description u of a prefix-rebuilding update such that |u| = O(|û|) and the annotated tree
decomposition (T ′, bag′, edges′) resulting from applying u is the same as the one resulting
from applying û. We note that this operation can make the sets Tpref and T ′pref larger,
but this is bounded by O(|û|).

Lemma 6.8. For every integer `, there exists an `-prefix-rebuilding data structure that
maintains an annotated tree decomposition T = (T, bag, edges) of a dynamic graph G
with overhead O(1), and additionally implements the following operation.

• Strengthen(û): Given a weak description û of a prefix-rebuilding update, returns a
description u of a prefix-rebuilding update such that |u| = O(û) and applying û and
u to T result in the same annotated tree decomposition T ′. Runs in time |û| · `O(1).

Proof. Let û = (T̂pref , T̂ ′pref , T̂
?, b̂ag

?
, π̂) and T ′ = (T ′, bag′, edges′) be the resulting anno-

tated tree decomposition. We observe that the forget-node of an edge uv ∈ E(G) can
change only if u, v ∈ bagsT ′(T̂ ′pref). However, if u, v ∈ bagsT ′(T̂ ′pref), then because of the
connectedness condition of T ′ it must hold that u, v ∈ bagsT (T̂pref∪app(T̂pref)), and in par-
ticular, uv must be stored in edges(T̂pref ∪ app(T̂pref)). Therefore, the changes to the edges

function are limited to the subtree of T consisting of T̂pref ∪ app(T̂pref), and therefore for
constructing u = (Tpref , T

′
pref , T

?, bag?, edges?, π) it suffices to take Tpref = T̂pref ∪ app(T̂pref)

and analogously construct T ′pref , T ?, bag?, and π from T̂ ′pref , T̂ ?, b̂ag
?
, and π̂. Then, the

6.2 Dynamic dynamic programming 187

edges? function can be determined from (T ?, bag?) and the edges function restricted to
T̂pref ∪ app(T̂pref). The running time and the bound on |u| follow from the fact that the
tree decompositions are binary.

By using the data structure from Lemma 6.8, we can assume when constructing prefix-
rebuilding updates that do not changeG that it is sufficient to construct a weak description,
but when implementing prefix-rebuilding data structures that the Update method receives
a (not weak) description.

6.2.2 Tree decomposition automata

We now introduce our notion of automata processing tree decompositions. While this
notion is tailored here to our specific purposes, the idea of processing tree decompositions
using various kinds of automata dates back to the work of Courcelle [1990] and is a
thoroughly researched topic, see for example [Downey and Fellows, 2013, Chapter 12] and
[Flum and Grohe, 2006, Chapters 10 and 11]. Hence, this subsection can be considered a
formalization of folklore.

Boundaried graphs

We will work with graphs with specified boundaries, as formalized next.

Definition 6.9 (Boundaried graph). A boundaried graph is a graph G together with a set
of vertices ∂G ⊆ V (G), called the boundary, such that G has no edge with both endpoints
in ∂G. A boundaried tree decomposition of a boundaried graph G is a triple (T, bag, edges)

that is an annotated tree decomposition of G where in addition we require that ∂G is
contained in the root bag.

When speaking about a boundaried tree decomposition (T, bag, edges) of a boundaried
graph G, we redefine the adhesion of the root of T to be ∂G, rather than the empty set.
Note that to be concise, in our definition a boundaried tree decomposition is always an
annotated tree decomposition (which also implies that T is binary).

Suppose T = (T, bag, edges) is a boundaried tree decomposition of a boundaried graph
G and x is a node of T . Then we say that x induces a boundaried graph Gx and its

188 Dynamic treewidth

boundaried tree decomposition Tx = (Tx, bagx, edgesx), defined as

V (Gx) =bagsT (descT (x)),

E(Gx) =
⋃

y∈descT (x)

edges(y)

∂Gx =adhT (x), and

Tx = (Tx, bagx, edgesx) =T �descT (x).

It is clear that Tx defined as above is a boundaried tree decomposition of Gx. We use the
above notation only when the boundaried tree decomposition T is clear from the context.

Automata

We now introduce our automaton model.

Definition 6.10 (Tree decomposition automaton). A (deterministic) tree decomposition
automaton of width ` consists of

• a state set Q,

• a set of accepting states F ⊆ Q,

• an initial mapping ι that maps every boundaried graph G on at most `+ 1 vertices
to a state ι(G) ∈ Q, and

• a transition mapping δ that maps every 7-tuple of form (B,X, Y, Z, J, q′, q′′), where
B is a set of size at most `+1, X, Y, Z ⊆ B, J ∈

(
B
2

)
\
(
X
2

)
, q′ ∈ Q, and q′′ ∈ Q∪{⊥}

to a state δ(B,X, Y, Z, J, q′, q′′) ∈ Q.

The run of a tree decomposition automaton A on a boundaried tree decomposition
(T, bag, edges) of a boundaried graph G is the unique labeling ρA : V (T) → Q satis-
fying the following properties.

• For every leaf node x of T , we have

ρA(x) = ι(Gx).

• For every non-leaf node x of T with one child y, we have

ρA(x) = δ(bag(x), adh(x), adh(y), ∅, edges(x), ρA(y),⊥).

6.2 Dynamic dynamic programming 189

• For every non-leaf node x of T with two children y and z, we have

ρA(x) = δ(bag(x), adh(x), adh(y), adh(z), edges(x), ρA(y), ρA(z)).

A tree decomposition automaton A accepts (T, bag, edges) if ρA(r) ∈ F , where r is the
root of T .

Note that in the transitions described above, nodes with one child are treated by passing
a “dummy state” ⊥ /∈ Q to the transition function instead of a state. Note that this allows
δ also to recognize when there is only one child. Also, the automata model presented
above could in principle distinguish the left child y from the right child z and treat states
passed from them differently. However, this will never be the case in our applications.
In all constructed automata, the transition mapping will be symmetric with respect to
swapping the role of the children y and z.

We say that a tree decomposition automaton A has evaluation time τ if the functions ι
and δ can be evaluated on any tuple of their arguments in time τ , and moreover for a
given q ∈ Q it can be decided whether q ∈ F in time τ . Note that we do not require the
state set Q to be finite. In fact, in most of our applications it will be infinite, but we will
be able to efficiently represent and manipulate the states.

We will often run a tree decomposition automaton on a non-boundaried annotated tree
decomposition of a non-boundaried graph G. In such cases, we simply apply all the above
definitions while treating G as a boundaried graph with an empty boundary.

For technical reasons we will also use nondeterministic tree decomposition automata,
which are defined just like in Definition 6.10, except that ι and δ are the initial relation
and the transition relation, instead of mappings, and the state set Q is required to be
finite. In particular, ι is a relation consisting of pairs of the form (G, q), where G is
a boundaried graph on at most ` + 1 vertices, and q ∈ Q. Similarly, δ is a relation
consisting of pairs of the form ((B,X, Y, Z, J, q′, q′′), q), where (B,X, Y, Z, J, q′, q′′) is a
7-tuple like in the domain of the transition mapping, and q ∈ Q. Then a run of a
nondeterministic automaton A on a boundaried tree decomposition (T, bag, edges) is a
labeling ρ of the nodes of T with states such that (Gx, ρ(x)) ∈ ι for every leaf node x,
((bag(x), adh(x), adh(y), ∅, edges(x), ρ(y),⊥), ρ(x)) ∈ δ for every node x with one child y,
and ((bag(x), adh(x), adh(y), adh(z), edges(x), ρ(y), ρ(z)), ρ(x)) ∈ δ for every node x with
two children y and z. Note that a nondeterministic tree decomposition automaton may
have multiple runs on a single tree decomposition. We say that A accepts (T, bag, edges)

if there is a run of A on (T, bag, edges) that is accepting, that is, the state associated
with the root node is accepting.

190 Dynamic treewidth

In the context of nondeterministic automata, by evaluation time we mean the time
needed to decide whether a given pair belongs to any of the relations ι or δ, or to
decide whether a given state is accepting. Note that if A is a nondeterministic tree
decomposition automaton with a finite state set Q, then we can determinize it, i.e.,
find a deterministic automaton A′ that accepts the same tree decompositions, using the
standard powerset construction. Then the state set of A′ is 2Q. In the following, all
automata are deterministic unless explicitly stated.

6.2.3 Automata constructions

We now present four automata constructions that we will use.

Tree decomposition properties automata

We first construct two very simple automata that are used in Lemma 6.7 for maintaining
properties of the tree decomposition itself.

Lemma 6.11. For every integer ` there exists tree decomposition automata H` and S`
of width `, with the following properties. For any graph G, annotated tree decomposition
(T, bag, edges) of G of width at most `, and any node x of T , ρH`(x) is equal to hgt(Tx)

and ρS`(x) is equal to |V (Tx)|. The evaluation times of H` and S` are O(1).

Proof. The state sets of both of the automata are Z≥1. Let us define for all n ∈ Z≥1 that
max(n,⊥) = n and n+⊥ = n. For the height automaton H`, the initial mapping and
the transition mapping are defined as (here _ denotes any input value)

ι(_) = 1

δ(_,_,_,_,_, q′, q′′) = 1 + max(q′, q′′).

For the size automaton S`, the initial mapping and the transition mapping are defined as

ι(_) = 1

δ(_,_,_,_,_, q′, q′′) = 1 + q′ + q′′.

It is straightforward to see that these automata satisfy the required properties.

6.2 Dynamic dynamic programming 191

CMSO2-types automaton

As discussed in Subsection 3.3.2, the classical theorem of Courcelle [1990] states that there
is an algorithm that given a CMSO2 sentence ϕ and an n-vertex graph G together with a
tree decomposition of width at most `, decides whether ϕ is true in G in time f(`, ϕ) · n,
where f is a computable function. One way of proving Courcelle’s theorem is to construct
a dynamic programming procedure that processes the provided tree decomposition in a
bottom-up fashion. This dynamic programming procedure can be understood as a tree
decomposition automaton in the sense of Definition 6.10, yielding the following result.

Lemma 6.12 (Courcelle [1990]). For every integer ` and CMSO2 sentence ϕ, there exists
a tree decomposition automaton A`,ϕ of width `, so that for any graph G and its annotated
tree decomposition (T, bag, edges) of width at most `, A`,ϕ accepts (T, bag, edges) if and
only if ϕ is true in G. The evaluation time is bounded by f(`, ϕ) for some computable
function f .

Bodlaender-Kloks automaton

As discussed in Section 3.2, Bodlaender and Kloks [1996] gave an algorithm that, given a
graph G, a tree decomposition T of G of width at most `, and a number k < `, decides
whether the treewidth of G is at most k in time 2O((k+log `)·`2) · |T |. From the overview of
the proof given in Subsection 3.2.1, it is not hard to see that this dynamic programming
can be understood as a nondeterministic tree decomposition automaton with 2O((k+log `)·`2)

states (or as a deterministic tree decomposition automaton with more states). Thus, from
the work of Bodlaender and Kloks we can immediately deduce the following statement.

Lemma 6.13. For every pair of integers k ≤ ` there is a nondeterministic tree decom-
position automaton BKk,` of width ` so that for any graph G and its annotated tree
decomposition (T, bag, edges) of width at most `, BKk,` accepts (T, bag, edges) if and only
if the treewidth of G is at most k. The state set of BKk,` is of size 2O((k+log `)·`2) and can
be computed in time 2O((k+log `)·`2). The evaluation time of BKk,` is 2O((k+log `)·`2) as well.

The automaton BKk,` will be the only nondeterministic automaton we use. We remark that
since the property of having treewidth at most k can be expressed in CMSO2

2, Lemma 6.13
with an unspecified bound on the evaluation time also follows from Lemma 6.12. The
reason behind formulating Lemma 6.13 explicitly is to keep track of the evaluation time
more precisely in further arguments. This is also the reason for formulating it as a
nondeterministic automaton.

2This can be done, for instance, by stating that the given graph does not contain any of the forbidden
minor obstructions for having treewidth at most k.

192 Dynamic treewidth

We also need a deterministic version of the Bodlaender-Kloks automaton.

Lemma 6.14. For every pair of integers k ≤ ` there is a (deterministic) tree decom-
position automaton BKdk,` of width ` so that for any graph G and its annotated tree
decomposition (T, bag, edges) of width at most `, BKdk,` accepts (T, bag, edges) if and only
if the treewidth of G is at most k. The evaluation time of BKdk,` is 2O((k+log `)·`2).

Proof. Follows from the work of Bodlaender and Kloks [1996], or from Lemma 6.13 by
keeping track of the set of reachable states.

6.2.4 Dynamic maintenance of automata runs

Having defined the automata we are going to use, we now show that runs of determinis-
tic tree decomposition automata can be maintained efficiently under prefix-rebuilding
updates.

Lemma 6.15. Let A = (Q,F, ι, δ) be a tree decomposition automaton of width ` and
evaluation time τ . Then there exists an `-prefix-rebuilding data structure with overhead τ
that additionally implements the operation

• State(t): Given a node t of T , returns ρA(t). Runs in time O(1).

Proof. At every point in time, the data structure stores the annotated tree decompo-
sition (T, bag, edges), and for every node t ∈ V (T) the state ρA(t) in the run of A on
(T, bag, edges). This allows for answering queries in constant time, as requested.

For initialization, we just compute the run of A on (T, bag, edges) in a bottom-up manner.
The states for leaves are computed according to the initialization mapping, while the
states for internal nodes are computed according to the transition mapping bottom-up.
This requires time τ per node, so O(τ · |V (T)|) in total.

To apply a prefix-rebuilding update with a description u = (Tpref , T
′
pref , T

?, bag?, edges?, π),
the representation of (T, bag, edges) can be easily rebuilt in time `O(1) · |u| by building
the tree T ? and reattaching the subtrees rooted at appendices of Tpref to T ? according
to π, using a single pointer change per appendix. Observe here that the information
about the run of A on the reattached subtrees does not need to be altered, except for the
appendices of T ′pref , for which the run could have to be altered because their adhesions
could change. Hence, it remains to compute the states associated with the nodes of
T ′pref ∪ app(T ′pref) in the run of A on the new decomposition (T ′, bag′, edges′). This can be

6.2 Dynamic dynamic programming 193

done by processing T ′pref ∪ app(T ′pref) in a bottom-up manner, and computing each state
using either the initialization mapping ι (for the leaves of T ′) or the transition mapping
δ (for the non-leaf nodes), in total time O(τ · |T ′pref ∪ app(T ′pref)|) ≤ O(τ · |u|).

Let us now complete the proof of Lemma 6.7, which we restate here.

Lemma 6.7. For every integer `, there exists an `-prefix-rebuilding data structure with
overhead O(1) that maintains an annotated tree decomposition T = (T, bag, edges) of a
dynamic graph G, and additionally implements the following operations.

• hgt(t): Given a node t ∈ V (T), returns the height of t in T . Runs in time O(1).

• size(t): Given a node t ∈ V (T), returns the number of nodes in the subtree of T
rooted at t, i.e., |descT (t)|. Runs in time O(1).

• forget(v): Given a vertex v ∈ V (G), returns the node forgetT (v), i.e., the unique
bag closest to the root that contains v. Runs in time O(1).

Proof. Lemma 6.15 combined with Lemma 6.11 immediately gives an `-prefix-rebuilding
data structure implementing the first two operations. Therefore, it suffices to implement
an `-prefix-rebuilding data structure with overhead O(1) that implements the operation
forget(v).

Consider a prefix-rebuilding update changing T = (T, bag, edges) to T ′ = (T ′, bag′, edges′).
Observe that a prefix-rebuilding update can change the highest node where v occurs
only if v ∈ bagsT (Tpref ∪ app(Tpref)), and in particular, in that case the highest node of
(T ′, bag′, edges′) where v occurs will be in T ′pref ∪ app(T ′pref). Both |Tpref ∪ app(Tpref)| and
|T ′pref ∪ app(T ′pref)| are linear in |u|, so we simply maintain the mapping forget(v) explicitly
by recomputing it for all vertices v ∈ bagsT (Tpref ∪ app(Tpref)).

We also provide two prefix-rebuilding data structures that will be used in Section 6.7.
The first is about maintaining whether G satisfies a CMSO2-expressible property.

Lemma 6.16. For every integer ` and CMSO2 sentence ϕ, there exists an `-prefix-
rebuilding data structure with overhead f(`, ϕ), for some computable function f , that
maintains an annotated tree decomposition T = (T, bag, edges) of a dynamic graph G,
and additionally implements the following operation.

• Evaluate(): Returns whether ϕ is true in G, in O(1) time.

Proof. Follows from combining Lemma 6.15 with the automaton of Lemma 6.12.

194 Dynamic treewidth

The second is about maintaining the treewidth of G.

Lemma 6.17. For every pair of integers k ≤ `, there exists an `-prefix-rebuilding
data structure with overhead 2O(`3) that maintains an annotated tree decomposition T =

(T, bag, edges) of a dynamic graph G, and additionally implements the following operation.

• Treewidth(): Returns whether tw(G) ≤ k, in O(1) time.

Proof. Follows from combining Lemma 6.15 with the automaton of Lemma 6.14.

6.3 Closures

In this section, we introduce the graph-theoretical notion of a closure and present several
results about them. Closures will be closely related to torso tree decompositions of
Chapter 5, and they will be the key objects in the refinement operation of our algorithm.

Recall that torsoG(X) is the graph obtained from G[X] by making for every C ∈ cc(G\X)

the neighborhood N(C) into a clique. A k-closure of a set of vertices W is defined as
follows.

Definition 6.18 (k-closure). Let k be an integer, G a graph, and W ⊆ V (G). Then, a
set X ⊆ V (G) is called a k-closure of W in G if

W ⊆ X and tw(torsoG(X)) ≤ 2k + 1.

This is similar to the definition of a torso tree decomposition that covers a set W in
Chapter 5. Having treewidth bounded by 2k + 1 despite being named k-closure is a
bit unintuitive, but this is motivated by that in this section we will prove that if G
has treewidth at most k, then any set W ⊆ V (G) has a k-closure that satisfies certain
properties.

6.3.1 Small closures

In our algorithm, the setW in the definition of k-closure will be chosen as the union of bags
of some prefix of the tree decomposition (T, bag) we are maintaining, i.e., W = bags(Tpref)

for some prefix Tpref of T . We will be interested in closures X that are “small” compared
to the prefix Tpref . The size of X should not be much larger than the size of Tpref , and

6.3 Closures 195

moreover, we will also require a more intricate smallness condition. This condition asserts
that for every appendix a ∈ app(Tpref), only a bounded number of vertices from the bags
of the subtree rooted at a will be selected to the closure.

Definition 6.19 (c-small). Let (T, bag) be a tree decomposition of G and Tpref a prefix
of T . Let also c be an integer. Then we say that a set X ⊇ bags(Tpref) is c-small with
respect to (T, bag) if for every appendix a ∈ app(Tpref), it holds that |X ∩ cmp(a)| ≤ c.

Note that c-smallness of X implies that |X| ≤ c · |app(Tpref)| + |bags(Tpref)|, which in
particular if T is binary implies that |X| ≤ (c+ width(T, bag) + 1) · (|Tpref |+ 1).

We show in this subsection that if tw(G) ≤ k and width(T, bag) ≤ `, then for any prefix
Tpref there exists a O(`4)-small k-closure of Tpref . This will be called the Small Closure
Lemma.

Let us start with an auxiliary lemma for constructing k-closures from tree decompositions.
This lemma explains the treewidth bound 2k + 1 in the definition of k-closure. Recall
that a set of nodes S ⊆ V (T) in a rooted tree T is LCA-closed if for each pair x, y ∈ S,
the LCA of x and y is also in S.

Lemma 6.20. Let (T, bag) be a rooted tree decomposition of a graph G of width at most k.
Let also S ⊆ V (T) be an LCA-closed set of nodes of T . Then,

tw(torsoG(bags(S))) ≤ 2k + 1.

Proof. We construct a rooted tree T ′ in the following way. Let V (T ′) = S and let t1 be
a parent of t2 in T ′ if and only if t1 is a strict ancestor of t2 in T and the path between
t1 and t2 in T does not contain any other nodes in S. Since S is LCA-closed, it can be
verified that T ′ is indeed a rooted tree. We then construct a tree decomposition (T ′, bag′)

by defining bag′ as follows.

bag′(t) =

bag(t) if t is the root of T ′,

bag(t) ∪ bag(parentT ′(t)) otherwise.

We claim that (T ′, bag′) is a tree decomposition of torsoG(bags(S)) of width at most
2k + 1. The vertex condition is trivial, and the connectedness condition follows from
the connectedness condition on (T, bag). For the edge condition, consider an edge uv
of torsoG(bags(S)). We have that u, v ∈ bags(S) and there exists a path P between u
and v in G that is internally disjoint with bags(S). Pick two nodes tu, tv ∈ S such that
u ∈ bag(tu) and v ∈ bag(tv). For each node t on the path between tu and tv in T ′, the bag
bag(t) must contain either u or v, as otherwise, bag(t) ⊆ bags(S) would be a separator

196 Dynamic treewidth

between u and v in G disjoint with {u, v}, contradicting the existence of P . Hence, one
of the following must hold.

• Both u and v belong to bag(t) for some t ∈ S. Then u, v ∈ bag′(t), so the edge
condition is satisfied for the edge uv.

• We have u ∈ bag(t1), v ∈ bag(t2) for some nodes t1, t2 ∈ S that are adjacent in
T ′. Without loss of generality, assume that t1 is the parent of t2. Then, since
bag′(t2) = bag(t1) ∪ bag(t2), we infer that u, v ∈ bag′(t2).

We conclude that (T ′, bag′) is indeed a tree decomposition of torsoG(bags(S)). Since each
bag of (T ′, bag′) has size at most 2k + 2, the proof is finished.

Lemma 6.20 already shows that every set W ⊆ V (G) in a graph G with tw(G) ≤ k

admits a k-closure X of size at most O(k · |W |). Indeed, consider a tree decomposition
(Topt, bagopt) of G of optimum width. For each vertex v ∈ W , select into S a node
t ∈ V (Topt) such that v ∈ bagopt(t). Then, take the LCA-closure of S (which increases
|S| by a factor of at most 2 by Lemma 2.5) and apply Lemma 6.20.

However, this does not yield the additional condition that X contains only a bounded
number of vertices from each subtree rooted at an appendix of Tpref . To prove this, we will
use the Dealternation Lemma of Bojańczyk and Pilipczuk [2022]. Intuitively, this lemma
states that for every tree decomposition (T, bag) of G, there exists an optimum-width
tree decomposition (Topt, bagopt) that is “well-structured” with respect to (T, bag). The
idea will be to apply Lemma 6.20 in the fashion described in the previous paragraph with
this well-structured optimum-width tree decomposition.

Dealternation Lemma

We now present a formal version of the Dealternation Lemma. The description follows the
exposition in Bojańczyk and Pilipczuk [2022], with some adjustments to the notation. To
present the Dealternation Lemma, we need to first define elimination trees and factors.

The output of the Dealternation Lemma is a tree decomposition of G presented as a
so-called elimination tree.

Definition 6.21 (Elimination tree). An elimination tree of G is a rooted tree T with
V (T) = V (G) so that if uv ∈ E(G), then u and v are in an ancestor-descendant
relationship in T .

6.3 Closures 197

The following definition shows how to turn an elimination tree of G into a tree decompo-
sition.

Definition 6.22. Assume that T is an elimination tree of G. A tree decomposition
induced by T is the tree decomposition (T, bag), where for each v ∈ V (G), we set bag(v)

to contain v and each ancestor of v connected by an edge of G to any descendant of v.

That (T, bag) constructed as in Definition 6.22 is indeed a tree decomposition of G is
argued in [Bojańczyk and Pilipczuk, 2022, Section 3]. It is now natural to define the width
of an elimination tree T as the width of the tree decomposition induced by T . Clearly,
each elimination tree has width lower-bounded by tw(G). On the other hand, every
graph G has an elimination tree of width exactly tw(G) [Bojańczyk and Pilipczuk, 2022,
Lemma 3.6].

Let us then define factors of trees. Informally, a factor of a rooted tree T is a well-
structured “chunk” of T . Formally, a factor of a rooted tree T is a subset of V (T) that is
either

• a tree factor : a set Φ = descT (r) for some node r ∈ V (T), which is called the root
of Φ,

• a forest factor : a set Φ =
⋃`
i=1 Φi, where Φ1, . . . ,Φ` are tree factors whose roots

r1, . . . , r` have the same parent, or

• a context factor : a set Φ = Φ1 \ Φ2, where Φ1 is a tree factor and Φ2 ⊂ Φ1 is a
forest factor. The root of Φ is the root of Φ1, while the roots of the trees factors
comprising Φ2 are called the appendices of Φ.

Note that every tree factor is also a forest factor.

We can now state the Dealternation Lemma.

Lemma 6.23 (Dealternation Lemma, Bojańczyk and Pilipczuk [2022]). Let (T, bag) be
a tree decomposition of G of width at most `. Then there exists an elimination tree F of
G of width tw(G) such that for every node t ∈ V (T), the set cmp(t) is a disjoint union
of at most O(`3) factors of F .

Small Closure Lemma

We now show how the Dealternation Lemma implies the Small Closure Lemma.

198 Dynamic treewidth

Lemma 6.24 (Small Closure Lemma). Let k and ` be integers with k ≤ ` and G be
a graph with tw(G) ≤ k. Let (T, bag) be a tree decomposition of G of width at most `
and Tpref ⊆ V (T) a prefix of T . Then there exists a c-small k-closure of bags(Tpref) with
respect to (T, bag), for c = O(`4).

Proof. We begin by applying Lemma 6.23 to (T, bag) and getting an elimination tree F
of G of width tw(G), for which cmp(t) for each t ∈ V (T) can be decomposed into at most
f(`) = O(`3) factors of F . We remind that V (F) = V (G).

Let (F, bagF) be the tree decomposition induced by F , in particular, where bagF (v) for
v ∈ V (G) is defined as the set containing v and every ancestor of v in F incident to
an edge whose other endpoint is a descendant of v. As discussed before, (F, bagF) has
width tw(G). Then let W be the LCA-closure of bagsT (Tpref) in F . We claim that the set

X =
⋃
v∈W

bagF (v)

is an ((`+ 1) · f(`))-small k-closure of bagsT (Tpref) with respect to (T, bag). It remains to
prove this.

Claim 6.25. The set X is a k-closure of bagsT (Tpref).

Proof of the claim. Since bagsT (Tpref) ⊆ W and v ∈ bagF (v) for each v ∈ W , we have
that bagsT (Tpref) ⊆ W ⊆ X, as required. It remains to show that tw(torsoG(X)) ≤ 2k+ 1.
Because W is LCA-closed in F , Lemma 6.20 applies to W and the tree decomposition
(F, bagF), finishing the proof. C

Claim 6.26. Let a ∈ app(Tpref) and let Φ be a factor of F with Φ ⊆ cmp(a). Then
|Φ ∩X| ≤ `+ 1.

Proof of the claim. Since a is an appendix of Tpref , it follows from the definition of cmp(a)

that cmp(a) is disjoint with bagsT (Tpref). Thus, Φ is also disjoint with bagsT (Tpref).

First, assume that Φ is a forest factor. Then Φ is downwards closed, meaning that if
a vertex belongs to Φ, then all its descendants also belong to Φ. Since W consists of
bagsT (Tpref) and a subset of ancestors of bagsT (Tpref) in F , it follows that Φ is disjoint
with W . Now, for each v ∈ W , the set bagF (v) comprises v and some ancestors of v in
F . So again, Φ is disjoint with each set bagF (v) for v ∈ W and thus disjoint with X.

Now assume that Φ is a context factor. Recall that Φ = Φ1 \Φ2, where Φ1 is a tree factor
and Φ2 ⊂ Φ1 is a forest factor. The appendices of Φ have a common parent, which we

6.3 Closures 199

call s. By the disjointness of bagsT (Tpref) with Φ, we see that each vertex of bagsT (Tpref)

is either outside of Φ1 or inside some subtree of Φ2.

Consider u, v ∈ bagsT (Tpref) such that their LCA is in Φ1. If either u or v is outside of
Φ1, then their LCA is also outside of Φ1. Therefore, both u and v belong to Φ2. In this
case, it can be easily seen that their LCA either belongs to Φ2 (if both u and v are from
the same rooted tree of Φ2) or is equal to s (otherwise). Thus,

Φ1 ∩W ⊆ Φ2 ∪ {s}.

Note that Φ2 ∪ {s} induces a connected subtree of F containing s and some rooted
subtrees attached to s.

Again, for each v ∈ W , the set bagF (v) comprises v and some ancestors of v. Hence, for
v ∈ W \ Φ1, the set bagF (v) is disjoint with Φ. Therefore,

Φ ∩X ⊆
⋃

v∈Φ2∪{s}

Φ ∩ bagF (v).

Now let v ∈ Φ2 ∪ {s} and x ∈ Φ ∩ bagF (v). By the definition of bagF , x is either

• equal to v, in which case x ∈ Φ2 ∪ {s}, so necessarily x = s, or

• an ancestor of v that is connected by an edge to a descendant y of v. But since
also x ∈ Φ, we get that x is also an ancestor of s. Also, y is a descendant of s (as y
is a descendant of v and v is a descendant of s). We conclude that x ∈ bagF (s).

In both cases we have x ∈ bagF (s) and therefore

Φ ∩X ⊆ bagF (s).

As (F, bagF) is a tree decomposition of width tw(G) ≤ k ≤ `, the statement of the claim
follows immediately. C

Claim 6.27. Let a be an appendix of Tpref . Then |cmp(a) ∩X| ≤ (`+ 1) · f(`).

Proof of the claim. Because we obtained F by applying the Dealternation Lemma
(Lemma 6.23), cmp(a) can be partitioned into at most f(`) disjoint factors of F . By
Claim 6.26, each such factor intersects X in at most `+ 1 elements. C

The proof of the Small Closure Lemma follows immediately from Claims 6.25 and 6.27.

200 Dynamic treewidth

6.3.2 Linked closures

Having established the existence of c-small closures for sufficiently large c, we now show
a structural result about such closures, the Closure Linkedness Lemma. This corresponds
to the d-linkedness of torso tree decompositions defined in Section 5.2, but has a slightly
different definition3. The proof of the Closure Linkedness Lemma will also be similar to
the proof of Lemma 5.10, the main difference being that here we need to be careful to
maintain c-smallness.

For the convenience of the reader, let us first restate the Pulling Lemma from Section 5.2.
(We will not need the algorithmic part of it in this chapter.)

Lemma 5.8 (Pulling Lemma). Let G be a graph and (X, (T, bag)) a torso tree decom-
position in G. Let (A, S,B) be a separation of G so that there exists a node r ∈ V (T)

so that S is linked into bag(r) ∩ (S ∪ B). There exists a torso tree decomposition
((X ∩ A) ∪ S, (T ′, bag′)) so that

1. T ′ = T

2. for all t ∈ V (T), |bag′(t)| ≤ |bag(t)|, and

3. S ⊆ bag′(r).

Moreover, when G, (X, (T, bag)), (A, S,B), and r are given as inputs, the torso tree
decomposition ((X ∩ A) ∪ S, (T ′, bag′)) can be constructed in kO(1)(|V (T)| + m) time,
where k is the width of (X, (T, bag)).

Then, let d : V (G) → Z be an arbitrary weight function, and for S ⊆ V (G) denote
d(S) =

∑
v∈S d(v). We define d-minimal closures.

Definition 6.28 (d-minimal). Let k and c be integers and d : V (G) → Z a weight
function. Let also G be a graph, T a tree decomposition of G, and Tpref a prefix of T .
Then, we say that a c-small k-closure X of bags(Tpref) is d-minimal if for every c-small
k-closure X ′ of bags(Tpref), one of the following conditions holds.

• |X ′| > |X|

• |X ′| = |X| and d(X ′) ≥ d(X)

3The definition used in this chapter could have also been used in Chapter 5, but not the other way
around.

6.3 Closures 201

Similarly to Chapters 4 and 5, the function d we use will be the vertex-depth function
dT : V (G) → Z≥0 of a rooted tree decomposition T that maps each v ∈ V (G) to the
non-negative integer dT (v) = depthT (forgetT (v)).

We also recall the definition of d-linked from Section 5.2.

Definition 5.9 (d-linked). Let G be a graph, A,B ⊆ V (G), and d : V (G)→ Z a weight
function. The set A is d-linked into B if for every (A,B)-separator S it holds either that
|S| > |A|, or that |S| = |A| and d(S) ≥ d(A).

We are now ready to prove the Closure Linkedness Lemma.

Lemma 6.29 (Closure Linkedness Lemma). Let k and c be integers, and d : V (G)→ Z
a weight function. Let G be a graph, T a tree decomposition of G, Tpref a prefix of T , and
X a d-minimal c-small k-closure of bags(Tpref). Then for each C ∈ cc(G \X), the set
N(C) is d-linked into bags(Tpref).

Proof. Let W = bags(Tpref). For the sake of contradiction, assume we have a component
C ∈ cc(G\X) such that its neighborhood N(C) is not d-linked intoW . By Definition 5.9,
there exists an (N(C),W)-separator S such that either |S| < |N(C)|, or |S| = |N(C)|
and d(S) < d(N(C)). Without loss of generality, assume that S is such a separator
with the minimum possible size, which implies that S is linked into both N(C) and W .
Naturally, S gives a separation (A, S,B) such that W ⊆ A ∪ S and N(C) ⊆ S ∪B.

Now, construct a new set X ′ from X as follows:

X ′ = (X ∩ A) ∪ S.

We claim that X ′ is also a c-small k-closure of W . Note that since N(C) is contained
in X and disjoint from X ∩ A, we have that X ′ ⊆ (X \ N(C)) ∪ S. Therefore, |X ′| ≤
|X| − |N(C)| + |S| and d(X ′) ≤ d(X) − d(N(C)) + d(S). So if |S| < |N(C)|, we
have |X ′| < |X|, and if |S| = |N(C)| and d(S) < d(N(C)), then |X ′| ≤ |X| and
d(X ′) < d(X). So provided that X ′ is indeed a c-small k-closure of W , X cannot be
d-minimal, contradicting our assumption.

Claim 6.30. The set X ′ is a k-closure of W .

Proof of the claim. Since W is disjoint with B and X is a k-closure of W , we get that
X ′ ⊇ W .

Aiming to use the Pulling Lemma (Lemma 5.8), we let (TX , bagX) to be a tree decomposi-
tion of torsoG(X) of width at most 2k+ 1. As N(C) is a clique in torsoG(X), there exists

202 Dynamic treewidth

r ∈ V (TX) with N(C) ⊆ bagX(r). Because S is linked into N(C), N(C) ⊆ bagX(r), and
N(C) ⊆ (S ∪B), we get that S is linked into bagX(r) ∩ (S ∪B), so we satisfy the pre-
conditions of applying the Pulling Lemma with the separation (A, S,B) and the node r.
This produces a tree decomposition of torsoG(X ′) of width at most 2k + 1. C

Claim 6.31. The set X ′ is c-small.

Proof of the claim. Recall that X ⊇ W , where W = bags(Tpref). Therefore, as C is
a connected component of G \X, the entire connected component C must be contained
within cmp(a) for some appendix a of Tpref . Hence, N(C) ⊆ cmp(a) ∪ adh(a). Also,
adh(a) ⊆ W . As (cmp(a), adh(a), V (G) \ (cmp(a) ∪ adh(a))) is a separation of G, and S
is a minimum-size (N(C),W)-separator, it follows that S ⊆ cmp(a) ∪ adh(a). In other
words, vertices outside of cmp(a) ∪ adh(a) are not useful towards the separation of N(C)

from W .

Now, for an appendix a′ 6= a of Tpref , cmp(a′) is disjoint from cmp(a) ∪ adh(a). This is
because cmp(a′) is disjoint from W ⊇ adh(a) and from cmp(a) (as a and a′ are not in the
ancestor-descendant relationship in T). Therefore, S is disjoint with cmp(a′) and thus,
by the definition of X ′,

|X ′ ∩ cmp(a′)| = |(X ∩ A) ∩ cmp(a′)| ≤ |X ∩ cmp(a′)| ≤ c.

Hence, the smallness condition is not violated for the appendix a′.

In order to prove that the smallness condition is not violated for the appendix a, we
observe that N(C) ∩W ⊆ S (as S separates N(C) from W), so also N(C) ∩ adh(a) ⊆ S.
Therefore, |N(C) ∩ adh(a)| ≤ |S ∩ adh(a)|, and we get that

|N(C) ∩ cmp(a)| = |N(C)| − |N(C) ∩ adh(a)| ≥ |S| − |S ∩ adh(a)| = |S ∩ cmp(a)|.

Now, as X ′ ⊆ (X \N(C)) ∪ S and N(C) ⊆ X, we infer that

|X ′ ∩ cmp(a)| ≤ |X ∩ cmp(a)| − |N(C) ∩ cmp(a)|+ |S ∩ cmp(a)| ≤ |X ∩ cmp(a)| ≤ c.C

By Claims 6.30 and 6.31 we infer thatX ′ is a c-small k-closure ofW . This is a contradiction
to the d-minimality of X.

The dT -linkedness of a closure will be used in Section 6.5 to bound the width of the
tree decomposition resulting from the refinement operation, similarly as it was used in
Section 5.2. The utility of Lemma 6.29 is that it suggests a method for finding c-small

6.4 Computing closures 203

k-closures closures that satisfy this dT -linkedness property. In particular, it is sufficient
to find a dT -minimal c-small k-closure. Note that this is analogous to finding minimum
splits in Chapter 4.

6.3.3 Blockages and explored nodes

We then introduce concepts of blockages and explored nodes. These are related to the
concept of editable nodes used in Chapter 4. Blockages and explored nodes will be used
in the refinement operation in Section 6.5, and in Section 6.4 we give a data structure for
computing them along with k-closures.

Let us then define blockages. We assume that T = (T, bag) is a tree decomposition of a
graph G, and X is a k-closure of bags(Tpref) for a prefix Tpref of T and some integer k.

Definition 6.32. A node t ∈ V (T) \ Tpref is a blockage in T with respect to Tpref and X
if no strict ancestor of t is a blockage, and either

• adh(t) ⊆ N [C] for some component C ∈ cc(G \X) that intersects adh(t), in which
case t is called a component blockage covered by C, or

• adh(t) ⊆ X and adh(t) is a clique in torsoG(X), in which case t is called a clique
blockage.

Note that the adhesion of a component blockage intersects exactly one component
C ∈ cc(G \X).

Since T , Tpref and X will usually be known from the context, we will usually just say
that t is a blockage. We denote the set of blockages by Blockages(Tpref , X).

By definition, no two blockages are in an ancestor-descendant-relationship, and no blockage
is in Tpref , implying that there exists a prefix T ′pref ⊇ Tpref so that Blockages(Tpref , X) =

app(T ′pref). The nodes in T ′pref are called explored, and the set of the explored nodes is
denoted by T ′pref = Expl(Tpref , X). The other nodes are called unexplored.

6.4 Computing closures

In this section we show that the objects defined in the previous section can be computed
efficiently in a tree decomposition that is changing dynamically under prefix-rebuilding

204 Dynamic treewidth

updates. At this point, we fix dT : V (G)→ Z to be the vertex-depth function dT (v) =

depthT (forgetT (v)) of the annotated tree decomposition T that we are maintaining. In
particular, we will give a prefix-rebuilding data structure, that supports an operation
that given a prefix Tpref , returns a dT -minimal c-small k-closure X of bags(Tpref), for
some fixed integers c and k, the graph torsoG(X) and the sets Blockages(Tpref , X) and
Expl(Tpref , X).

6.4.1 Closure automaton

As the first ingredient of our data structure, we give an automaton for computing small
closures within subtrees of a tree decomposition. Recall that when given a prefix Tpref ,
we are interested in closures X that for each appendix a ∈ app(Tpref), contain at most c
vertices from cmp(a), but all vertices from adh(a) because adh(a) ⊆ bags(Tpref). In this
subsection, we give a tree decomposition automaton for understanding all non-isomorphic
ways how the selection of the c vertices can affect the eventual graph torsoG(X), and for
optimizing this selection according to dT -minimality.

Recall the definitions on boundaried graphs, boundaried tree decompositions, and tree
decomposition automata introduced in Subsection 6.2.2. We start with a few more
definitions.

Let G be a boundaried graph. We say that two sets of non-boundary vertices Y, Z ⊆
V (G) \ ∂G are torso-equivalent if there is an isomorphism between torsoG(Y ∪ ∂G) and
torsoG(Z ∪ ∂G) that fixes every vertex of ∂G. Note that being torso-equivalent is an
equivalence relation and for every integer c, let ∼c,G be the restriction of this equivalence
relation to subsets of V (G) \ ∂G of size at most c. Note ∼c,G has at most 2O((c+|∂G|)2)

equivalence classes.

Suppose further that T = (T, bag, edges) is a boundaried tree decomposition of G. We
define the vertex-depth function dT : V (G) → Z≥0 for boundaried graphs similarly as
for graphs: dT (v) = depthT (forgetT (v)), i.e., dT (v) is depth of the closest node to the
root that contains v. For a set Y ⊆ V (G), we have dT (Y) =

∑
v∈Y dT (v). Recalling that

there is a total order � on the vertices of G (inherited from Z≥1, as we assume that
V (G) ⊂ Z≥1), subsets of V (G) can be compared as follows. We define a total order �T
on sets of vertices by setting Y �T Y ′ for Y, Y ′ ⊆ V (G) if

• dT (Y) < dT (Y ′), or

• dT (Y) = dT (Y ′) and Y is lexicographically not larger than Y ′ with respect to �.

6.4 Computing closures 205

For a non-empty set of subsets S of V (G), we let minT S be the �T -smallest element of
S. This allows us to define the c-small torso representatives as

repsc(G, T) = {(dT (minTK), torsoG(minTK ∪ ∂G)) | K is an equivalence class of ∼c,G} .

Note that each member of an equivalence class of ∼c,G has the same size, so at this point
we do not optimize for the size even though it will later be needed to find dT -minimal
closures. The set repsc(G, T) depends on both the boundaried graph G and its boundaried
tree decomposition T . Also, the size of repsc(G, T) is equal to the number of equivalence
classes of ∼c,G, which, as noted, is at most 2O((c+|∂G|)2).

The closure automaton is provided in the following lemma.

Lemma 6.33. For every pair of integers c, ` there is a tree decomposition automaton
R = Rc,` of width ` so that for any graph G and its annotated tree decomposition
T = (T, bag, edges) of width at most `, the run of R on T satisfies

ρR(x) = repsc(Gx, Tx) for all x ∈ V (T).

The evaluation time of R is 2O((c+`)2).

Proof. For the state set Q of R we take the set of all sets of pairs of the form (p,H),
where p ∈ Z≥0 and H is a graph on at most c+ `+ 1 vertices. The final states of R are
irrelevant for the lemma statement, hence we can set F = ∅. As for the initial mapping ι,
for a boundaried graph H on at most `+ 1 vertices we can set ι(H) = repsc(H, T0), where
T0 is the trivial one-node boundaried tree decomposition of H in which all vertices and
edges are put in the root bag. It is straightforward to see that ι(H) can be computed in
time 2O((c+`)2) directly from the definition.

It remains to define the transition mapping δ. For this, it suffices to prove the following.
Suppose T = (T, bag, edges) is a boundaried tree decomposition of a boundaried graph
G and x is a node of T with children y and z. Then knowing

Ry = repsc(Gy, Ty), Rz = repsc(Gz, Tz),

as well as bag(x), edges(x), and the adhesions of x, y, z, one can compute

Rx = repsc(Gx, Tx)

in time 2O((c+`)2). Formally, we would also need such an argument for the case when x
has only one child y, but this follows from the argument for the case of two children

206 Dynamic treewidth

by considering a dummy second child z with an empty bag. So we focus only on the
two-children case.

For any pair of sets Y ⊆ cmp(y) and Z ⊆ cmp(z), define Gx(Y, Z) to be the graph with
the set of vertices Y ∪ Z ∪ bag(x) and the edge set consisting of the union of the edges
of the graphs torsoGy(Y ∪ adh(y)) and torsoGz(Z ∪ adh(z)), and the set edges(x). The
following claim is straightforward.

Claim 6.34. For any triple of sets X ⊆ bag(x) \ adh(x), Y ⊆ cmp(y) and Z ⊆ cmp(z),
we have

torsoGx(X ∪ Y ∪ Z ∪ adh(x)) = torsoGx(Y,Z)(X ∪ Y ∪ Z ∪ adh(x)).

To compute Rx, we first construct a family of candidates C as follows. Consider every
pair of pairs (py, Hy) ∈ Ry and (pz, Hz) ∈ Rz, and every X ⊆ bag(x) \ adh(x). Let
Y = V (Hy) \ adh(y) and Z = V (Hz) \ adh(z), and note that the graph Gx(Y, Z) is the
union of graphs Hy, Hz, and (bag(x), edges(x)). If |X ∪ Y ∪ Z| ≤ c, then we add to C
the pair

(py + pz + |Y |+ |Z|, torsoGx(Y,Z)(X ∪ Y ∪ Z ∪ adh(x))).

Otherwise, if |X ∪ Y ∪ Z| > c, no pair is added to C. The first coordinate of the pair
added to C is equal to dTx(X ∪ Y ∪ Z) because X ⊆ bag(x) and Y, Z ⊆ V (Gx) \ bag(x).
By Claim 6.34, the second coordinate of the pair added to C is equal to the graph
torsoGx(X ∪ Y ∪ Z ∪ adh(x)).

Further, we have
|C| ≤ |Ry| · |Rz| · 2`+1 ≤ 2O((c+`)2),

and C can be computed in time 2O((c+`)2).

Next, the candidates are filtered as follows. As long as in C there is are distinct pairs
(p,H) and (p′, H ′) such that H and H ′ are isomorphic by an isomorphism that fixes
adh(x), we remove the pair that has the larger first coordinate. If both pairs have the
same first coordinate, remove the one where the vertex set of the second coordinate
is larger in �. Clearly, this filtering procedure can be performed exhaustively in time
2O((c+`)2).

Thus, after filtering, all second coordinates of the pairs in C are pairwise non-equivalent
in ∼c,Gx . It is now straightforward to see using a simple exchange argument that Rx is
equal to C after the filtering. This constitutes the definition and the algorithm computing
the transition function δ.

6.4 Computing closures 207

6.4.2 Data structure for closures

We are now ready to state the prefix-rebuilding data structure for computing closures.
Recall the definitions of blockages and explored nodes from Subsection 6.3.3.

Lemma 6.35. For all integers c, `, k with ` ≥ k and `, c ≤ kO(1), there exists an `-
prefix-rebuilding data structure with overhead 2O((c+`)2), that maintains an annotated tree
decomposition T = (T, bag, edges) of a dynamic graph G, and additionally supports the
following query.

• Closure(Tpref): Given a prefix Tpref of T , returns either No closure if there is no
c-small k-closure of bags(Tpref), or

– a dT -minimal c-small k-closure X of bags(Tpref),
– the graph torsoG(X),
– the sets Blockages(Tpref , X) and Expl(Tpref , X), and
– for all t ∈ Blockages(Tpref , X) the information whether t is a clique blockage
or a component blockage.

This operation runs in time 2O(k·(c+`)2) · |Expl(Tpref , X)|.

The rest of this section is dedicated to the proof of Lemma 6.35.

For the proof, we fix the following two tree decomposition automata.

• R = Rc,` is the closure automaton for parameters c and `, provided by Lemma 6.33.

• BK = BK2k+1,c+` is the Bodlaender-Kloks nondeterministic automaton for parame-
ters 2k + 1 and c+ `, provided by Lemma 6.13.

Let BK = (Q,F, ι, δ). Recall that BK is nondeterministic, |Q| ≤ 2O((k+log(c+`))·(c+`)2) ≤
2O(k·(c+`)2), Q can be computed in time 2O(k·(c+`)2), and membership in F , ι, or δ for
relevant objects can be decided in time 2O(k·(c+`)2).

Our data structure simply consists of the data structure provided by Lemma 6.15 for the
automaton R. Thus, the initialization time is 2O((c+`)2) · |V (T)| and the update time is
2O((c+`)2) · |u| as requested. It remains to implement the operation Closure(Tpref). For this,
we may assume that the stored annotated tree decomposition (T, bag, edges) is labeled
with the run ρR of R on (T, bag, edges). This means that for every x ∈ V (T), we have
access to repsc(Tx, bagx, edgesx).

Consider a query Closure(Tpref). We break answering this query into two steps. In the
first step, we compute a dT -minimal c-small k-closure X of bags(Tpref), together with

208 Dynamic treewidth

torsoG(X). This will take time 2O(k(c+`)2) · |Tpref |. In the second step, we find the sets
Blockages(Tpref , X) and Expl(Tpref , X). This will take time 2O((c+`)2) · |Expl(Tpref , X)|.

Finding the closure and its torso

For brevity, let A = app(Tpref) be the set of appendices of Tpref . For a ∈ A, let

R(a) = repsc(Ta, baga, edgesa)

and recall that R(a) for all a ∈ A is stored in the data structure. Let Λ be the set of
all mappings λ with domain A such that λ(a) ∈ R(a) for all a. For λ ∈ Λ and a ∈ A,
let dλ(a) and Hλ(a) be the first, respectively the second coordinate of λ(a), and let
sλ(a) = |V (Hλ(a)) \ adh(a)|. For λ ∈ Λ we define Hλ to be the graph with

V (Hλ) = bags(Tpref) ∪
⋃
a∈A

V (Hλ(a)) and

E(Hλ) =
⋃

t∈Tpref

edges(t) ∪
⋃
a∈A

E(Hλ(a)),

and sλ and dλ to be the integers

sλ =
∑
a∈A

sλ(a) and

dλ =
∑
a∈A

(
dλ(a) + depthT (a) · sλ(a)

)
.

By the definition of repsc, we have that

• Hλ = torsoG(V (Hλ)),

• sλ = |V (Hλ)| − |bags(Tpref)|, and

• dλ = dT (V (Hλ))− dT (bags(Tpref))

for all λ ∈ Λ.

Further, for each a ∈ A, the set R(a) comprises all possible non-isomorphic torsos that
can be obtained by picking at most c vertices within cmp(a), and with each possible torso
R(a) stores a realization with the least possible total depth. This immediately implies
the following statement.

Claim 6.36. Let λ ∈ Λ be such that the treewidth of Hλ is at most 2k + 1 and, among
such mappings λ, sλ is minimum, and among those dλ is minimum. Then V (Hλ) is a

6.4 Computing closures 209

dT -minimal c-small k-closure of bags(Tpref). Further, if no such λ exists, then there is no
c-small k-closure of bags(Tpref).

By Claim 6.36, it suffices to find λ ∈ Λ that primarily minimizes sλ and secondarily dλ

such that Hλ has treewidth at most 2k + 1, or conclude that no such λ exists. Indeed,
then we can output X = V (Hλ) and torsoG(X) = Hλ as the output to the query. Note
here that once a mapping λ as above is found, one can easily construct Hλ in time
(`+ c)O(1) · |Tpref | right from the definition. Informally speaking, to find a suitable λ we
analyze the possible runs of the Bodlaender-Kloks automaton BK on the natural tree
decomposition of Hλ inherited from Tpref , for different choices of λ. More formally, this is
done as follows.

Let S = Tpref ∪ A. For x ∈ S let Sx = descT (x) ∩ S, Tpref,x = descT (x) ∩ Tpref , Ax =

descT (x) ∩A, and Λx be defined just like Λ, but for domain Ax instead of A. For λ ∈ Λx,
define Hλ

x to be the graph with

V (Hλ
x) = bags(Tpref,x) ∪

⋃
a∈Ax

V (Hλ(a)) and

E(Hλ
x) =

⋃
t∈Tpref,x

edges(t) ∪
⋃
a∈Ax

E(Hλ(a)) \
(

adh(x)

2

)
,

and sλx and dλx to be the integers

sλx =
∑
a∈Ax

sλ(a) and

dλx =
∑
a∈Ax

(
dλ(a) + (depthT (a)− depthT (x)) · sλ(a)

)
.

We treat Hλ
x as a boundaried graph with boundary adh(x). Then, Hλ

x has a boundaried
tree decomposition (T λx , bagλx, edgesλx) naturally inherited from (T, bag, edges) as

• T λx = T [Sx],

• bagλx(y) = bag(y) for all y ∈ Tpref,x, and bagλx(a) = V (Hλ(a)) for all a ∈ Ax, and

• edgesλx(y) = edges(y) ∪
⋃
a∈Ay E(Hλ(a)) ∩ (

(
bag(y)

2

)
\
(

adh(y)
2

)
) for all y ∈ Tpref,x, and

edgesλx(a) = E(Hλ(a)) \
(

adh(a)
2

)
for all a ∈ Ax.

Note that the width of this tree decomposition is at most c+ `.

Let Z = Z≥0 ∪ {+∞}. Let us use a total order on pairs in Z× Z where we first compare
the first elements and if they are equal the second elements. In a bottom-up fashion, for

210 Dynamic treewidth

every x ∈ S we compute the mapping ζx : Q× 2(adh(x)
2) → Z× Z defined as follows: for

q ∈ Q and W ⊆
(

adh(x)
2

)
, ζx(q,W) is the minimum value of (sλx, d

λ
x) among λ ∈ Λx such

that

• BK has a run on (T λx , bagλx, edgesλx) in which x is labeled with q, and

•
⋃
a∈Ax E(Hλ(a)) ∩

(
adh(x)

2

)
= W .

In case there is no λ as above, we set ζx(q,W) = (+∞,+∞).

We now argue that the mappings ζx can be computed in a bottom-up manner. This
follows from the following rules, whose correctness is straightforward.

• For every a ∈ A, ζa(q,W) is the minimum pair (s, d) such that there is (d,H) ∈ R(a)

with the following properties:
(
H \

(
adh(a)

2

)
, q
)
∈ ι, E(H) ∩

(
adh(a)

2

)
= W , and

|V (H) \ adh(a)| = s.

• For every x ∈ Tpref with no children, ζx(q,W) = (0, 0) if (Gx, q) ∈ ι and W = ∅,
and ζx(q,W) = (+∞,+∞) otherwise.

• For every x ∈ Tpref with one child y, ζx(q,W) is the minimum (s, d) such that the
following holds. There exist q′ ∈ Q and W ′ ⊆

(
adh(y)

2

)
with (s′, d′) = ζy(q

′,W ′) such
that ((

bag(x), adh(x), adh(y), ∅, edges(x) ∪W ′ \
(

adh(x)

2

)
, q′,⊥

)
, q

)
∈ δ,

W = W ′ ∩
(

adh(x)

2

)
,

s = s′, and

d = d′ + s′.

If there are no q′,W ′ as above, then ζx(q,W) = (+∞,+∞).

• For every x ∈ Tpref with two children y and z, ζx(q,W) is the minimum (s, d) such
that the following holds. There exist q′, q′′ ∈ Q, W ′ ⊆

(
adh(y)

2

)
, and W ′′ ⊆

(
adh(z)

2

)
with (s′, d′) = ζy(q

′,W ′) and (s′′, d′′) = ζz(q
′′,W ′′) such that

6.4 Computing closures 211

((
bag(x), adh(x), adh(y), adh(z), edges(x) ∪W ′ ∪W ′′ \

(
adh(x)

2

)
, q′, q′′

)
, q

)
∈ δ,

W = (W ′ ∪W ′′) ∩
(

adh(x)

2

)
,

s = s′ + s′′, and

d = d′ + d′′ + s′ + s′′.

If there are no q′, q′′,W ′,W ′′ as above, then ζx(q,W) = (+∞,+∞).

Using the rules above, all mappings ζx for x ∈ S can be computed in total time
2O(k(`+c)2) · |Tpref |, because |Q| ≤ 2O(k(`+c)2) and the evaluation time of BK is 2O(k(`+c)2).

By the properties of BK asserted in Lemma 6.13, the minimum (sλ, dλ) among those
λ ∈ Λ for which Hλ has treewidth at most k is equal to minq∈F ζr(q, ∅), where r is the
root of T . The latter minimum can be computed in time 2O(k(`+c)2) knowing ζr. Finally,
to find λ ∈ Λ witnessing the minimum, it suffices to retrace the dynamic programming in
the standard way. That is, when computing mappings ζx, for every computed value of
ζx(q,W) we memorize how this value was obtained. After finding q ∈ F that minimizes
ζr(q, ∅) we recursively retrace how the value of ζr(q, ∅) was obtained along S in a top-
down manner, up to values computed in the nodes of A. The ways in which these values
were obtained gives us the mapping λ. This concludes the construction of the closure
X = V (Hλ) and the graph torsoG(X) = Hλ.

Finding blockages

Having constructed X = V (Hλ) together with torsoG(X) = Hλ, we proceed to finding
the sets Blockages(Tpref , X) and Expl(Tpref , X). We may assume that every vertex of X
has been marked as belonging to X (which can be done after computing X in time
O(|X|) ≤ (c+ `)O(1) · |Tpref |), hence checking whether a given vertex belongs to X can be
done in constant time. We also recall that by Lemma 2.10, checking whether two vertices
are adjacent in Hλ can be done in time O(k).

First, we observe that for every node x ∈ V (T) \ Tpref , we can efficiently find out the
information about the behavior of X in the subtree rooted at x. Denote Xx = X∩cmp(x).

Claim 6.37. Given a node x ∈ V (T)\Tpref , one can compute Xx and torsoGx(Xx∪adh(x))

in time 2O((c+`)2).

Proof of the claim. For every (d,H) ∈ repsc(Tx, bagx, edgesx), call H a candidate if
V (H) \ adh(x) ⊆ X. Note that we can find all candidates in time (c + `)O(1) ·

212 Dynamic treewidth

|repsc(Tx, bagx, edgesx)| ≤ 2O((c+`)2) by inspecting all elements of repsc(Tx, bagx, edgesx)

one by one. Now, because there exists exactly one candidate with V (H) \ adh(x) = Xx,
we have that torsoGx(Xx ∪ adh(x)) is equal to the largest (in terms of the number of
vertices) candidate. C

Next, for a node x ∈ V (T), we define profile(x) ⊆
(

bag(x)
2

)
to be the set comprising of all

pairs {u, v} ⊆ bag(x) such that in G there is path connecting u and v that is internally
disjoint with X. (Note that this definition concerns u and v both belonging and not
belonging to X.) Note that if x ∈ Tpref , we have bag(x) ⊆ X and profile(x) consists of
all edges of torsoG(X) with both endpoints in bag(x). Consequently, for such x we can
compute profile(x) in time `O(1).

Next, we show that knowing the profile of a parent we can compute the profile of a child.

Claim 6.38. Suppose x is the parent of y in T and y /∈ Tpref . Then given profile(x), the
set profile(y) can be computed in time 2O((c+`)2).

Proof of the claim. Let J be the graph on vertex set bag(y) whose edge set is the union of

• edges(y),
• all edges present in profile(x) with both endpoints in adh(x), and
• all edges present in torsoGz(Xz ∪ adh(z)) that have both endpoints in adh(z), for

every child z of y.

Note that J can be constructed in time 2O((c+`)2) using Claim 6.37. Now, it is straight-
forward to see that profile(y) consists of all pairs {u, v} ⊆ bag(y) such that in J there
is a path connecting u and v that is internally disjoint with X ∩ bag(y). Using this ob-
servation, profile(y) can be now constructed in time `O(1), because J has at most `+ 1

vertices. C

Having established Claim 6.38, we can finally describe the procedure that finds the
blockages and explored nodes. The procedure inspects the appendices a ∈ A one by one,
and upon inspecting a it finds all blockages that are descendants of a. To this end, we
start a depth-first search in Ta from a. At all times, together with the node x ∈ V (Ta)

which is currently processed in the search, we also store profile(x). Initially, profile(a) can
be computed using Claim 6.38, where the profile of the parent of a, which belongs to
Tpref , can be computed in time `O(1), as argued. When the search enters a node y from
its parent x, profile(y) can be computed from profile(x) using Claim 6.38 again. Observe
that knowing profile(x) and that no ancestor of x is a blockage, it can be determined in
time (c+ `)O(1) whether x is a blockage as follows.

6.5 Refinement operation 213

• If adh(x) ⊆ X and profile(x) ⊇
(

adh(x)
2

)
, then x is a clique blockage.

• If there exists u ∈ adh(x) \X such that {u, v} ∈ profile(x) for all v ∈ adh(x) \ {u},
then x is a component blockage.

Consequently, if x is a blockage, we output x and do not pursue the search further.
Otherwise, if x is not a blockage, the search recurses to the children of x.

This procedure outputs all blockages and the information whether they are clique blockages
or component blockages. By furthermore outputting all the nodes entered in the depth-
first search that are not blockages, and the prefix Tpref , we can also output the set
of explored nodes Expl(Tpref , X). The total number of nodes visited by the search is
|Expl(Tpref , X)∪Blockages(Tpref , X)| ≤ O(|Expl(Tpref , X)|), and for each node we use time
2O((c+`)2), so that total running time is 2O((c+`)2) · |Expl(Tpref , X)|.

6.5 Refinement operation

In this section we introduce the refinement operation, which is the main ingredient of our
dynamic algorithm for maintaining small-width tree decompositions. In particular, the
refinement operation will be used for controlling the width of the decomposition, and in
Section 6.6 we further build on it to also control the height.

Throughout this section, we denote by G the n-vertex dynamic graph we are maintaining,
and assume that the treewidth of G is always at most k (this assumption will be partially
lifted later). The goal is to maintain an annotated tree decomposition T = (T, bag, edges)

of G of width at most ` = 6k + 5 (we usually write T = (T, bag) when we are not using
the edges function). As a result of the edge addition operation, the width of T can
intermittently grow to 6k + 6.

The refinement operation takes as an input a prefix Tpref of T that contains all bags of size
more than 6k + 6. It transforms T into a tree decomposition T ′ that has width at most
6k+5. The high-level idea of this transformation is to first compute a dT -minimal c-small
k-closure X of bags(Tpref), then compute a logarithmic-depth tree decomposition T X of
torsoG(X) of width at most 6k+5, and then attach tree decompositions T C of components
C ∈ cc(G \X) to T X similarly as in the improvement operation of Section 5.2. However,
to control the (amortized) running time of the operation and the exact properties of T ′,
we will need to carefully implement and analyze the operation. Some of the properties
of the refinement operation will be used in Section 6.6 for designing a height-reduction
scheme to keep the height of T bounded by 2O(k log k

√
logn log logn).

214 Dynamic treewidth

This section is organized as follows. First, in Subsection 6.5.1 we introduce our potential
function for the analysis of the amortized running time of the refinement operation.
Then, in Subsection 6.5.2 we describe how the decompositions T C are constructed for
components C ∈ cc(G \X), given a closure X. In Subsection 6.5.3 we describe how the
decompositions T C are grouped together based on the neighborhoods N(C). Finally, in
Subsection 6.5.4 we give a formal statement of the refinement operation and finish the
description and analysis of it.

6.5.1 Potential function

The (amortized) running time of the refinement operation is analyzed with a potential
function we introduce now. This potential function generalizes some ideas of the potential
function used in Section 4.3, but will be more complicated.

For a node t of a tree decomposition T = (T, bag), we define its potential by the formula

Φ`,T (t) = g`(|bag(t)|) · hgtT (t),

where
g`(x) = (84(`+ 1))x+1 for every x ≥ 0.

Note that since ` = 6k + 5, we have that g`(x) = kO(x), and therefore if T has width
O(k), then

Φ`,T (t) ≤ kO(k) · hgtT (t) for every t ∈ V (T).

Intuitively, the factor g`(|bag(t)|) in the potential function allows us to update the tree
decomposition by replacing the node t with O(`) copies of t, where each copy t′ has the
same height as t but the bag of t′ is strictly smaller than that of t. This is analogous to
replacing each bag with three smaller bags in Section 4.3. We remark that the constant
84 comes from 4 · 21, where the 21 will come from Lemma 6.51.

The purpose of the second factor hgtT (t) is to penalize tree decompositions with too large
height. In Section 6.6 it will be used for the height-reduction scheme. We remark that
the only purpose of the hgtT (t) factor is the height-reduction scheme, in particular, the
running time of the refinement operation could also be analyzed without it.

For a subset W ⊆ V (T), we denote

Φ`,T (W) =
∑
t∈W

Φ`,T (t),

6.5 Refinement operation 215

and similarly, for the whole tree decomposition T = (T, bag), we set

Φ`(T) = Φ`,T (V (T)) =
∑
t∈V (T)

Φ`,T (t).

6.5.2 Refinement of components

Throughout this and the following subsection, let us fix that T = (T, bag) is a binary
tree decomposition of G of width at most ` + 1 = 6k + 6, Tpref is a prefix of T (given
as an input for the refinement operation) that contains all bags of size ` + 2, and
X ⊇ bags(Tpref) is a dT -minimal c-small k-closure of bags(Tpref) for the vertex-depth
function dT (v) = depthT (forgetT (v)), and c ≤ O(k4).

In the refinement operation, we would like to construct the new binary tree decomposition
T ′ by combining a tree decomposition T X of torsoG(X) with tree decompositions T C

corresponding to components C ∈ cc(G \X), each of which is a tree decomposition of the
graph G[N [C]] and contains N(C) in its root bag. While this is the high-level intuition,
this process will actually be a bit more complicated. For example, we have no control on
the number of connected components of G \X (e.g. if G is a star and X is its center), so
we actually cannot iterate through all of the components. This subsection is dedicated to
resolving technicalities like this.

Let us start with a structural lemma about blockages that we will need in this subsection.

Lemma 6.39. If t ∈ Blockages(Tpref , X), then cmp(t) ∩X = ∅.

Proof. Assume otherwise. Then, we claim that the set X ′ = X \ cmp(t) is also a c-small
k-closure of bags(Tpref), contradicting the dT -minimality of X. In fact, we will show that
torsoG(X ′) is a subgraph of torsoG(X).

First, if t is a clique blockage, then this clearly holds because adh(t) separates X ∩ cmp(t)

from X ′, and is a clique in both torsoG(X) and torsoG(X ′).

Then, assume t is a component blockage covered by a component C ∈ cc(G \X), and
suppose there is a component C ′ ∈ cc(G \X ′) so that N(C ′) contains a pair of distinct
vertices u, v ∈ X ′ so that uv /∈ E(torsoG(X ′)). The component C ′ must intersect cmp(t),
as otherwise it would also be a component of G\X. If C ′ ⊆ cmp(t), then N(C ′) ⊆ adh(t),
so the lemma holds because adh(t) ∩X = adh(t) ∩X ′ ⊆ N(C) is a clique in torsoG(X).
If C ′ intersects adh(t), then C ⊆ C ′, but C ′ \ C ⊆ cmp(t), so N(C ′) \ N(C) ⊆ adh(t),
implying that N(C ′) = N(C), which is already a clique in torsoG(X).

216 Dynamic treewidth

Classification of nodes and components

We now further classify the unexplored nodes of T into two categories. Note that for every
unexplored node t ∈ V (T), there exists a unique ancestor a of t in Blockages(Tpref , X) (it
might be that a = t). If a is a component blockage covered by a component C, then we
say that t is a covered node, covered by the component C. If a is clique blockage, then
we say that t is a clique-blocked node. This partitions V (T) into the prefix of explored
nodes Expl(Tpref , X), and the subtrees rooted at appendices a ∈ app(Expl(Tpref , X)), each
of which consists entirely of either (1) covered nodes covered by the same component
C ∈ cc(G \X), or (2) clique-blocked nodes.

We classify the components C ∈ cc(G \ X) into three categories. We say that C is a
proper component if C intersects bags(Expl(Tpref , X)). Observe that if C is not proper,
then C ⊆ cmp(t) for some blockage t. If the blockage t is a component blockage covered
by a component C ′, then we say that C is a covered component covered by C ′. Note that
in this case C ′ must be a proper component because it intersects adh(t) implying that it
intersects bags(Expl(Tpref , X)). Otherwise, if t is a clique blockage, then we say that C is
a clique-blocked component.

Construction of the decompositions

Then we define the tree decomposition T C = (TC , bagC) for a proper component C. First,
we let

TC = T [{t ∈ Expl(Tpref , X) | bag(t) ∩ C 6= ∅} ∪ {t ∈ V (T) | t is covered by C}].

In other words, TC is the subtree of T induced by the nodes that are either (1) explored
and whose bags intersect C, or (2) are covered by C. Because X ⊇ bags(Tpref), V (TC) is
disjoint from Tpref . Note that TC is indeed connected, because if a blockage t is covered
by C, then C intersects adh(t) by definition, so parent(t) ∈ V (TC). The connectedness of
TC implies that there exists a unique minimum-depth node r ∈ V (T) that is in V (TC).
The tree TC will be treated as rooted at r.

Then, similarly to Chapters 4 and 5 (in fact, exactly the same as in the proof of
Lemma 5.11), we define for t ∈ V (T) and a proper component C that

pull(t, C) = {v ∈ N(C) | forgetT (v) is a strict descendant of t in T}.

6.5 Refinement operation 217

Then, we define bagC by setting

bagC(t) =

(bag(t) ∩N [C]) ∪ pull(t, C) if t ∈ Expl(Tpref , X)

bag(t) otherwise.

Note the similarity to the pruned improvement operation of Section 4.3. Let us then
argue that T C is indeed a tree decomposition.

Lemma 6.40. Let C be a proper component and denote by C̃ the union of C and the
components of G \X that are covered by C. Then, T C is a tree decomposition of N [C̃],
and the root bag of T C contains N(C) = N(C̃).

Proof. First, if a component C ′ ∈ cc(G \X) is a subset of cmp(t) for a blockage t covered
by C, then by Lemma 6.39, N(C ′) ⊆ adh(t), which by adh(t) ⊆ N [C] implies that
N(C ′) ⊆ N(C). This implies that N(C) = N(C̃).

Then, let us check the conditions of tree decompositions. Note that V (TC) contains all
nodes of T whose bags intersect C̃, which immediately implies the vertex condition for
vertices in C̃. Also because of this, for each edge uv ∈ E(G) with u ∈ C̃ and v ∈ N [C̃],
there must be t ∈ V (TC) so that {u, v} ⊆ bag(t), implying that {u, v} ⊆ bagC(t). This
proves the edge condition for all edges except those with both endpoints in N(C), and
the vertex condition for vertices in N(C). To show that no bag of T C contains vertices
outside of N [C̃], observe that this holds by definition for t ∈ Expl(Tpref , X), and for other
nodes by the definition of component blockage and Lemma 6.39. This finishes the proof
of the vertex condition.

Let r ∈ V (TC) be the root of TC and v ∈ N(C). If all occurrence of v in T would be
outside of the subtree rooted at r, then T would not satisfy the edge condition, so either
v ∈ bag(r), or v ∈ pull(r, C). In both cases, v ∈ bagC(r), so therefore N(C) ⊆ bagC(r),
finishing also the proof of the edge condition.

For the connectedness condition, for each v ∈ C̃ this holds because the set of nodes whose
bag contains v in T and in T C are the same. For vertices v ∈ N(C), we observe that
because cmp(t) ∩ X = ∅ for each blockage t (Lemma 6.39), forgetT (v) must be either
explored or not a descendant of r, and thus the additions of v to bags preserves that the
subtree of v is connected.

We then bound the sizes of bags of T C . This is a similar argument as we used in
Sections 4.2 and 5.2, in particular, by using the dT -minimality of X.

Lemma 6.41. For t ∈ Expl(Tpref , X), it holds that |bagC(t)| < |bag(t)|.

218 Dynamic treewidth

Proof. By the definition of bagC(t), it suffices to prove that |pull(t, C)| < |bag(t) \N [C]|.

First, suppose that pull(t, C) = ∅, in which case we need to prove that bag(t) is not a
subset of N [C]. However, if bag(t) would be a subset of N [C], then adh(t) would be a
subset of N [C], so some ancestor of t would be a blockage, so t /∈ Expl(Tpref , X).

It remains to prove that if pull(t, C) is non-empty, then |pull(t, C)| < |bag(t) \ N [C]|.
For this proof, recall that dT (v) = depthT (forgetT (v)) for all v ∈ V (G). For the sake of
contradiction, assume that pull(t, C) is non-empty and |pull(t, C)| ≥ |bag(t) \N [C]|. We
claim that now,

S = (N(C) \ pull(t, C)) ∪ (bag(t) \N [C])

is an (N(C), bags(Tpref))-separator that contradicts the fact that N(C) is dT -linked into
bags(Tpref), which by Lemma 6.29 contradicts that X is dT -minimal.

First, note that because pull(t, C) ⊆ N(C), we indeed have that |S| ≤ |N(C)|. Moreover,
because for each v ∈ pull(t, C) the highest bag containing v is a strict descendant
of t, we have for all v ∈ pull(t, C) and u ∈ bag(t) that dT (v) > dT (u), implying
that dT (S) < dT (N(C)). It remains to prove that S indeed separates N(C) from
bags(Tpref). For this, it suffices to prove that it separates pull(t, C) from bags(Tpref),
because N(C) \ S = pull(t, C).

Suppose P is a shortest path from pull(t, C) to bags(Tpref) in G \ S. Because C is disjoint
from bags(Tpref) and N(C) \ S = pull(t, C), we have that P intersects N [C] only on its
first vertex. However, observe that because the nodes of T whose bags contain vertices
from pull(t, C) are strict descendants of t, and t is a descendant of an appendix of Tpref ,
it holds that bag(t) separates pull(t, C) from bags(Tpref), and therefore P must intersect
bag(t). However, as bag(t) is disjoint from pull(t, C), the intersection of P and bag(t)

must be in bag(t) \N [C], but bag(t) \N [C] ⊆ S, so no such path P can exist, implying
that S is an (N(C), bags(Tpref))-separator.

Because the other bags of T C = (TC , bagC) are directly copied from T , it follows that
|bagC(t)| ≤ |bag(t)| for all t ∈ V (TC), so the width of T C is at most `.

In addition to constructing the decompositions T C for proper components C, we will copy
clique-blocked subtrees of T in the refinement. In particular, for each clique blockage t,
the tree decomposition rooted at it is copied without any changes. For a clique blockage t
we define T t = T �descT (t) = (T [descT (t)], bag�descT (t)), and view T t as rooted at t.

Lemma 6.42. Let t be a clique blockage. Then, T t is a tree decomposition of the graph
G[cmp(t) ∪ adh(t)].

6.5 Refinement operation 219

Proof. Straightforward verification of properties of tree decompositions. (This holds
in fact for any rooted subtree of a tree decomposition, so we do not use properties of
blockages.)

The refinement forest

We define the refinement forest of T with respect to Tpref and X to be the collection
ReFo(Tpref , X) of binary tree decompositions that contains

• for every proper component C ∈ cc(G \X) the tree decomposition T C , and

• for every clique blockage t the tree decomposition T t.

Note that Lemma 6.41 and the construction of T t imply that all tree decompositions in
the refinement forest have width at most `.

Lemma 6.43. For every vertex v ∈ V (G) \X, there is exactly one tree decomposition in
ReFo(Tpref , X) that contains v, and for every edge uv ∈ E(G) with v ∈ V (G) \X, there
is a tree decomposition in the refinement forest that contains a bag containing {u, v}.

Proof. Let v ∈ C ′ for C ′ ∈ cc(G\X). If C ′ is a covered by a proper component C, or C ′ is
a proper component C, then by Lemma 6.40 T C contains v, and for every u ∈ N(v) also
a bag containing {u, v}. If C ′ is a clique-blocked component, then there exists a clique
blockage t ∈ V (T) so that C ′ ⊆ cmp(t), implying that v is in the tree decomposition T t.
Because N(C ′) ⊆ adh(t), by Lemma 6.42 it also holds that for every u ∈ N(v), there is a
bag of T t that contains {u, v}.

Let T̃ = (T̃ , ˜bag) ∈ ReFo(Tpref , X) be a tree decomposition in the refinement forest. The
interface of T̃ is the set X ∩ bags(T̃), i.e., the vertices of X in T̃ , and is denoted by
Int(T̃). If T̃ = T C for a proper component C, then Int(T̃) = N(C) by Lemma 6.40, and
if T̃ = T t for a clique blockage t, then Int(T̃) = adh(t) by Lemma 6.42. In both cases,
the interface Int(T̃) is a clique in torsoG(X) and a subset of the root bag of T̃ .

Next we upper bound the total potential of the refinement forest. We include a term
|Expl(Tpref , X)\Tpref | to be able to charge the running time of the refinement operation from
the potential. Furthermore, we also include an additional term 42 ·g`(|Int(T̃)|) ·hgt(T̃) for
every tree decomposition T̃ . This potential will be later used for constructing additional
bags of size |Int(T̃)| to combine the trees of the forest.

220 Dynamic treewidth

Lemma 6.44. It holds that

|Expl(Tpref , X) \ Tpref |+
∑

T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) + 42 · g`(|Int(T̃)|) · hgt(T̃)

≤ Φ`,T (V (T) \ Tpref) + kO(k) ·
∑

a∈app(Tpref)

hgtT (a).

Proof. First, let Y1 ⊆ V (T) be the set of clique-blocked nodes of T , and let
ReFo1(Tpref , X) ⊆ ReFo(Tpref , X) be the set of tree decompositions in the refinement
forest that correspond to clique blockages. We observe that∑

T̃ ∈ReFo1(Tpref ,X)

Φ`(T̃) = Φ`,T (Y1), (6.45)

because the clique-blocked subtrees are directly copied from T to the refinement forest.

Then, let Y2 ⊆ V (T) be the set of covered nodes of T , and let ReFo2(Tpref , X) =

ReFo(Tpref , X) \ ReFo1(Tpref , X) be the set of tree decompositions in the refinement forest
that correspond to proper components. Let T C = (TC , bagC) ∈ ReFo2(Tpref , X), and
let t ∈ V (TC). If t ∈ Y2, then T C is the only decomposition in ReFo2(Tpref , X) that
contains t, hgtTC (t) ≤ hgtT (t), and bagC(t) = bag(t). Then, let Y3 = Expl(Tpref , X) \ Tpref ,
and observe that if t /∈ Y2, then t ∈ Y3. In this case, t occurs in all decompositions T C

so that bag(t) ∩ C 6= ∅, implying that t occurs in at most ` + 1 such decompositions.
Furthermore, we observe that hgtTC (t) ≤ hgtT (t), and by Lemma 6.41, it holds that
|bagC(t)| < |bag(t)|. Putting these observations together, we obtain that∑

T̃ ∈ReFo2(Tpref ,X)

Φ`(T̃) ≤ Φ`,T (Y2) +
∑
t∈Y3

(`+ 1) · g`(|bag(t)| − 1) · hgtT (t)

Because g`(x) = (84(`+ 1))x+1, we get that∑
T̃ ∈ReFo2(Tpref ,X)

Φ`(T̃) ≤ Φ`,T (Y2) + Φ`,T (Y3)/84. (6.46)

Putting (6.45) and (6.46) together, we obtain∑
T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) ≤ Φ`,T (Y1 ∪ Y2) + Φ`,T (Y3)/84.

Then we bound
∑
T̃ ∈ReFo(Tpref ,X) 42 · g`(|Int(T̃)|) · hgt(T̃). We start by bounding it for

decompositions in ReFo1(Tpref , X). Let T̃ ∈ ReFo1(Tpref , X), in particular, T̃ = T t for

6.5 Refinement operation 221

some clique blockage t. Note that in this case

g`(|Int(T̃)|) · hgt(T̃) = g`(|adh(t)|) · hgtT (t).

Suppose first that t ∈ app(Tpref). For those clique blockages t, the sum is bounded by
kO(k) ·

∑
a∈app(Tpref)

hgtT (a). Then, suppose t /∈ app(Tpref), in particular, parentT (t) ∈ Y3.
In this case, observe that if bag(parentT (t)) = adh(t) would hold, then some strict ancestor
of t would be a clique blockage, implying that t would not be a clique blockage. Therefore,
|bag(parentT (t))| > |adh(t)|. As T is binary, each node in Y3 can be a parent of at most
two clique blockages, so we obtain∑

T̃ ∈ReFo1(Tpref ,X)

42 · g`(|Int(T̃)|) · hgt(T̃)

≤kO(k) ·
∑

a∈app(Tpref)

hgtT (a) +
∑
t∈Y3

42 · 2 · g`(|bag(t)| − 1) · hgtT (t)

≤kO(k) ·
∑

a∈app(Tpref)

hgtT (a) + Φ`,T (Y3)/6.

(In the last step, we can divide by 6 because `+ 1 ≥ 6.)

Finally, we bound
∑
T̃ ∈ReFo2(Tpref ,X) 42 · g`(|Int(T̃)|) · hgt(T̃). Let T̃ = T C = (TC , bagC)

for some proper component C, and let rC ∈ Y3 be the root of TC . Now,

g`(|Int(T̃)|) · hgt(T̃) ≤ g`(|N(C)|) · hgtT (rC)

≤ g`(|bag(rC)| − 1) · hgtT (rC),

where the last inequality follows from the facts that N(C) ⊆ bagC(rC) and by Lemma 6.41
|bagC(rC)| < |bag(rC)|. Because each node in Y3 can be the root rC for at most ` + 1

proper components C, we get that∑
T̃ ∈ReFo2(Tpref ,X)

42 · g`(|Int(T̃)|) · hgt(T̃)

≤
∑
t∈Y3

(`+ 1) · 42 · g`(|bag(t)| − 1) · hgtT (t)

≤ Φ`,T (Y3)/2.

222 Dynamic treewidth

Putting everything together, we obtain∑
T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) + 42 · g`(|Int(T̃)|) · hgt(T̃)

≤Φ`,T (Y1 ∪ Y2) + Φ`,T (Y3)/84 + Φ`,T (Y3)/6 + Φ`,T (Y3)/2 + kO(k) ·
∑

a∈app(Tpref)

hgtT (a)

≤Φ`,T (Y1 ∪ Y2) +
5

6
· Φ`,T (Y3) + kO(k) ·

∑
a∈app(Tpref)

hgtT (a).

Because g`(x) ≥ 6 for all x ≥ 0, we have that 5
6
·Φ`,T (Y3) ≤ Φ`,T (Y3)− |Y3|, and therefore

|Y3|+
∑

T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) + 42 · g`(|Int(T̃)|) · hgt(T̃)

≤ Φ`,T (V (T) \ Tpref) + kO(k) ·
∑

a∈app(Tpref)

hgtT (a),

which yields the conclusion.

For later analysis of potential, we will also need the concept of the source appendix of
a tree decomposition T̃ ∈ ReFo(Tpref , X) in the refinement forest. If T̃ = T C for some
proper component C, then C ⊆ cmp(a) for some appendix a ∈ app(Tpref) of Tpref . In that
case, we define the source appendix of T̃ to be Source(T̃) = a. If T̃ = T t for some clique
blockage t, then there is a unique appendix a ∈ app(Tpref) of Tpref so that t ∈ descT (a).
In that case, we define the source appendix of T̃ to be Source(T̃) = a. The properties we
aim to capture with this definition are stated in the next two lemmas.

First, we observe that the height of T̃ is at most the height of its source appendix.

Lemma 6.47. Let T̃ ∈ ReFo(Tpref , X). Then, hgt(T̃) ≤ hgtT (Source(T̃)).

Proof. Immediate from the construction of T̃ and the definition of source appendix.

Then, we observe that the number of distinct interfaces of tree decompositions with a
fixed source appendix is bounded. Here we use that X is c-small, and the assumptions
that c ≤ O(k4) and ` = O(k).

Lemma 6.48. For every a ∈ app(Tpref) it holds that

|{Int(T̃) | T̃ ∈ ReFo(Tpref , X) and Source(T̃) = a}| ≤ kO(k).

Proof. We observe that if Source(T̃) = a, then Int(T̃) ⊆ cmp(a)∪adh(a). However, it also
holds that Int(T̃) ⊆ X, so in fact Int(T̃) ⊆ X ∩ (cmp(a)∪ adh(a)). By the definition of c-

6.5 Refinement operation 223

smallness and the fact that |adh(a)| ≤ `+1, we have that |X∩(cmp(a)∪adh(a))| ≤ c+`+1.
Because |Int(T̃)| ≤ 2k + 2 (as X is a k-closure and Int(T̃) is a clique in torsoG(X)), it
holds that the number of different interfaces is at most (c+ `+ 2)2k+2, which is bounded
by kO(k).

As the last result of this subsection, we show that a representation of the refinement
forest can be computed efficiently when given the output of Lemma 6.35. For this let
us first define the representation of ReFo(Tpref , X). The representation is a list of length
|ReFo(Tpref , X)| that for each T̃ = (T̃ , ˜bag) ∈ ReFo(Tpref , X) contains a tuple consisting
of Int(T̃), hgt(T̃), and in addition,

• if T̃ = T C for a proper component C, the restriction T C�Expl(Tpref ,X) and a mapping
from blockages that are covered by C to the nodes of T C�Expl(Tpref ,X) below which
they should be attached to construct T C , and

• if T̃ = T t for a clique blockage t, the node t.

We then give the algorithm to compute the representation.

Lemma 6.49. The prefix-rebuilding data structure of Lemma 6.35 can be extended so
that the Closure(Tpref) operation also returns the representation of ReFo(Tpref , X).

Proof. In order to compute the heights hgt(T̃) for the representation, we maintain also
the prefix-rebuilding data structure of Lemma 6.7 to be able to query the heights of
nodes of T . Now, given the output of the Closure(Tpref) operation of Lemma 6.35, our
goal is to compute the representation of ReFo(Tpref , X) in time kO(1) · |Expl(Tpref , X)|. We
remind the reader that the output of the Closure(Tpref) operation contains a dT -minimal
c-small k-closure X of bags(Tpref), the graph torsoG(X), the sets Blockages(Tpref , X) and
Expl(Tpref , X), and for each blockage whether it is a clique blockage or component blockage.

First, given this information, computing the tuples for the decompositions in ReFo(Tpref , X)

corresponding to clique blockages is straightforward to do in kO(1) · |Expl(Tpref , X)| time.

Then we compute for each proper component C the sets C ∩ bags(Expl(Tpref , X)) and
N(C). Let GE be the graph on the vertex set V (GE) = bags(Expl(Tpref , X)) \ X that
contains the edges of G[V (GE)], and for every component blockage t a clique on adh(t)\X.

Claim 6.50. For u, v ∈ V (GE), there exists an u-v-path in GE if and only if there exists
an u-v-path in G \X.

224 Dynamic treewidth

Proof of the claim. First, consider an u-v-path in GE. The edges of it that are not edges
of G are created by making adhesions of component blockages cliques. If xy ∈ E(GE) is
an edge created like that, then by the definition of component blockage x and y are in
the same connected component of G \X.

Then, consider an u-v-path in G \ X. Let x, z1, . . . , zp, y be a subpath of it so that
x, y ∈ V (GE) but z1, . . . , zp /∈ V (GE). We claim that then xy ∈ E(GE). Because
{z1, . . . , zp} is a connected set in G disjoint from bags(Expl(Tpref , X)), it holds that
{z1, . . . , zp} ⊆ cmp(t) for some blockage t. Now because xz1 and zpy are edges of G and
x, y ∈ bags(Expl(Tpref , X)), it must be that x, y ∈ adh(t). This implies that the path can
be translated into an u-v-path in GE. C

Now the sets C ∩ bags(Expl(Tpref , X)) for proper components C can be computed in
kO(1) · |Expl(Tpref , X)| time by first computing GE explicitly and then its connected
components. Note that G[V (GE)] can be computed explicitly because all of its edges
are stored in edges(Expl(Tpref , X)), where (T, bag, edges) is the stored annotated tree
decomposition.

To compute the sets N(C), first recall that by Lemma 6.39, X ⊆ bags(Expl(Tpref , X)).
The vertices v ∈ N(C) that are in adh(t) for some component blockage t covered by
C can be found by iterating through blockages. If v ∈ N(C) is not in the adhesion of
any component blockage t covered by C, then there exists u ∈ C so that uv ∈ E(G)

and forgetT (uv) ∈ Expl(Tpref , X), so such vertices v can be found by iterating through
Expl(Tpref , X) and inspecting the edges map. Therefore, computing the sets N(C) for all
proper components C can be done in kO(1) · |Expl(Tpref , X)| total time.

Then for each component C we compute the highest node in Expl(Tpref , X) whose bag
intersects C, and then by using depth-first search from it, compute the restriction
T C�Expl(Tpref ,X) and the mapping from blockages that are covered by C to the nodes of
T C�Expl(Tpref ,X) below which they should be attached to construct T C . By using the height
data structure, we can also simultaneously compute hgt(T C). For each C, this takes
kO(k) · |T C�Expl(Tpref ,X)| time, which sums up to kO(1) · |Expl(Tpref , X)| total time.

6.5.3 Combining the components

Suppose we have constructed the refinement forest ReFo(Tpref , X), and we have a tree
decomposition T X of torsoG(X). Because the interface of each tree decomposition in
ReFo(Tpref , X) is a clique in torsoG(X), it is clear that they can be combined to create
a tree decomposition of G, in the fashion of the construction in Section 5.2. However,

6.5 Refinement operation 225

the naive way of combining these tree decompositions could make the resulting tree
decomposition not binary.

A natural idea is to then append auxiliary binary trees to T X , so that every tree
decomposition in the refinement forest will have its own attachment point. However, this
increases the potential of the resulting tree decomposition, so we have to be careful with
the details of how this is implemented to control this increase. In this subsection we
discuss the first part of constructing these binary trees, which is that for every interface
B = Int(T̃) of a tree decomposition T̃ ∈ ReFo(Tpref , X), we construct a tree decomposition
T B gathering all of the tree decompositions in ReFo(Tpref , X) with the interface B to a
single tree decomposition.

The following lemma, inspired by Huffman coding, will be crucial for bounding the
potential of such T B.

Lemma 6.51. Let h1, . . . , hm be positive integers and let Q = h1 + . . .+hm. Then, there
exists a binary tree T of height O(logQ) and leaves labeled h1, . . . , hm in some order such
that

∑
t∈V (T) lheight(t) ≤ 21Q, where

lheight(t) =

label(t) if t is a leaf,

1 + max{lheight(c) | c is a child of t} otherwise.

Moreover, given h1, . . . , hm, such a tree can be computed in time O(m+ logQ).

Proof. Let λ : Z≥1 → Z≥0 be the function given by the formula λ(a) = dlog ae (recall
that log denotes the base-2 logarithm). In other words, λ(a) is the smallest non-negative
integer such that 2λ(a) ≥ a. This implies that 2λ(a) < 2a.

We partition h1, . . . , hm into λ(Q) groups D0, . . . , Dλ(Q) as follows: We put hi in Dj if
Q

2j+1 < hi ≤ Q
2j
. This is a well-defined partition as these intervals for j = 0, . . . , λ(Q) are

disjoint and their union covers the interval [1, Q].

Now, for each non-empty group Di let us create a binary tree Ti as follows. Let the
elements of Di be d1, . . . , da. Then, let Ti be an arbitrary binary tree with a leaves labeled
d1, . . . , da, where all leaves are at distance at most λ(a) from the root. As 2λ(a) ≥ a, such
a tree exists. If Di is empty, we assume that Ti is empty as well.

As the next step create a path P = t0, . . . , tλ(Q) rooted at t0. For each i = 0, . . . , λ(Q), if
Di is non-empty, assign the root of Ti as a child of ti. Remove the suffix of P that has no
subtrees attached to it. This completes the description of desired T . One can readily see
that the construction can be computed in time O(m+ logQ).

226 Dynamic treewidth

What remains is to prove the required properties of T . As each Ti has height O(logQ)

and the path P has length O(logQ), it is clear that the height of T is O(logQ) as well.

Next, we will prove a bound on the sum of lheight(t) for a particular Ti. Let the elements
of Di be d1, . . . , da ∈ (Q

2i+1 ,
Q
2i

]. Let us group the nodes t ∈ V (Ti) by their distance j to
the farthest leaf in the subtree of Ti rooted at t. For j = 0, the group comprises the
leaves of Ti. The leaves are labeled by Di, so their values of lheight do not exceed Q

2i
.

Next, the nodes at distance j ≥ 1 from the farthest leaf have the value of lheight at most
Q
2i

+ j and there are at most 2λ(a)−j of them (which follows from the fact that each such
node is at depth at most λ(a)− j in Ti). Hence, we have the bound

∑
t∈V (Ti)

lheight(t) ≤
λ(a)∑
j=0

2λ(a)−j
(
Q

2i
+ j

)

≤ 2λ(a)

Q
2i

λ(a)∑
j=0

2−j +

λ(a)∑
j=0

j · 2−j


≤ 2λ(a)

(
Q

2i

∞∑
j=0

2−j +
∞∑
j=0

j · 2−j
)

≤ 2λ(a)

(
2 · Q

2i
+ 2

)
.

As additionally 2λ(a) · 2 ≤ 4a and 2λ(a) · 2 · Q
2i
≤ 8a · Q

2i+1 < 8(d1 + . . .+ da), we find that∑
t∈V (Ti)

lheight(t) ≤ 8(d1 + . . .+ da) + 4a ≤ 12(d1 + . . .+ da). (6.52)

Summing (6.52) over all i = 0, 1, . . . , λ(Q), we get that

λ(Q)∑
i=0

∑
t∈V (Ti)

lheight(t) ≤ 12Q.

What remains is to bound the sum of lheight for the nodes of P . Define

xi =
Q

2i
+ 2λ(Q)− i+ 2.

We now prove lheight(ti) ≤ xi by induction on i. Each node ti ∈ V (P) has at most two
children, the root ri of Ti if Di is non-empty, and the node ti+1 on the path P if ti+1

exists. First, by the induction assumption, lheight(ti+1) ≤ xi+1 ≤ xi − 1.

6.5 Refinement operation 227

Then we bound lheight(ri). Because each element of Di is larger than Q
2i+1 , we have that

|Di| ≤ 2i+1, implying that the height of Ti is at most i+ 1. Therefore, as each element of
Di is at most Q

2i
, we get lheight(ri) ≤ Q

2i
+ i+ 1 ≤ xi − 1. Thus indeed lheight(ti) ≤ xi.

Therefore,

∑
t∈P

lheight(t) ≤
λ(Q)∑
i=0

xi

≤(λ(Q) + 1)(2λ(Q) + 2) +

λ(Q)∑
i=0

Q

2i

≤(λ(Q) + 1)(2λ(Q) + 2) + 2Q.

Now, since λ(Q) < logQ+1, we find that (λ(Q)+1)(2λ(Q)+2) < (logQ+2)(2 logQ+3).
It can be shown by concavity and case-analysis for small values that for all Q ∈ Z≥1

(logQ+ 2)(2 logQ+ 3) ≤ 7Q.

Hence, ∑
t∈P

lheight(t) ≤ 9Q.

We conclude that

∑
t∈V (T)

lheight(t) =

λ(Q)∑
i=0

∑
t∈V (Ti)

lheight(t) +
∑
t∈P

lheight(t) ≤ 12Q+ 9Q = 21Q.

Having proved Lemma 6.51, we can define the tree decompositions that will be attached
to T X . Let B ⊆ V (G) be a set of vertices. We denote by ReFoB(Tpref , X) the subset {T̃ ∈
ReFo(Tpref , X) | Int(T̃) = B} of the refinement forest consisting of the decompositions with
interface B. Then, for each B so that ReFoB(Tpref , X) is non-empty, we will define a binary
tree decomposition T B that contains all of the tree decompositions in ReFoB(Tpref , X)

and has root bag equal to B.

Let us enumerate ReFoB(Tpref , X) = (T1, bag1), . . . , (Tm, bagm), and let hi = hgt(Ti) + 1

for i ∈ [m]. Let TBpref be the binary tree returned by the algorithm of Lemma 6.51 when
given the integers h1, . . . , hm. We construct a binary tree TB by attaching each Ti as
the child of the leaf of TBpref that is labeled with hi. The binary tree decomposition
T B = (TB, bagB) is then obtained by setting bagB�V (Ti) = bagi for every i ∈ [m], and
bagB(t) = B for every t ∈ TBpref .

228 Dynamic treewidth

The point of this construction is that now, for every t ∈ TBpref it holds that hgtTB(t) =

lheight(t), where lheight(t) is from the statement of Lemma 6.51. This means in particular
that

∑
t∈TBpref

hgtTB(t) ≤ 21 ·
∑
T̃ ∈ReFoB(Tpref ,X)(hgt(T̃) + 1).

We then observe some basic properties of T B.

Lemma 6.53. It holds that

1. T B is a tree decomposition of G[
⋃
T̃ ∈ReFoB(Tpref ,X) bags(T̃)],

2. T B has width at most `,

3. the root bag of T B is equal to B, and

4. hgt(T B) ≤ O(log |T |+ log k) + maxT̃ ∈ReFoB(Tpref ,X) hgtT (Source(T̃)).

Proof. For Item 1, the vertex and edge conditions follow directly from vertex and
edge conditions of the decompositions in ReFoB(Tpref , X), and the fact that B is a
(bags(T̃1), bags(T̃2)-separator for any distinct T̃1, T̃2 ∈ ReFoB(Tpref , X). The connectedness
condition follows from the fact that B is a subset of the root bag of every decomposi-
tion in ReFoB(Tpref , X). Item 2 follows from the fact that every tree decomposition in
ReFo(Tpref , X) has width at most `, and Item 3 is direct from the definition of T B.

Because |ReFoB(Tpref , X)| ≤ O(k · |T |) and hgt(T̃) ≤ |T | for all T̃ ∈ ReFo(Tpref , X),
we have that

∑
hi ≤ O(k · |T |2) for the integers h1, . . . , hm given to the algorithm

of Lemma 6.51. Therefore, hgt(TBpref) ≤ O(log |T | + log k), implying that hgt(T B) ≤
O(log |T |+ log k) + maxT̃ ∈ReFoB(Tpref ,X) hgt(T̃), which by Lemma 6.47 implies Item 4.

Then, we define the grouped refinement forest of T with respect to Tpref and X to be
GReFo(Tpref , X) = {T B | ReFoB(Tpref , X) 6= ∅}, i.e., the set of binary tree decompositions
containing T B for every set B that is the interface of some tree decomposition in the
refinement forest. We analyze the total potential of the trees in GReFo(Tpref , X).

Lemma 6.54. It holds that

|Expl(Tpref , X) \ Tpref |+
∑

T B∈GReFo(Tpref ,X)

Φ`(T B)

≤ Φ`,T (V (T) \ Tpref) + kO(k) ·
∑

a∈app(Tpref)

hgtT (a).

Proof. By the construction of T B, it holds that

Φ`(T B) = Φ`,T B(TBpref) +
∑

T̃ ∈ReFoB(Tpref ,X)

Φ`(T̃),

6.5 Refinement operation 229

implying that∑
T B∈GReFo(Tpref ,X)

Φ`(T B) =
∑

T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) +
∑

T B∈GReFo(Tpref ,X)

Φ`,T B(TBpref) (6.55)

The plan to first bound the latter sum and then apply Lemma 6.44. By the construction
of T B, it holds that

Φ`,T B(TBpref) =
∑
t∈TBpref

g`(|B|) · hgtTB(t) = g`(|B|) ·
∑
t∈TBpref

hgtTB(t).

Then, the construction of TBpref by Lemma 6.51 guarantees that∑
t∈TBpref

hgtTB(t) ≤ 21 ·
∑

T̃ ∈ReFoB(Tpref ,X)

hgt(T̃) + 1

≤ 42 ·
∑

T̃ ∈ReFoB(Tpref ,X)

hgt(T̃),

which implies
Φ`,T B(TBpref) ≤ 42 · g`(|B|) ·

∑
T̃ ∈ReFoB(Tpref ,X)

hgt(T̃),

which in turn implies∑
T B∈GReFo(Tpref ,X)

Φ`,T B(TBpref) ≤
∑

T̃ ∈ReFo(Tpref ,X)

42 · g`(|Int(T̃)|) · hgt(T̃). (6.56)

Now, Lemma 6.44 states that

|Expl(Tpref , X) \ Tpref |+
∑

T̃ ∈ReFo(Tpref ,X)

Φ`(T̃) + 42 · g`(|Int(T̃)|) · hgt(T̃)

≤ Φ`,T (V (T) \ Tpref) + kO(k) ·
∑

a∈app(Tpref)

hgtT (a),

which yields the conclusion by combining with (6.55) and (6.56)

Then we analyze the sum of the heights of the grouped refinement forest, for the purpose
of later analysis of the potential when the tree decompositions T B are attached to a
tree decomposition T X of torsoG(X). For a rather technical reason, in this analysis we
subtract O(log |T |) from the height of each tree in GReFo(Tpref , X).

230 Dynamic treewidth

Lemma 6.57. There exists a constant α, so that∑
T B∈GReFo(Tpref ,X)

(
hgt(T B)− α · log |T |

)
≤ kO(k) ·

∑
a∈app(Tpref)

hgtT (a).

Proof. If |T | < k, then the lemma clearly holds, so assume that k ≤ |T |. In that case,
by Lemma 6.53, the height of T B is at most

O(log |T |) + max
T̃ ∈ReFoB(Tpref ,X)

hgtT (Source(T̃)),

so by letting α depend on the constant hidden by the O-notation in the O(log |T |) term,
our goal will be to bound the sum∑

T B∈GReFo(Tpref ,X)

max
T̃ ∈ReFoB(Tpref ,X)

hgtT (Source(T̃)).

For T B ∈ GReFo(Tpref , X), let us define the source appendix Source(T B) ∈ app(Tpref)

of T B to be the source appendix Source(T̃) for T̃ ∈ ReFoB(Tpref , X) that maximizes
hgtT (Source(T̃)). Now, our goal is to bound∑

T B∈GReFo(Tpref ,X)

hgtT (Source(T B)).

By Lemma 6.48, for every a ∈ app(Tpref) it holds that

|{Int(T̃) | T̃ ∈ ReFo(Tpref , X) and Source(T̃) = a}| ≤ kO(k),

which implies |{T B | Source(T B) = a}| ≤ kO(k), and therefore∑
T B∈GReFo(Tpref ,X)

hgtT (Source(T B)) ≤
∑

a∈app(Tpref)

kO(k) · hgtT (a),

which concludes the proof.

We then define the representation of the grouped refinement forest GReFo(Tpref , X) as a list
that contains for every interface B = Int(T̃) of a tree decomposition T̃ ∈ ReFo(Tpref , X)

the restriction T B�V (TBpref)
and the mapping from the leaves of T B�V (TBpref)

to decompositions
in ReFo(Tpref , X) indicating how they should be attached to T B�V (TBpref)

to construct T B.

Lemma 6.58. Given the representation of ReFo(Tpref , X), the representation of
GReFo(Tpref , X) can be computed in kO(1) · |ReFo(Tpref , X)|+ kO(k) · |Tpref | · log |T | time.

6.5 Refinement operation 231

Proof. First, we compute the set of distinct interfaces in time kO(1) · |ReFo(Tpref , X)| by
bucket sorting. Then, for each interface B, we know the heights of the decompositions in
ReFoB(Tpref , X) from the representation of ReFo(Tpref , X), and apply Lemma 6.51 with
them. With the output of Lemma 6.51, it is straightforward to construct T B�V (TBpref)

in
kO(1) · |V (TBpref)| = kO(1) · (|ReFoB(Tpref , X)|+ log

∑
T̃ ∈ReFoB(Tpref ,X)(hgt(T̃) + 1)) time. This

takes in total

∑
B

O

kO(1) · |ReFoB(Tpref , X)|+ log
∑

T̃ ∈ReFoB(Tpref ,X)

(hgt(T̃) + 1)


≤ kO(1) · |ReFo(Tpref , X)|+O

∑
B

log
∑

T̃ ∈ReFoB(Tpref ,X)

(hgt(T̃) + 1)


time, which by the facts that by Lemma 6.48 the number of distinct interfaces is
kO(k) · |Tpref | and the fact that log

∑
T̃ ∈ReFoB(Tpref ,X)(hgt(T̃) + 1) ≤ O(log |T | + log k)

implies the conclusion.

6.5.4 Refinement operation

We are now almost ready to fully describe the refinement operation. Before going into
it, let us state the Bodlaender-Hagerup Lemma for making tree decompositions into
logarithmic depth.

Lemma 6.59 ([Bodlaender and Hagerup, 1998, Lemma 2.2]). There is an algorithm that
given a graph G and a tree decomposition (T, bag) of G of width `, in time O(` · |V (T)|)
returns a binary tree decomposition (T ′, bag′) of G of height O(log |V (T)|), width at most
3`+ 2, and with |V (T ′)| = O(|V (T)|).

Then we give the refinement operation. It is given as a form of a prefix-rebuilding data
structure, in order to give a clean interface upon which we can build on in the later
sections. We remark that this prefix-rebuilding data structure assumes the promise that
the treewidth of G is at most k, without checking if this promise holds. Later, additional
wrappers will be placed on top of it to guarantee that this promise always holds.

Lemma 6.60. Let k be an integer and ` = 6k+5. There exists an (`+1)-prefix-rebuilding
data structure with overhead 2O(k8), that maintains an annotated tree decomposition
T = (T, bag, edges) of a graph G of treewidth at most k, and additionally supports the
operation

232 Dynamic treewidth

• Refine(Tpref): Given a prefix Tpref of T so that Tpref contains all nodes of T with
bags of size `+ 2, returns a description u of a prefix-rebuilding update, so that the
tree decomposition T ′ obtained by applying u has the following properties.

• T ′ has width at most `.

• T ′ has potential at most

Φ`(T ′) ≤ Φ`,T (V (T) \ Tpref) + kO(k) · log |T | ·

|Tpref |+
∑

a∈app(Tpref)

hgtT (a)

 .

Moreover, it holds that

• the running time of Refine(Tpref), and therefore also |u|, is upper-bounded by

2O(k9) ·

log |T | ·

|Tpref |+
∑

t∈app(Tpref)

hgtT (t)

+ Φ`(T)− Φ`(T ′)

 .

The rest of this section is dedicated to the proof of Lemma 6.60.

In our data structure we store

• an annotated tree decomposition T = (T, bag, edges) of G of width ≤ `+ 1,

• an instance Daux of the (`+ 1)-prefix-rebuilding data structure from Lemma 6.7 for
maintaining various auxiliary information about T ,

• an instance Dclosure of the (`+ 1)-prefix-rebuilding data structure from Lemma 6.35
to compute closures and related objects, initialized with the parameters k, `+ 1,
and c = O(`4) for the integer c given by Lemma 6.24, and

• an instance Dstrengthen of the (`+ 1)-prefix-rebuilding data structure from Lemma 6.8
to turn weak descriptions of prefix-rebuilding updates into descriptions of prefix-
rebuilding updates.

All of these three prefix-rebuilding data structures will always hold the same annotated
tree decomposition (T, bag, edges). Implementation of the update operations on our data
structure is simple. Upon receiving a prefix-rebuilding update u with a prefix Tpref , we
recompute the decomposition (T, bag, edges) according to u, and pass u to the inner data
structures Daux, Dclosure, and Dstrengthen. The initialization of the data structure is similarly
easy. The overhead 2O(k8) follows from the overhead 2O((c+`)2) of Dclosure.

6.5 Refinement operation 233

From now on, we focus on the Refine operation. Let Tpref ⊆ V (T) be the given prefix of T
which includes all bags of T of size `+ 2. By Lemma 6.24, the fact that G has treewidth
at most k, and the choice of c, there exists a c-small k-closure of bags(Tpref). By applying
the Closure(Tpref) operation of Lemma 6.35, we obtain in time 2O(k9) · |Expl(Tpref , X)|

• a dT -minimal c-small k-closure X of bags(Tpref),

• the graph torsoG(X), and

• the sets Blockages(Tpref , X) and Expl(Tpref , X), and for every blockage whether it is
a clique blockage or a component blockage.

Furthermore, by applying Lemmas 6.49 and 6.58, we obtain the representations of the
refinement forest ReFo(Tpref , X) and the grouped refinement forest GReFo(Tpref , X), with
an additional running time of kO(1) · |Expl(Tpref , X)|+ kO(k) · |Tpref | · log |T |.

Constructing T ′

We then define the resulting tree decomposition T ′, and the transformation from T into
T ′. Let us first compute a suitable tree decomposition T X of torsoG(X).

Lemma 6.61. We can in time 2O(k3)|Tpref | compute a binary tree decomposition T X =

(TX , bagX) of torsoG(X) so that

• the width of T X is at most 6k + 5,

• the height of T X is at most O(log |Tpref |+ k),

• for every clique B ⊆ X of torsoG(X), there exists a leaf node tB ∈ V (TX) so that
bagX(tB) = B, and

• |V (TX)| ≤ 2O(k)|Tpref |.

Proof. As X is c-small for c ∈ O(k4) and (T, bag) is binary, |X| ≤ O(k4 · |Tpref |). Because
X is a k-closure, the treewidth of torsoG(X) is at most 2k + 1. We use the algorithm of
Bodlaender [1996] (Theorem 3.6 in this thesis) to compute a tree decomposition T Xinit of
torsoG(X) of width at most 2k + 1 in time 2O(k3)|X| = 2O(k3)|Tpref |. By Lemma 2.13, we
can assume that |T Xinit| ≤ |X|.

Then we use the lemma of Bodlaender and Hagerup [1998] (Lemma 6.59) to turn T Xinit

into a binary tree decomposition T Xlog of width at most 6k + 5, height at most O(log |X|),

234 Dynamic treewidth

and with |T Xlog| ≤ O(|X|). This takes time O(k · |X|). Without changing these stated
bounds, we can also assume that the root bag of T Xlog is empty.

Finally, we obtain T X by editing T Xlog so that for every subset of a bag of T Xlog, there exists
a leaf bag in T X that is equal to this subset. This can be done by subdividing each edge
of T Xlog, with the bag of the introduced subdivision node identical to the bag of its only
child, and creating a new subtree of depth O(k) under it containing as leaves all subsets
of that bag. This increases the height first by a factor of 2 and then by an additive term
of O(k), resulting in the height of T X being O(log |X|+ k), which as |X| ≤ O(k4 · |Tpref |)
is at most O(log |Tpref | + log k4 + k) = O(log |Tpref | + k). It increases the number of
nodes by a factor of 2O(k), resulting in |T X | ≤ 2O(k)|X| ≤ 2O(k)|Tpref |. This step can be
implemented in 2O(k)|Tpref | time.

Now the tree decomposition T ′ = (T ′, bag′) is constructed by taking T X = (TX , bagX),
and for each T B ∈ GReFo(Tpref , X), attaching T B from its root as a child of a leaf node
tB ∈ V (TX) with bagX(tB) = B.

Lemma 6.62. T ′ is a tree decomposition of G and its width is at most `.

Proof. Let us first check the vertex and edge conditions. Because T ′ contains T X , it
satisfies them for vertices and edges in G[X]. For vertices in V (G)\X and edges incident to
them, Lemma 6.43 states that each of them is in some tree decomposition of ReFo(Tpref , X),
implying that each of them is in some tree decomposition of GReFo(Tpref , X).

For the connectedness condition of a vertex v ∈ V (G) \X, Lemma 6.43 states that v is in
exactly one tree decomposition of ReFo(Tpref , X), implying that it is in exactly one tree
decomposition T B ∈ GReFo(Tpref , X), implying that T ′ satisfies the condition because
T B satisfies it. For v ∈ X, we have that if v ∈ bags(T B) ∩X, then v ∈ B, implying that
v is in the root bag of T B, which together with the facts that T X and each T B satisfies
the connectedness condition implies that T ′ satisfies the connectedness condition.

For the width, by Lemma 6.53 each T B has width at most `, and by Lemma 6.61 T X

has width at most `, so therefore T ′ has width at most `.

Given these objects, it is straightforward to combine the representations of ReFo(Tpref , X)

and GReFo(Tpref , X) returned by Lemmas 6.49 and 6.58 with T X to construct a weak
description û of a prefix-rebuilding update that turns T into T ′. We then use Dstrengthen

to turn this into a description ū of a prefix-rebuilding update, apply ū to T and all of
our prefix-rebuilding data structures, and return ū.

6.5 Refinement operation 235

We now have implemented the Refine operation with running time

2O(k9) · |Expl(Tpref , X)| (Lemma 6.35)

+2O(k3) · |Tpref | (Lemma 6.61)

+kO(1) · |Expl(Tpref , X)|+ kO(k) · |Tpref | · log |T | (Lemmas 6.49 and 6.58)

≤2O(k9) · |Expl(Tpref , X)|+ kO(k) · |Tpref | · log |T | (6.63)

It remains to analyze the potential change, and relate this running time to it.

Analysis of the potential

Because Φ`,T ′(V (T ′) \ V (TX)) = Φ`,T ′

(⋃
T B∈GReFo(Tpref ,X) V (TB)

)
, Lemma 6.54 implies

Φ`,T ′(V (T ′) \ V (TX)) + |Expl(Tpref , X) \ Tpref |

≤Φ`,T (V (T) \ Tpref) + kO(k) ·
∑

a∈app(Tpref)

hgtT (a). (6.64)

Therefore, it remains to bound Φ`,T ′(V (TX)).

Lemma 6.65. It holds that

Φ`,T ′(V (TX)) ≤ kO(k) · log |T | ·

|Tpref |+
∑

a∈app(Tpref)

hgtT (a)



Proof. Our goal will be to bound
∑

t∈V (TX) hgtT ′(t). In particular, we will not use the
function g` from the definition of potential non-trivially, we only use the upper bound
g`(`+ 1) = kO(k).

Let t ∈ V (TX), and let us understand how hgtT ′(t) is formed. First, by Lemma 6.61,
hgtTX (t) ≤ O(log |Tpref | + k) ≤ O(log |T | + k). Then, we attach the decompositions
T B ∈ GReFo(Tpref , X) on the leaves of T X to form T ′. This increases the height of
t by the largest height of a decomposition T B attached as a descendant of t. Let
φ : V (TX)→ GReFo(Tpref , X) be the function that maps each t ∈ V (TX) to the maximum
height decomposition in GReFo(Tpref , X) that is attached as a descendant of t. Now,

hgtT ′(t) ≤ O(log |T |+ k) + hgt(φ(t)),

236 Dynamic treewidth

which by |V (TX)| ≤ 2O(k) · |Tpref | implies that∑
t∈V (TX)

hgtT ′(t) ≤ 2O(k) · |Tpref | · log |T |+
∑

t∈V (TX)

hgt(φ(t)).

In fact, for any fixed constant α, it holds that∑
t∈V (TX)

hgtT ′(t) ≤ 2O(k) · |Tpref | · log |T |+
∑

t∈V (TX)

(hgt(φ(t))− α · log |T |) . (6.66)

Now, our goal is to bound
∑

t∈V (TX) (hgt(φ(t))− α · log |T |) for the constant α of
Lemma 6.57. Because hgt(T X) ≤ O(log |T | + k), each T B can be a descendant of
at most O(log |T | + k) nodes in TX . In particular, |φ−1(T B)| ≤ O(log |T | + k) for all
T B ∈ GReFo(Tpref , X). This implies that∑

t∈V (TX)

(hgt(φ(t))− α · log |T |)

≤O(log |T |+ k) ·
∑

T B∈GReFo(Tpref ,X)

(
hgt(T B)− α · log |T |

)
By plugging in Lemma 6.57, we conclude that∑

t∈V (TX)

(hgt(φ(t))− α · log |T |)

≤O(log |T |+ k) · kO(k) ·
∑

a∈app(Tpref)

hgtT (a)

≤kO(k) · log |T | ·
∑

a∈app(Tpref)

hgtT (a)

By combining this with (6.66), we conclude the proof.

Let us denote by Q = kO(k) · log |T | ·
(
|Tpref |+

∑
a∈app(Tpref)

hgtT (a)
)
the upper bound

given by Lemma 6.65. Combining Equation (6.64) and Lemma 6.65 yields

Φ`(T ′) + |Expl(Tpref , X)| ≤ Φ`,T (V (T) \ Tpref) +Q, (6.67)

which is the desired conclusion after ignoring |Expl(Tpref , X)|, which will be used only for
the running time bound.

6.6 Height improvement 237

Analysis of the running time

Recall that by (6.63), the running time of Refine is

2O(k9) · |Expl(Tpref , X)|+ kO(k) · |Tpref | · log |T |.

By re-arranging (6.67) we obtain

|Expl(Tpref , X)| ≤ Φ`,T (V (T) \ Tpref)− Φ`(T ′) +Q

≤ Φ`(T)− Φ`(T ′) +Q,

which combined with (6.63) yields the claimed bound

2O(k9) ·

log |T | ·

|Tpref |+
∑

t∈app(Tpref)

hgtT (t)

+ Φ`(T)− Φ`(T ′)


on the running time. This concludes the proof of Lemma 6.60.

6.6 Height improvement

In this section we leverage the refinement operation of Section 6.5 to design a data structure
that allows us to maintain a tree decomposition of small height. As in Section 6.5, we
assume that the dynamic n-vertex graph G we are maintaining is promised to have
treewidth at most k. Let us give the statement of the height improvement data structure.

Lemma 6.68. Let k ∈ Z≥0 and ` = 6k + 5. The (`+ 1)-prefix-rebuilding data structure
from Lemma 6.60 maintaining an annotated tree decomposition T = (T, bag, edges) can
be extended to additionally support the following operation.

• ImproveHeight(): Updates T through a sequence of prefix-rebuilding updates, pro-
ducing an annotated tree decomposition T ′ such that

hgt(T ′) ≤ 2O(k log k
√

logn log logn) and Φ`(T ′) ≤ kO(k)n log n.

Also, Φ`(T ′) ≤ Φ`(T) and if the width of T is at most `, then the width of T ′ is
also at most `.

The running time of ImproveHeight is bounded by 2O(k9)(Φ`(T)− Φ`(T ′)) +O(1),
and it returns the sequence of descriptions of the prefix-rebuilding updates applied.

238 Dynamic treewidth

Lemma 6.68 is used for keeping the height of the maintained tree decomposition at most
2O(k log k

√
logn log logn), in particular, after each update to the tree decomposition, we call

ImproveHeight to ensure that the height of the decomposition stays sufficiently small. Note
here that all prefix-rebuilding updates performed by ImproveHeight in order to decrease
the height of the decomposition are essentially “free” in terms of amortized running time,
because the running time of ImproveHeight is fully amortized by the decrease in the
potential value, i.e., Φ`(T)− Φ`(T ′).

As an additional byproduct, Lemma 6.68 also keeps the number of nodes of the maintained
tree decomposition bounded by kO(k) · n log n, which is necessary because we have the
factor log |T | in the running time of some operations.

The rest of this section is dedicated to the proof of Lemma 6.68.

6.6.1 Unbalanced binary trees

The idea of ImproveHeight is to show that if the height of the tree decomposition T is
too large, then there exists a prefix Tpref so that applying the Refine(Tpref) operation
of Lemma 6.60 decreases the potential Φ`(T) significantly. The main combinatorial
argument for finding such prefix Tpref is the following lemma about binary trees. Recall
that for a rooted tree T and t ∈ V (T), we denote size(t) = |descT (t)|.

Lemma 6.69. Let c ≥ 2 and T be a binary tree with n ≥ 2 nodes. If the height of T is
at least 2Ω(

√
logn log c), then there exists a prefix Tpref of T so that

c ·

|Tpref |+
∑

a∈app(Tpref)

hgt(a)

 ≤ ∑
t∈Tpref

hgt(t).

Moreover, if a representation of T is already stored and supports the functions hgt(t) and
size(t) for t ∈ V (T) in O(1) time, then such Tpref can be found in O(|Tpref |) time.

Proof. Let us prove the lemma for the height bound hgt(T) ≥ 2d
√

logn log c with the
constant d = 4. Because a tree with n nodes can have height at most n, we can assume
that d

√
log n log c ≤ log n, which implies that log c ≤ log n/d2, which in turn implies that

log c ≤
√

log n log c/d.

Let P be a longest root-leaf path in T . Note that this implies |P | = hgt(T) and∑
t∈P hgt(t) ≥ |P |2/2. The idea is that the prefix Tpref will be obtained as a union of the

prefix P , and prefixes obtained by recursive calls (i.e., induction) on subtrees rooted at
the appendices of P that satisfy the preconditions of the lemma. For this, we say that an

6.6 Height improvement 239

appendix a ∈ app(P) is deep if hgt(a) ≥ hgt(T)/(4c) and small if size(a) ≤ (n · 4c)/|P |.
We show that the lemma can be recursively applied on appendices that are both deep
and small.

Claim 6.70. If an appendix a ∈ app(P) is deep and small, then the subtree rooted at it
satisfies the preconditions of the lemma statement.

Proof of the claim. Because hgt(a) ≥ hgt(T)/(4c), hgt(T) ≥ 2d log c, and d = 4, it must
hold that hgt(a) ≥ 2 and therefore also size(a) ≥ 2.

Our goal is to prove that hgt(a) ≥ 2d
√

log(size(a)) log c, which holds if

2d
√

logn log c−log(4c) ≥ 2d
√

log(size(a)) log c

⇔ d
√

log n log c− log(4c) ≥ d
√

log(size(a)) log c

⇔
√

log n log c−
√

log(size(a)) log c ≥ (log(4c))/d

⇐
√

log n−
√

log(size(a)) ≥ (4
√

log c)/d.

Then, we lower bound the left hand side by√
log n−

√
log(size(a)) ≥

√
log n−

√
log n+ log(4c)− log |P |

≥
√

log n−
√

log n+ log(4c)− d
√

log n log c

≥
√

log n−
√

log n− d
√

log n log c/2

≥d
√

log c/4.

Now, d
√

log c/4 ≥ (4
√

log c)/d holds because d = 4. C

Let Tpref be the prefix obtained as the union of P and the prefixes returned by recursive
calls on subtrees rooted at appendices of P that are both deep and small. By induction,
we have that

c ·

|Tpref \ P |+
∑

a∈app(Tpref)\app(P)

hgt(a)

 ≤ ∑
t∈Tpref\P

hgt(t). (6.71)

Then we bound the sum of the heights of appendices of P that are not small. Let
Abig ⊆ app(P) be set the appendices of P that are not small. As the subtrees rooted
at them have size at least (n · 4c)/|P | and are disjoint, we have that |Abig| ≤ |P |/(4c),
implying

∑
a∈Abig

hgt(a) ≤ |P |2/(4c).

240 Dynamic treewidth

Then we bound the sum of the heights of appendices of P that are not deep. Let
Ashallow ⊆ app(P) be the set of appendices of P that are not deep. By the definition of
deep appendices and the fact that |Ashallow| ≤ |P |, we get

∑
a∈Ashallow

hgt(a) ≤ |P |2/(4c).

Because app(P) \ Tpref = Abig ∪ Ashallow and
∑

t∈P hgt(t) ≥ |P |2/2, we obtain

c ·

|P |+ ∑
a∈app(P)\Tpref

hgt(a)

 ≤ |P |2/2 ≤∑
t∈P

hgt(t). (6.72)

By combining (6.71) and (6.72), we get that Tpref satisfies the desired conclusion. We
observe that the recursive procedure for finding such Tpref can be implemented in time
O(|Tpref |) when having access to the hgt(t) and size(t) functions.

6.6.2 Reducing the height

We then apply Lemma 6.69 to prove Lemma 6.68.

Proof of Lemma 6.68. Recall that we maintain an instance Daux of the (` + 1)-prefix-
rebuilding data-structure from Lemma 6.7, in particular, in constant time we can access
the height hgt(t) of each node t and the subtree size size(t).

First, suppose Φ`(T) ≥ cd · cΦ · n log n, where cΦ = g`(` + 1) = kO(k) and cd is a
constant depending on the constants in the O-notation in the Bodlaender-Hagerup
Lemma (Lemma 6.59), in particular, so that the

∑
t∈V (Tlog) hgtTlog

(t) ≤ cd
2
· |T | log |T | for

the tree decomposition (Tlog, baglog) returned by it when given a tree decomposition T .

In this case, we compute a new tree decomposition T ′ = (T ′, bag′) from scratch by first
constructing the graph G explicitly from the edges function, then applying the algorithm
of Bodlaender (Theorem 3.6) and then the Bodlaender-Hagerup Lemma (Lemma 6.59).
The width of T ′ is at most 3k + 2 ≤ `, the height of it is at most O(log n), and by the
definition of cd and cΦ, its potential is at most

Φ`(T ′) ≤
cd · cΦ

2
· n log n ≤ Φ`(T)/2.

Therefore, T ′ satisfies all the properties required by the lemma statement, so with the
help of the Dstrengthen data structure we apply a prefix-rebuilding update that changes T
into T ′ (with the prefixes of the description being Tpref = V (T) and T ′pref = V (T ′)). The

6.6 Height improvement 241

running time of this is

2O(k8)(|T |+ |T ′|) + 2O(k3)n ≤ 2O(k8)Φ`(T) ≤ 2O(k8)(Φ`(T)− Φ`(T ′)).

Then we can assume Φ`(T) < cdcΦ ·n log n, implying in particular that |T | < kO(k)n log n.
Let us choose c1 = kO(k) · log |T | = kO(k) · log n so that the inequality in the statement of
Lemma 6.60 holds in the form

Φ`(T ′) ≤ Φ`,T (V (T) \ Tpref) + c1 ·

|Tpref |+
∑

t∈app(Tpref)

hgt(t)

 ,

which can be re-arranged to the form

Φ`(T)− Φ`(T ′) ≥ Φ`,T (Tpref)− c1 ·

|Tpref |+
∑

t∈app(Tpref)

hgt(t)

 . (6.73)

Let also c2 be the constant hidden by the Ω-notation in Lemma 6.69. If

hgt(T) ≤ 2c2·
√

logn log(2c1) ≤ 2O(
√
k log k logn log logn),

then T already satisfies the claimed height bound and we return without applying any
prefix-rebuilding updates.

Otherwise, we apply Lemma 6.69 with the tree T and the constant c = 2c1. As we satisfy
the preconditions, it returns a prefix Tpref so that

2c1 ·

|Tpref |+
∑

a∈app(Tpref)

hgt(a)

 ≤ ∑
t∈Tpref

hgt(t) ≤ Φ`,T (Tpref), (6.74)

meaning in particular that if we apply the refine operation of Lemma 6.60 with this prefix,
then by the combination of (6.73) and (6.74), it holds that

Φ`(T)− Φ`(T ′) ≥ c1 ·

|Tpref |+
∑

t∈app(Tpref)

hgt(t)


Moreover, as c1 ≥ log |T |, in this case the running time of the refine operation is bounded
by 2O(k9)(Φ`(T)−Φ`(T ′)), which is also an upper bound for the size of the prefix-rebuilding
update given by it. Because Φ`(T)−Φ`(T ′) ≥ |Tpref |, the running time of the application
of Lemma 6.69 can also be bounded by O(|Tpref |) ≤ O(Φ`(T)− Φ`(T ′)).

242 Dynamic treewidth

As Φ`(T ′) < Φ`(T), we managed to decrease the potential in time 2O(k9)(Φ`(T)−Φ`(T ′)).
The resulting tree decomposition T ′ has width at most ` if T has width at most `. This
did not necessarily improve the height to the desired bound, so we repeat this process
until the height is improved. The total running time is 2O(k9)(Φ`(T)− Φ`(T ′′)), where
T ′′ is the final obtained tree decomposition with the desired height bound.

6.7 Putting things together

We are now ready to complete the proof of Theorem 1.4. We will do this in three steps,
first giving a version that simply maintains a tree decomposition when given a promise
that treewidth is at most k, then adding the “Treewidth too large” feature, and finally
adding support for CMSO2.

6.7.1 Maintaining a tree decomposition

We now start with the basic maintenance of annotated tree decompositions. The point of
the following lemma is that the data structure outputs the sequence of descriptions of
prefix-rebuilding updates, so we can later build more features on top of it.

Lemma 6.75. There is a data structure, that for an integer k and a dynamic n-vertex
graph G that is promised to have treewidth at most k at all times, maintains an annotated
tree decomposition T = (T, bag, edges) of G of width at most 6k + 6 by using prefix-
rebuilding updates, and supports the following operations.

• Initalize(G, k): Given an edgeless n-vertex graph G and an integer k ≥ 0, initalize
the data structure with them. Runs in amortized 2O(k9)n time and returns the initial
annotated tree decomposition T .

• AddEdge(u, v): Given two vertices u, v ∈ V (G) with uv /∈ E(G), add the edge uv
to G. Runs in amortized 2O(k9+k log k

√
logn log logn) time and returns the sequence of

prefix-rebuilding updates used to update T .

• DeleteEdge(u, v): Given two vertices u, v ∈ V (G) with uv ∈ E(G), delete the
edge uv from G. Runs in worst-case 2O(k8+k log k

√
logn log logn) time and returns the

sequence of prefix-rebuilding updates used to update T .

After each operation, the resulting tree decomposition has width at most 6k + 5, but the
intermittent tree decompositions in the sequences of updates may have width up to 6k + 6.

6.7 Putting things together 243

This subsection is dedicated to the proof of Lemma 6.75. We first describe the data
structure and analyze the running times and potential changes of individual operations,
and then present amortized analysis of the whole data structure.

Let ` = 6k + 5. In our data structure we store

• the annotated tree decomposition T = (T, bag, edges) of G of width at most `+ 1,

• an instance Drefine of the (`+ 1)-prefix-rebuilding data structure from Lemmas 6.60
and 6.68 initialized with the same value of k as our main data structure, supporting
the operations Refine(Tpref) and ImproveHeight(), and having overhead 2O(k8),

• an instance Daux of the (` + 1)-prefix-rebuilding data structure from Lemma 6.7,
supporting the operations hgt(t) for t ∈ V (T) and forget(v) for v ∈ V (G), and
having overhead O(1),

• an instance Dstrengthen of the (`+1)-prefix-rebuilding data structure from Lemma 6.8,
supporting the operation Strengthen(û) for a weak description û of a prefix-rebuilding
update, and having overhead O(1).

All of the data structures store the same annotated tree decomposition T . In particular,
all prefix-rebuilding updates performed by Drefine are applied also to the instance of T
that we store, and are forwarded to Daux and Dstrengthen. After the initialization and after
each operation, we maintain the invariant that T is an annotated tree decomposition of G
of width at most `, height at most h = 2O(k log k

√
logn log logn), and has |T | ≤ kO(k) · n log n.

Initialization

As for the initialization, because G has no edges, we can initialize T = (T, bag, edges) with
T being a complete binary tree (of height O(log n)) with n nodes and each bag containing
a different vertex of V (G). Obviously, for each t ∈ V (T), we have edges(t) = ∅. The
initializations of Drefine, Daux, and Dstrengthen take 2O(k8) ·n time. The initial decomposition
T satisfies that Φ`(T) ≤ O(kn) since the average height of a node in T is O(1), and
g`(1) = O(k).

Edge addition

Then consider the edge addition operation, where we add an edge uv. Towards that
goal, we must first ensure that the edge condition is satisfied for the new edge, i.e., both

244 Dynamic treewidth

u and v belong to the same bag of T . Let tu = forgetT (u) and tv = forgetT (v) be the
forget-nodes of u and v, respectively, in T . Then, let Pu be the nodes of T on the path
from tu to the root, and Pv the the nodes of T on the path from tv to the root. We
update T by adding v to all bags of the nodes Pu ∪ Pv \ {tv}. Note that the sets Pu and
Pv can be computed in time O(|Pu|+ |Pv|) by walking up from tu and tv.

This update of T together with adding the edge can be implemented with prefix-rebuilding
updates in two steps. First, it is simple to construct a weak description û of a prefix-
rebuilding update of size |Pu ∪Pv| that adds v to all bags on Pu ∪Pv \ {tv}, and by using
Dstrengthen apply it to our decomposition T and to our prefix-rebuilding data structures.
Now, both u and v are in bag(tu), so we can add the edge uv by a prefix-rebuilding update
that simply adds uv to edges(tu). Note that indeed, tu will be the forget-node of uv
because tu is still the forget-node of u. A description of size |Pu| of such prefix-rebuilding
update is easy to construct, and we apply it again to T and all prefix-rebuilding data
structures.

However, now the decomposition may have width `+ 1. To counteract this, we call the
Refine(Pu ∪ Pv) operation of Drefine. Note that Pu ∪ Pv covers all bags of size ` + 2, so
the call satisfies the precondition of Lemma 6.60 and the annotated tree decomposition
produced by Refine has width at most `. However, the decomposition might now have
too large height or size. We resolve this issue by invoking the height improvement
operation (ImproveHeight), resulting in T having width at most `, height at most h =

2O(k log k
√

logn log logn), and size at most |T | ≤ kO(k) · n log n. The final tree decomposition
satisfies all of the prescribed invariants. We then make sure that our annotated tree
decomposition T and the other prefix-rebuilding data structures correspond to the
annotated tree decomposition stored by Drefine by also applying the same prefix-rebuilding
updates to them, and finally output the sequence of descriptions of prefix-rebuilding
updates applied.

Let us then analyze the running time and the potential change. For this, let T0 be
the tree decomposition before the edge addition operation, T1 the tree decomposition
after adding the edge uv but before improving its width, T2 the tree decomposition after
applying Refine, and T3 the final tree decomposition after applying ImproveHeight. As
|Pu ∪ Pv| ≤ h, the first step of turning T0 into T1 runs in 2O(k8)h time. Furthermore,
Φ`(T1) ≤ Φ`(T0) +kO(k)h2, because only the bags in Pu∪Pv change. The Refine operation
runs in time

2O(k9) ·
(
h2 · log |T1|+ Φ`(T1)− Φ`(T2)

)
≤2O(k9) · (h2 · log n+ Φ`(T0)− Φ`(T2)),

6.7 Putting things together 245

and we have that

Φ`(T2) ≤ Φ`(T1) + kO(k) · h2 · log |T1|

≤ Φ`(T0) + kO(k) · h2 · log n.

Then, the ImproveHeight operation runs in time

2O(k9) · (Φ`(T2)− Φ`(T3))

≤2O(k9) · (Φ`(T0) + h2 · log n− Φ`(T3)),

and we have that

Φ`(T3) ≤ Φ`(T2)

≤ Φ`(T0) + kO(k) · h2 · log n.

In summary, the total running time of the edge addition operation is bounded by

2O(k9) ·max(h2 · log n,Φ`(T0)− Φ`(T3)),

and the potential increases by at most kO(k) · h2 · log n, but can decrease arbitrarily.

Edge deletion

Deleting an edge uv from G is much simpler. We do not change the tree decomposition
(T, bag) at all, only remove uv from the set edges(forgetT (uv)). Recall that forgetT (uv)

is either forgetT (u) or forgetT (v), whichever has smaller height, so we can locate it by
using the data structure Daux. It is easy to construct a description of a prefix-rebuilding
update of size at most h that removes uv from edges(forgetT (uv)), so we do that, and
apply it to our decomposition T and our prefix-rebuilding data structures. This runs in
worst-case time

2O(k8)h = 2O(k8+k log k
√

logn log logn),

and does not change the potential.

Amortized analysis

Let T0 be the initial annotated tree decomposition, and Ti the stored annotated tree
decomposition after the i-th edge addition update. Now, because the edge deletion

246 Dynamic treewidth

operation does not change the potential, the total running time of the initialization
operation and the first p edge addition operations is

2O(k8)n+ 2O(k9) ·

(
p · h2 · log n+

p∑
i=1

Φ`(Ti−1)− Φ`(Ti)

)
. (6.76)

Because Φ`(Ti) is non-negative, Φ`(T0) ≤ O(kn), and Φ`(Ti) ≤ Φ`(Ti−1) + kO(k) ·h2 · log n,
we get that

p∑
i=1

Φ`(Ti−1)− Φ`(Ti) ≤ O(kn) + p · kO(k) · h2 · log n,

implying that (6.76) can be bounded by

2O(k9) · (n+ p · h2 log n) ≤ 2O(k9) · (n+ p · 2O(k log k
√

logn log logn)),

which gives the desired amortized running times of the initialization and edge addition
operations. This finishes the proof of Lemma 6.75.

6.7.2 Additional features

We then complete the proof of Theorem 1.4.

As the first step, we make the data structure of Lemma 6.75 reject edge additions that
would increase the treewidth above k. For this, we use the prefix-rebuilding data structure
of Lemma 6.14 for maintaining the exact treewidth of G.

Now we give the slightly enhanced version of the data structure of Lemma 6.75.

Lemma 6.77. There is a data structure similar to that of Lemma 6.75, but instead of
assuming that the treewidth of G is always at most k, the AddEdge operation returns
“Treewidth too large” and does not update the annotated tree decomposition or the graph G
if the update would increase the treewidth of G above k.

Proof. We maintain two versions of the data structure of Lemma 6.75, one with the
original value of k, called Dk, and one with k + 1 instead, called Dk+1. Let ` = 6k + 5

and `′ = 6(k + 1) + 5. We also maintain an instance DBK of the (`′ + 1)-prefix-rebuilding
data structure of Lemma 6.17 for maintaining whether treewidth is at most k, with the
original value of k, relaying to it all prefix-rebuilding updates applied by Dk+1 so that it
maintains the same annotated tree decomposition as Dk+1.

Now, the initialization and edge deletion operations are simply relied to both Dk and
Dk+1, but the edge addition is first relied only to Dk+1. After applying the edge addition

6.7 Putting things together 247

to Dk+1, we can determine with DBK whether it would increase the treewidth of G above
k, and if so, we simply apply the edge deletion operation for Dk+1 to reverse the addition
and return “Treewidth too large” . If the treewidth of G stays at most k, we relay the edge
addition operation also to Dk.

The sequences of descriptions of prefix-rebuilding updates returned are those returned
by Dk. We can observe that this extra maintenance keeps the running time of the data
structure within the same bounds as claimed in Lemma 6.75.

We then apply the technique of delaying invariant-breaking insertions by Eppstein
et al. [1996] to make our data structure resilient for the treewidth of G growing above
k. This makes the running time bounds slightly weaker in that now the running time of
edge deletion is also amortized.

Lemma 6.78. There is a data structure, that for an integer k and a dynamic n-vertex
graph G, maintains either

• an annotated tree decomposition T = (T, bag, edges) of G of width at most 6k + 6,
in which case G has treewidth at most k, or

• a marker “Treewidth too large”, in which case G has treewidth more than k.

The data structure supports the following operations.

• Initalize(G, k): Given an edgeless n-vertex graph G and an integer k ≥ 0, initalize
the data structure with them. Runs in amortized 2O(k9)n time and returns the initial
annotated tree decomposition T .

• UpdateEdge(u, v): Given two vertices u, v ∈ V (G), add the edge uv to G if
uv /∈ E(G), and otherwise remove the edge uv from G. Runs in amortized
2O(k9+k log k

√
logn log logn) time, and returns either “Treewidth too large”, indicating

that the treewidth of G is more than k, or a sequence of prefix-rebuilding updates
used to update T , relative to the previous state when tw(G) ≤ k.

After each update operation that does not return “Treewidth too large”, the resulting tree
decomposition has width at most 6k + 5, but the intermittent tree decompositions in the
sequences of updates may have width up to 6k + 6.

Proof. First, with standard techniques using binary search trees, we can maintain a data
structure with initialization time O(1) and update time O(log n) that can return, given

248 Dynamic treewidth

u, v ∈ V (G), whether uv ∈ E(G). We maintain an explicit representation of E(G) at all
times like this. It can be used for telling if an edge update is an addition or deletion.

We use an instantiation D of the data structure of Lemma 6.77, initialized with the same
edgeless graph G and integer k, to maintain an annotated an annotated tree decomposition
T of a subgraph G′ of G with V (G′) = V (G), with the invariants that

1. tw(G′) ≤ k and

2. if E(G) \ E(G′) is non-empty, then there exists uv ∈ E(G) \ E(G′) so that adding
uv to G′ would increase its treewidth above k.

Now, whenever G = G′, we have that tw(G) ≤ k and the tree decomposition T held by
D is a tree decomposition of G. When G 6= G′, it holds that tw(G) > k.

This can be implemented as follows. We relay all edge additions also to the data structure
D, but if they are rejected, add them to a binary search tree that represents the set
E(G) \ E(G′).

For edge deletion operations, we first check if the edge is in E(G) \ E(G′) and in that
case delete it from just the binary search tree. If the edge is in G′ we relay the deletion
operation to D. In both cases, at the end of the edge deletion operation we iteratively
pick edges from E(G) \ E(G′) and attempt to insert them to D, stopping at the first
rejected attempt, at which point we know that the case of Item 2 holds.

Whenever E(G) \ E(G′) is empty after an update operation, we output the sequence of
all descriptions of prefix-rebuilding updates that D has returned after the previous time
E(G) \ E(G′) held.

The amortized update time is the same as for D up to a constant factor, because for
any sequence of p updates to G, we apply at most 2p operations on D, and the O(log n)

overhead for maintaining the binary search trees is dominated by the 2O(
√

logn log logn)

running time of D.

We then finish the proof of Theorem 1.4, which we restate here.

Theorem 1.4. There is a data structure that is initialized with an initially edgeless
n-vertex dynamic graph G and a parameter k. The data structure supports updating G by
edge insertions and deletions, and maintains a tree decomposition of G of width at most
6k+ 5 whenever the treewidth of G is at most k. When the treewidth of G is more than k,
the data structure contains a marker “Treewidth too large”. The amortized initialization
time is 2k

O(1)
n and the amortized update time is 2k

O(1)
√

logn log logn.

6.7 Putting things together 249

Moreover, the data structure can be provided a CMSO2 sentence ϕ upon initialization,
in which case it maintains whether ϕ is true in G whenever the marker “Treewidth too
large” is not present. In this case, the amortized initialization time is f(k, ϕ) · n and the
amortized update time is f(k, ϕ) · 2kO(1)

√
logn log logn, where f is a computable function.

Proof. The first part of the statement of the theorem is immediate from Lemma 6.78,
with the kO(1) bounds being O(k9).

For the second part, let D be an instantiation of the data structure of Lemma 6.78 with
the same parameter k. We relay all updates to D.

Now, let ϕ be the CMSO2 sentence given upon initialization. We use Lemma 6.16 to
instantiate a (6k + 6)-prefix-rebuilding data structure DCMSO2 , with overhead f(k, ϕ) for
a computable function f , that can be queried whether ϕ is true in the graph held by
it. We relay all prefix-rebuilding updates returned by D also to DCMSO2 . Now, whenever
tw(G) ≤ k, the annotated tree decompositions held by D and DCMSO2 are the same, so
we can use DCMSO2 to report if ϕ is true in G. This adds an overhead of f(k, ϕ) to both
the initialization and the updates, but does not change the running times otherwise.

250 Dynamic treewidth

Chapter 7

Fast 2-approximation algorithms for
rankwidth and branchwidth

In this chapter we show that both the graph-theoretic and the algorithmic ideas introduced
in Chapter 4 for 2-approximating treewidth can be generalized for 2-approximating
branchwidth of connectivity functions. We first show that branch decompositions of
connectivity functions can be improved with a similar improvement operation as was used
in Chapter 4, until the decomposition has 2-approximately optimal width. Then, we show
that these improvement operations can be implemented efficiently for those connectivity
functions whose branch decompositions support efficient dynamic programming for
computing certain objects, analogous to the dynamic programming in Section 4.4.

We then show that this efficient dynamic programming can indeed be implemented for
the graph width parameters rankwidth and branchwidth. This results in 2-approximation
algorithms for them. The most significant result of this chapter is the following.

Theorem 1.5. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 22O(k)

n2 either outputs a rank decomposition of G of width at most 2k or
determines that the rankwidth of G is larger than k.

The running time is quadratic in the number of vertices n, because in the context of
rankwidth, no result analogous to Bodlaender’s technique (Theorem 3.8) is known. In
particular, the algorithm works by n iterations, so that in each iteration we add one
vertex to the graph and to the rank decomposition from the previous iteration, obtaining
a rank decomposition of width at most 2k + 1, and then use the improvement technique
to improve the width to 2k. Therefore, by showing that the width can be improved from
2k + 1 to 2k in time 22O(k)

n by the improvement technique, we obtain a 22O(k)
n2 time

algorithm.

252 Fast 2-approximation algorithms for rankwidth and branchwidth

For branchwidth of graphs, we can start with a 3-approximately optimal decomposition
by first 2-approximating treewidth with the algorithm of Theorem 1.1, and therefore we
obtain a very similar looking result as was obtained for treewidth in Chapter 4.

Theorem 1.7. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k)n either outputs a branch decomposition of G of width at most 2k or
determines that the branchwidth of G is larger than k.

Organization

The rest of this chapter is organized as follows. We first introduce some additional
notation related to branch decompositions in Section 7.1. Then, in Section 7.2 we show
our main combinatorial results, in particular, the improvement operation for branch
decompositions of connectivity functions and its main properties. Then, in Section 7.3
we give our algorithmic framework, stating that branch decompositions of connectivity
functions can be efficiently improved until they are 2-approximately optimal if they
support certain dynamic programming. We give the implementation of this dynamic
programming for rankwidth in Section 7.4, resulting in Theorem 1.5, and for branchwidth
of graphs in Section 7.5, resulting in Theorem 1.7.

7.1 Notation on branch decompositions

Recall the definitions of connectivity functions and branch decompositions from Sec-
tion 2.3. In this section we introduce some additional notation for manipulating branch
decompositions.

Let V be a set. A bipartition of V is a pair (C1, C2) of disjoint subsets C1, C2 ⊆ V so that
C1 ∪C2 = V . We allow a bipartition of V to contain an empty set (or if V is empty, both
C1 and C2 are empty), so a bipartition is not necessarily a partition as defined earlier.
Similarly, a tripartition of V is a triple (C1, C2, C3) of disjoint subsets Ci ⊆ V so that
their union equals V .

Let r = uv ∈ E(T) be an edge of a branch decomposition T = (T, λ). We introduce
notation with the intuition that T is treated as rooted at the edge r. The r-subtree of
a node w ∈ V (T) is the subtree of T induced by nodes x ∈ V (T) such that w is on the
unique shortest path from x to {u, v}. Note that the r-subtree of w always contains w,
and contains at most one of u and v. For a node w ∈ V (T), we denote by Tr[w] ⊆ V the

7.2 Combinatorial framework 253

subset of V mapped by λ to the leaves in the r-subtree of w. Note that Tr[u] = T [uv],
Tr[v] = T [vu], and for any w ∈ V (T) it holds that either Tr[w] ⊆ Tr[u] or Tr[w] ⊆ Tr[v].

A node x is an r-ancestor of a node w if w is in the r-subtree of x. The r-parent of a
node w ∈ V (T) \ {u, v} is the node next to w on the unique shortest path from w to
{u, v}. If x is an r-ancestor of w, then w is an r-descendant of x, and if p is the r-parent
of w, then w is an r-child of p. Note that every non-leaf node has exactly two r-children,
and leaf nodes have no r-children.

7.2 Combinatorial framework

In this section we prove our combinatorial results, which essentially state that the im-
provement operation of Chapter 4 can be adapted to the setting of branch decompositions
of connectivity functions. Throughout we use the convention that f : 2V → Z≥0 is a
connectivity function.

7.2.1 Improvement operation

The central concept of our algorithm is the improvement operation, analogous to the
improvement operation of Chapter 4. Before defining it, we need the definition of a
partial branch decomposition.

Definition 7.1 (Partial branch decomposition). A partial branch decomposition on a set
C is a pair (T, λ), where T is a cubic tree and λ is an injection from C to the leaves of T .

In particular, a partial branch decomposition can have leaves to which no elements are
mapped. Let (T, λ) be a branch decomposition of f and let Ci ⊆ V . We denote by
(T, λ�Ci) the partial branch decomposition on the set Ci obtained by restricting the
mapping λ to only Ci. Then we can define the improvement operation (see Figure 7.1).

We define a tripartition of a set V to be a triple (C1, C2, C3) of disjoint subsets Ci ⊆ V

so that their union equals V . Note that {C1, C2, C3} is not necessarily a partition of
V , because it can contain empty sets. Similarly, a bipartition of V is a pair (C1, C2) of
disjoint subsets C1, C2 ⊆ V so that C1 ∪ C2 = V .

Definition 7.2 (Improvement). Let T = (T, λ) be a branch decomposition, uv ∈ E(T)

an edge of T , and (C1, C2, C3) a tripartition of V . We define the improvement of T with
(uv, C1, C2, C3) as the following branch decomposition.

254 Fast 2-approximation algorithms for rankwidth and branchwidth

u v

a

b

c

d

g

h

e

f

↓

u1 v1

a

b

g

u2 v2

c

e

f

↓

u3 v3

d

h

t

w1

w2 w3

ga

b

c

e

f

d

h

Figure 7.1: An example of the improvement operation. A branch decomposition (T, λ)
of a function f : 2V → Z≥0 with V = {a, b, c, d, e, f, g, h} (top). For a tripartition
(C1 = {a, b, g}, C2 = {c, e, f}, C3 = {d, h}), we have the partial branch decompositions
(T1, λ1) = (T, λ�{a,b,g}), (T2, λ2) = (T, λ�{c,e,f}), and (T3, λ3) = (T, λ�{d,h}) (middle), and
the improvement of (T, λ) with (uv, C1, C2, C3) (bottom).

w1

w2 w3

C1 ∩W C1 ∩W

C2 ∩W

C2 ∩W

C3 ∩W

C3 ∩W

u2

u1 v1

v2

v3

u3

Figure 7.2: Changes of the width “around” uv.

7.2 Combinatorial framework 255

For each i ∈ [3], let Ti = (Ti, λi) = (T, λ�Ci), and let uivi be the copy of the edge
uv in Ti. Now, let T ′ = (T ′, λ′) be a partial branch decomposition on V obtained by
first inserting a node wi on the edge uivi of each Ti (i.e. V (Ti) ← V (Ti) ∪ {wi} and
E(Ti)← E(Ti) ∪ {uiwi, wivi} \ {uivi}), then taking the disjoint union of T1, T2, T3, and
then inserting a node t adjacent to w1, w2, w3, connecting the disjoint union into a tree.
Finally, the improvement is obtained by simplifying T ′ by iteratively removing leaves that
are not labeled by λ′, and suppressing degree-2 nodes.

We observe that if T ′ is an improvement of T with (r, C1, C2, C3), then every edge of
T ′ either corresponds to a bipartition (Ci, Ci) of V or to a bipartition of V of form
(Tr[w] ∩ Ci, Tr[w] ∩ Ci), where w ∈ V (T) (see also Figure 7.2). More formally as follows.

Lemma 7.3. Let T be a branch decomposition, r ∈ E(T), and (C1, C2, C3) a tripartition
of V . Let T ′ be the improvement of T with (r, C1, C2, C3). It holds that

{{T ′[u′v′], T ′[v′u′]} | u′v′ ∈ E(T ′)} =⋃
i∈[3]

(
{{Ci, Ci}} ∪ {{Tr[w] ∩ Ci, Tr[w] ∩ Ci} | w ∈ V (T)}

)
\ {{∅, V }}.

Note that as a branch decomposition is a cubic tree, no two edges correspond to the same
bipartition, i.e., the set {{T [uv], T [vu]} | uv ∈ E(T)} has size |E(T)|.

7.2.2 Improving with splits

Now we state the definitions and results of our combinatorial framework, postponing the
proofs to Subsections 7.2.3 and 7.2.4. First we define a split of a set W ⊆ V .

Definition 7.4 (Split). Let W ⊆ V . A tripartition (C1, C2, C3) of V is a split of W if
for every i ∈ [3], f(Ci) < f(W), f(Ci ∩W) < f(W), and f(Ci ∩W) < f(W).

We note that because of the condition f(Ci ∩W) < f(W), it holds that Ci 6= V for every
i ∈ [3]. However, it can be that Ci = ∅. We also observe that splits are symmetric in the
sense that re-ordering the sets C1, C2, C3 or interchanging W with W does not change
whether (C1, C2, C3) is a split.

The first main property of splits, analogous to Lemma 4.1, is that for every set W with
large enough f(W) there exists a split.

Lemma 7.5. If W ⊆ V such that f(W) > 2bw(f), then there exists a split of W .

256 Fast 2-approximation algorithms for rankwidth and branchwidth

We postpone the proof of Lemma 7.5 to Subsection 7.2.3.

If uv is an edge of a branch decomposition T with (T [uv], T [vu]) = (W,W), then
improving with (uv, C1, C2, C3) where (C1, C2, C3) is a split of W “locally improves” the
branch decomposition around the edge uv in the sense that the widths of the new edges
corresponding to the edge uv will be of form f(Ci) < f(W), f(Ci ∩W) < f(W), and
f(Ci ∩W) < f(W) (recall Figure 7.2). We then define minimum splits analogously to
Chapter 4, in order to argue that the improvement operation globally improves the branch
decomposition if we use a minimum split.

For this, we start by defining a split of a branch decomposition.

Definition 7.6 (Split of T). Let T be a branch decomposition and r = uv ∈ E(T) an
edge of T . A split of T on r is a tuple (r, C1, C2, C3), where W = T [uv], and (C1, C2, C3)

is a split of W .

Then, we say that Ci r-cuts a node w of T if both Ci and Ci intersect the set Tr[w]. We
also define that a split (r, C1, C2, C3) of T cuts a node w if at least one of the sets C1,C2,
and C3 r-cuts w. Note that if one of the sets r-cuts w, then at least two of the sets r-cuts
w. We also define that the sum-width of a split (r, C1, C2, C3) is f(C1) + f(C2) + f(C3).
Now we are ready to define a minimum split of T .

Definition 7.7 (Minimum split of T). A split (r, C1, C2, C3) of T on r = uv ∈ E(T) is
a minimum split of T if it

1. has minimum sum-width among all splits of T on r, and

2. subject to (1), cuts the minimum number of nodes of T .

The following theorem is our main combinatorial result. Analogously to Lemma 4.4, it
states that the improvement operation with a minimum split of T improves T on all
edges except those that are not affected by the improvement operation.

Theorem 7.8. Let T be a branch decomposition, r = uv ∈ E(T) an edge of T , and
(r, C1, C2, C3) a minimum split of T . Then for every i ∈ [3] and every node w ∈ V (T), it
holds that f(Tr[w]∩Ci) ≤ f(Tr[w]). Moreover, the equality holds only if Tr[w]∩Ci = Tr[w]

or Tr[w] ∩ Ci = ∅.

We postpone the proof of Theorem 7.8 to Subsection 7.2.4.

7.2 Combinatorial framework 257

7.2.3 Existence of a split

Now we prove that if f(W) > 2bw(f), then there exists a split of W , that is, we prove
Lemma 7.5. The idea of the proof is that we take an optimum-width branch decomposition
T ? of f , i.e., a branch decomposition T ? with width(T ?) = bw(f) < f(W)/2, and argue
that either a bipartition of V corresponding to some edge of T ? or a tripartition of V
corresponding to some node of T ? results in a split of W .

We define an orientation of a set C ⊆ V with respect to a set W ⊆ V . This will be used
for orienting the edges of the optimal branch decomposition T ? based on W .

Definition 7.9 (Orientation). Let C,W ⊆ V . We say that

• the set W directly orients C if f(C ∩W) < f(C ∩W) and f(C ∩W) < f(C ∩W),

• the set W inversely orients C if it directly orients C, and

• the set W disorients C if it neither directly nor inversely orients C.

Note that the definition of orienting is symmetric with respect to complementing W , i.e.,
W (directly, inversely, dis)-orients C if and only if W (directly, inversely, dis)-orients
C. Next we show that if there is an edge of an optimal branch decomposition that is
disoriented according to Definition 7.9, then it corresponds to a split of W .

Lemma 7.10. Let C,W ⊆ V . If W disorients C and f(C) < f(W)/2, then (C,C, ∅) is
a split of W .

Proof. By possibly interchanging C with C, without loss of generality we can assume
that f(C ∩W) ≤ f(C ∩W) and f(C ∩W) ≥ f(C ∩W). By these inequalities and since
f(C) = f(C) < f(W)/2, to show that (C,C, ∅) is a split of W , it suffices to prove that
f(C ∩W) < f(W) and f(C ∩W) < f(W).

First, we have

f(C ∩W) ≤ f(C) + f(W)− f(C ∪W) (submodularity)

≤ f(C) + f(W)− f(C ∩W) (symmetry). (7.11)

Then, by submodularity

f(C ∩W) + f(C ∩W) ≥ f(W) + f(∅) > 2f(C),

258 Fast 2-approximation algorithms for rankwidth and branchwidth

implying f(C ∩W) > f(C), implying by (7.11) that f(C ∩W) < f(W). The proof
of f(C ∩ W) < f(W) is the same with the roles of C and C, and of W and W ,
interchanged.

Now, to prove Lemma 7.5, we take an optimum-width branch decomposition T ? of f
and orient each edge uv with (T ?[uv], T ?[vu]) = (C,C) towards v if W directly orients
C and towards u if W inversely orients C. If no such orientation exists, i.e., W disorients
C, then Lemma 7.10 shows that (C,C, ∅) is a split of W and we are done, so for the
remainder of the proof assume that every edge is indeed oriented.

Lemma 7.12. No edge of T ? is oriented towards a leaf.

Proof. Suppose there is an edge of T ? = (T ?, λ?) oriented towards a leaf ` ∈ V (T ?), and
let v = λ−1(`). Thus W directly orients V \ {v}, implying f(W \ {v}) < f(W ∩ {v}) and
f(W \ {v}) < f(W ∩ {v}). However, one of the sets W ∩ {v} or W ∩ {v} must be empty
and therefore either f(W ∩ {v}) = 0 or f(W ∩ {v}) = 0, implying f(W \ {v}) < 0 or
f(W \ {v}) < 0, but f cannot take values less than 0, so we get a contradiction.

Now, by walking in T ? according to the orientation, we end up finding an internal node
towards which all incident edges are oriented. The following lemma shows that this node
indeed gives a split of W , and therefore completes the proof of Lemma 7.5.

Lemma 7.13. Let W ⊆ V , and (C1, C2, C3) a tripartition of V so that for each i ∈ [3],
f(Ci) < f(W)/2 and W directly orients Ci. Then (C1, C2, C3) is a split of W .

Proof. Since W directly orients Ci, we have f(Ci ∩W) < f(Ci ∩W). Therefore,

2f(Ci ∩W) < f(Ci ∩W) + f(Ci ∩W)

< 2f(Ci) + 2f(W)− f(Ci ∪W)− f(Ci ∪W) (submodularity)

< 2f(Ci) + 2f(W)− f(V)− f(W) (submodularity)

< 2f(Ci) + f(W) < 2f(W)

Therefore, f(Ci ∩W) < f(W). The proof that f(Ci ∩W) < f(W) is the same with the
roles of W and W interchanged.

7.2 Combinatorial framework 259

7.2.4 Improving globally

Then, we show that by selecting the split as a minimum split of T , the improvement
operation by using it indeed improves T globally. In particular, we prove Theorem 7.8.

The key intermediate definition will be linked splits. Let A ⊆ B ⊆ V . The set A is
linked into B if for all sets S with A ⊆ S ⊆ B it holds that f(A) ≤ f(S). Then, let
T be a branch decomposition, r = uv ∈ E(T) an edge of T , and W = T [uv]. A split
(r, C1, C2, C3) of T is linked if for every i ∈ [3] it holds that

1. W ∩ Ci is linked into W ,

2. if Ci r-cuts an r-descendant w of u, then f((W ∩ Ci) ∪ Tr[w]) > f(W ∩ Ci), and

3. the same conditions hold when W is interchanged with W and u is interchanged
with v.

Then we prove the main lemma of this subsection.

Lemma 7.14. If (r, C1, C2, C3) is a minimum split of T , then (r, C1, C2, C3) is linked.

Proof. Suppose that (r, C1, C2, C3) is a minimum split of T that is not linked. Without
loss of generality, assume that it violates either Item 1 or Item 2 in the definition of
linkedness (note that by symmetry we can interchange the roles of W and W , and of u
and v). In particular, there exists i ∈ [3] and a set S with W ∩ Ci ⊆ S ⊆ W so that
either

1. f(S) < f(W ∩ Ci), or

2. f(S) = f(W ∩ Ci) and S = (W ∩ Ci) ∪ Tr[w] for some r-descendant w of u so that
Ci r-cuts w.

We moreover fix such set S that minimizes f(S). We will use the set S to construct a
new split that contradicts the minimality of (r, C1, C2, C3). To simplify notation, assume
without loss of generality that i = 1.

Now, we let the new split be

(r, C ′1, C
′
2, C

′
3) = (r, C1 ∪ S,C2 \ S,C3 \ S).

We first bound the values f(C ′j ∩W) and f(C ′j ∩W) for all j ∈ [3]. Because S ⊆ W , we
have C ′j ∩W = Cj ∩W for all j ∈ [3], implying f(C ′j ∩W) < f(W). Also, by definition,
f(C ′1 ∩W) = f(S) ≤ f(C1 ∩W) < f(W).

260 Fast 2-approximation algorithms for rankwidth and branchwidth

Claim 7.15. For j ∈ {2, 3}, it holds that f(C ′j ∩W) ≤ f(Cj ∩W).

Proof of the claim. Let D = Cj ∩W . We observe that

f(S) ≤ f(D ∩ S) (7.16)

because W ∩ C1 ⊆ D ∩ S ⊆ W , but S minimizes f(S) among such sets. Then,

f(C ′j ∩W) = f(D ∩ S) = f(D ∪ S) (symmetry)

≤ f(D) + f(S)− f(D ∩ S) (submodularity)

≤ f(D) = f(D) ((7.16) and symmetry)

C

Then we bound the values f(C ′j) for j ∈ [3].

Claim 7.17. For j ∈ [3], it holds that f(C ′j) ≤ f(Cj).

Proof of the claim. If j = 1, let D = Cj, and if j ∈ {2, 3}, let D = Cj. Now, C1 ⊆ D,
and our goal is to prove that f(D ∪ S) ≤ f(D). We observe that

f(S) ≤ f(D ∩ S) (7.18)

because W ∩ C1 ⊆ D ∩ S ⊆ W , but S minimizes f(S) among such sets. Then,

f(D ∪ S) ≤ f(D) + f(S)− f(D ∩ S) (submodularity)

≤ f(D). by (7.18)

C

We have now proven that (C ′1, C
′
2, C

′
3) is indeed a split of W . We then wish to show that

(r, C ′1, C
′
2, C

′
3) contradicts that (r, C1, C2, C3) is a minimum split of T .

First, suppose that the case of Item 1 holds, i.e., f(S) < f(W ∩ C1). Now,

f(C ′1) = f(C1 ∪ S) ≤ f(C1) + f(S)− f(C1 ∩ S) (submodularity)

≤ f(C1) + f(S)− f(C1 ∩W) (by C1 ∩ S = C1 ∩W)

< f(C1). (by f(S) < f(W ∩ C1))

By combining with Claim 7.17, we get that (C ′1, C
′
2, C

′
3) has smaller sum-width than

(C1, C2, C3), and therefore contradicts that (r, C1, C2, C3) is a minimum split of T .

7.3 Algorithmic framework 261

Suppose that the case of Item 2 holds, i.e., f(S) = f(W ∩C1) and S = (W ∩C1)∪Tr[w] for
some r-descendant w of u so that C1 r-cuts w. By Claim 7.17 (C ′1, C

′
2, C

′
3) has the same

sum-width as (C1, C2, C3). Let us analyze which nodes of T are cut by (r, C ′1, C
′
2, C

′
3).

Claim 7.19. If (r, C ′1, C
′
2, C

′
3) cuts a node x ∈ V (T), then also (r, C1, C2, C3) cuts x.

Proof of the claim. If x is an r-descendant of w, then Tr[x] ⊆ S, so (r, C ′1, C
′
2, C

′
3) does

not cut x. If Tr[x] is disjoint from Tr[w], then C ′j ∩ Tr[x] = Cj ∩ Tr[x] for all j ∈ [3], so
(r, C ′1, C

′
2, C

′
3) cuts x if and only if (r, C1, C2, C3) cuts x. If x is an r-ancestor of w, then

(r, C1, C2, C3) cuts x because it cuts w. C

Because (r, C1, C2, C3) cuts w but (r, C ′1, C
′
2, C

′
3) does not cut w, (r, C ′1, C

′
2, C

′
3) cuts less

nodes of T than (r, C1, C2, C3), and therefore contradicts that (r, C1, C2, C3) is a minimum
split of T .

Then we prove Theorem 7.8 by using Lemma 7.14.

Theorem 7.8. Let T be a branch decomposition, r = uv ∈ E(T) an edge of T , and
(r, C1, C2, C3) a minimum split of T . Then for every i ∈ [3] and every node w ∈ V (T), it
holds that f(Tr[w]∩Ci) ≤ f(Tr[w]). Moreover, the equality holds only if Tr[w]∩Ci = Tr[w]

or Tr[w] ∩ Ci = ∅.

Proof. If Ci does not r-cut w, then Tr[w] ∩ Ci ∈ {Tr[w], ∅}. In both of these cases, it is
straightforward to verify that the conclusion holds.

Then, assume that Ci r-cuts w, and suppose without loss of generality that w is an r-
descendant of u. Let Di = W ∩Ci. By Lemma 7.14 (r, C1, C2, C3) is linked, and therefore
by Item 2 of the definition it holds that f(Di ∪ Tr[w]) > f(Di). By submodularity,
f(Di ∩ Tr[w]) < f(Tr[w]), which concludes the proof as Di ∩ Tr[w] = Ci ∩ Tr[w].

7.3 Algorithmic framework

In this section we present our algorithmic framework for designing FPT 2-approximation
algorithms for computing branch decompositions. In particular, we show that a sequence
of improvement operations decreasing the width of a branch decomposition from k to
k−1 or concluding k ≤ 2bw(f) can be implemented in time t(k) ·2O(k) ·n for connectivity
functions f whose branch decompositions support certain type of dynamic programming
with running time t(k) per node. The concrete implementation of this framework for

262 Fast 2-approximation algorithms for rankwidth and branchwidth

rankwidth, with t(k) = 22O(k) , is provided in Section 7.4 and for graph branchwidth, with
t(k) = 2O(k), in Section 7.5.

7.3.1 Amortized analysis

A naive implementation of the improvement operation (as described in Definition 7.2)
would use Ω(n) time on each improvement, which would result in the running time of
Ω(n2) over the course of n improvements. In this section we show that the improvement
operations can be implemented so that over any sequence of improvement operations
using minimum splits of a branch decomposition of width at most k, the total work done
in improving the branch decomposition amortizes to 2O(k)n.

The efficient implementation of improvements is based on the notion of the edit set of
a minimum split of T . Informally, the edit set of a minimum split (r, C1, C2, C3) of T
consists of the nodes of the subtree of T obtained after pruning all r-subtrees whose
leaves are entirely from one of the sets Ci. Formally, as follows.

Definition 7.20 (Edit set). Let T be a branch decomposition, r ∈ E(T), and
(r, C1, C2, C3) a minimum split of T . The edit set of (r, C1, C2, C3) is the set R ⊆ V (T)

of nodes of T that are cut by (r, C1, C2, C3), i.e.,

R = {w ∈ V (T) | Tr[w] intersects at least two sets from {C1, C2, C3}}.

Note that for a minimum split (uv, C1, C2, C3) of T , both u and v are necessarily in the
edit set. We formalize the intuition about edit sets in the following lemma. It will be
implicitly used in many of our arguments.

Lemma 7.21. Let T = (T, λ) be a branch decomposition, r = uv ∈ E(T), (r, C1, C2, C3)

a minimum split of T , R the edit set of (r, C1, C2, C3), and T ′ the improvement of T
with (r, C1, C2, C3). It holds that

(1) every node in R is non-leaf,

(2) the nodes of R induce a connected subtree T [R] of T , and

(3) there exists an edge r′ ∈ E(T ′) so that for every w ∈ V (T) \ R there is a node
w′ ∈ V (T ′) with Tr[w] = T ′r′ [w′].

Proof. For (1), the set Tr[w] of a leaf w consists of one element. Thus it is not cut by
(r, C1, C2, C3). For (2), first note that {u, v} ⊆ R. Then, consider a node w ∈ R \ {u, v},
and let p be the r-parent of w. It holds that Tr[w] ⊆ Tr[p], so p must also be in R.

7.3 Algorithmic framework 263

For (3), observe that by the definition of edit set for every node w ∈ V (T) \R it holds
that Tr[w] ⊆ Ci for some i. This implies that the r-subtree of w appears identically in
T ′, and therefore T ′ consists of the r-subtrees of all w ∈ NT (R) and a connected subtree
inserted in the place of R and connected to NT (R). As |R| ≥ 2, this inserted subtree
contains at least one edge, which we can designate as r′.

Next we define the neighborhood partition of an edit set R.

Definition 7.22 (Neighborhood partition). Let (r, C1, C2, C3) be a minimum split and R
its edit set. The neighborhood partition of R is the partition (N1, N2, N3) of the neighbors
NT (R) of R, where Ni = {w ∈ NT (R) | Tr[w] ⊆ Ci}.

Note that the neighborhood partition is indeed a partition of NT (R) by the definition of
edit set.

Next we give an algorithm for performing the improvement operation in O(|R|) time,
given the edit set R and its neighborhood partition.

Lemma 7.23. Let T = (T, λ) be a branch decomposition, r = uv ∈ E(T), and
(r, C1, C2, C3) a minimum split of T . Given the edit set R of (r, C1, C2, C3) and the
neighborhood partition (N1, N2, N3) of R, T can be turned into the improvement of T
with (r, C1, C2, C3) in O(|R|) time. Moreover, all information stored in nodes V (T) \R
is preserved and the other nodes are marked as new.

Proof. We create three copies T1, T2, T3 of the induced subtree T [R]. We denote the
copy of a node x ∈ R in Ti by xi, and denote Ri = {xi | x ∈ R}. To each Ti

we also insert a new node wi on the edge uivi, i.e., let V (Ti) ← V (Ti) ∪ {wi} and
E(Ti)← E(Ti) \ {ui, vi} ∪ {uiwi, wivi}. We then insert a new center node t and connect
each wi to it.

For each node y ∈ Ni, let p ∈ R be the r-parent of y. We remove the edge yp and insert
the edge ypi. It remains to remove all nodes of R, and then iteratively remove degree-1
nodes and suppress degree-2 nodes in R1 ∪R2 ∪R3 ∪ {t, w1, w2, w3}.

For the running time, these operations can be done in time linear in |R|+ |R1|+ |R2|+
|R3|+ |N1|+ |N2|+ |N3| = O(|R|) because T is represented as an adjacency list and the
maximum degree of T is 3.

The outline of the improvement operation in our framework is that the dynamic program-
ming outputs the edit set R and its neighborhood partition in O(t(k) · |R|) time, then
the algorithm of Lemma 7.23 computes the improvement in O(|R|) time, and then the

264 Fast 2-approximation algorithms for rankwidth and branchwidth

dynamic programming tables of the |R| new nodes are computed in O(t(k) · |R|) time.
To bound the sum of the sizes of the edit sets R over the course of the algorithm, we
introduce the following potential function.

Definition 7.24 (k-potential). Let T be a branch decomposition of a connectivity func-
tion f . The k-potential of T is

Φk(T) =
∑

e∈E(T)
f(e)<k

f(e) · 3f(e) +
∑

e∈E(T)
f(e)≥k

4 · f(e) · 3f(e).

When working with k-potentials, we will use the following notation. For x ≥ 0, let

Φk(x) =

{
x · 3x, if x < k

4 · x · 3x, otherwise,

For W ⊆ V , we will use Φk(W) to denote Φk(f(W)). With this notation, the k-potential
of T is

Φk(T) =
∑

uv∈E(T)

Φk(T [uv]).

The k-potential of a branch decomposition T is at most O(3width(T) ·width(T) · |T |), which
is 2O(k) · |T | when width(T) = O(k).

Next we show that performing a improvement operation with an edit set R decreases the
k-potential by at least |R|.

Lemma 7.25. Let T be a branch decomposition with an edge r = uv ∈ E(T) so that
f(uv) = width(T) = k. Let (r, C1, C2, C3) be a minimum split of T , R the edit set of
(r, C1, C2, C3), and T ′ be the improvement of T with (r, C1, C2, C3). Then it holds that
Φk(T ′) ≤ Φk(T)− |R|.

Proof. We use the notation that W = T [uv]. Note that

Φk(T) = Φk(k) +
∑

w∈(V (T)\{u,v})

Φk(Tr[w]) (7.26)

and that by Lemma 7.3

Φk(T ′) =
∑
i∈[3]

Φk(Ci) +
∑

w∈V (T)

Φk(Ci ∩ Tr[w])

 . (7.27)

7.3 Algorithmic framework 265

Then

Φk(T)− Φk(T ′) = Φk(T)−
∑
i∈[3]

(
Φk(Ci) +

∑
w∈V (T)

Φk(Ci ∩ Tr[w])

)

≥ Φk(T)−
∑
i∈[3]

(
Φk(Ci) +Φk(Ci ∩W) + Φk(Ci ∩W)

+
∑

w∈(V (T)\{u,v})

Φk(Ci ∩ Tr[w])

)
,

where the last inequality is obtained by taking Ci∩Tr[u] = Ci∩W and Ci∩Tr[v] = Ci∩W
out of the sum.

By the definition of a split of W , we have that Φk(Ci) ≤ Φk(k − 1) and Φk(Ci ∩W) ≤
Φk(k− 1). Then by interleaving the sums (7.26) and (7.27), we have that Φk(T)−Φk(T ′)
is at least

Φk(k)− 9Φk(k − 1) +
∑

w∈(V (T)\{u,v})

Φk(Tr[w])−
∑
i∈[3]

Φk(Ci ∩ Tr[w])

 .

By observing Φk(k)− 9 · Φk(k − 1) ≥ 2, we lower bound Φk(T)− Φk(T ′) by

2 +
∑

w∈(V (T)\{u,v})

Φk(Tr[w])−
∑
i∈[3]

Φk(Ci ∩ Tr[w])

 .

Let us note that for w /∈ R, Φk(Tr[w]) =
∑

i∈[3] Φk(Ci ∩ Tr[w]) because Tr[w] is a subset
of some Ci and Φk(∅) = 0. Also by Theorem 7.8, for any node w in the edit set and every
i it holds that f(Ci ∩ Tr[w]) < f(Tr[w]), implying Φk(Tr[w])−

∑
i∈[3] Φk(Ci ∩ Tr[w]) ≥ 1.

By making use of these observations, we conclude that

Φk(T)− Φk(T ′) ≥ 2 +
∑

w∈(R\{u,v})

Φk(Tr[w])−
∑
i∈[3]

Φk(Ci ∩ Tr[w])

 ≥ |R|.

In particular, when performing a sequence of improvement operations with minimum
splits of T on edges r of width f(r) = width(T) = k, the sum of the sizes of edit sets
across all of the operations is at most O(3k · k · |T |).

266 Fast 2-approximation algorithms for rankwidth and branchwidth

7.3.2 Improvement data structure

We define the improvement data structure to formally capture what is required from the
underlying dynamic programming in our framework.

Definition 7.28 (Improvement data structure). Let f be a connectivity function and
k an integer. An improvement data structure of f with running time t(k) maintains a
branch decomposition T of f with width(T) ≤ k rooted on an edge r = uv ∈ E(T) and
supports the following operations.

• Init(T , uv): Given k ∈ Z≥0, a branch decomposition T of f with width(T) ≤ k, and
an edge uv ∈ E(T), initialize the data structure in O(t(k) · |T |) time.

• Move(vw): Move the root edge r = uv to an incident edge vw, i.e., set r ← vw.
Runs in O(t(k)) time.

• Width(): Return f(uv) in O(t(k)) time.

• CanImprove(): Returns true if there exists a split of W = T [uv] and false otherwise.
Runs in time O(t(k)). Once CanImprove() has returned true, the following can be
invoked:

– EditSet(): Let (r, C1, C2, C3) be a minimum split of T , R the edit set of
(r, C1, C2, C3), and (N1, N2, N3) the neighborhood partition of R. Returns R
and (N1, N2, N3). Runs in O(t(k) · |R|) time.

– Improve(R, (N1, N2, N3)): Implements the improvement operation described in
Lemma 7.23. That is, computes the improvement of T by removing the edit
set R and inserting a connected subtree of |R| nodes in its place. Sets r to an
arbitrary edge between two newly inserted nodes (such an edge exists because
|R| ≥ 2). Runs in O(t(k) · |R|) time.

• Output(): Outputs T in O(t(k) · |T |) time.

We explain how our algorithm uses the improvement data structure in Subsection 7.3.3. Let
us here informally explain how the improvement data structure is typically implemented
using dynamic programming. The formal descriptions for rankwidth and branchwidth of
graphs constitute Sections 7.4 and 7.5.

For each node w of T , the improvement data structure stores a dynamic programming
table of size O(t(k)) that represents information of the r-subtree of w in such a way that
the dynamic programming tables of the nodes u and v combined together can be used to

7.3 Algorithmic framework 267

detect the existence of a split ofW = T [uv]. Now, the Init(T , uv) operation is to compute
these dynamic programming tables in a bottom-up fashion for all nodes from the leaves
towards the root uv, using O(t(k)) time per node. The Move(vw) operation changes
the root edge uv to an incident edge vw. For implementing Move(vw), we observe the
following useful property.

Lemma 7.29. Let T be a branch decomposition, r = uv ∈ E(T) an edge of T , and
r′ = vw ∈ E(T) another edge of T incident to r. For all nodes x ∈ V (T) \ {v}, the
r-subtree of x is the same as the r′-subtree of x.

In particular, as the dynamic programming table of a node depends only on its r-subtree,
it suffices to re-compute only the dynamic programming table of the node v in O(t(k))

time when using Move(vw). The Width() operation is typically implemented without
dynamic programming, using some other auxiliary data structure. The CanImprove()

operation is implemented by combining the information of the dynamic programming
tables of u and v in an appropriate way. Then, the EditSet() operation is implemented
by tracing the dynamic programming backwards, working with a representation of the
minimum split (r, C1, C2, C3) that allows for efficiently determining whether Ci and Tr[w]

intersect. The Improve(R, (N1, N2, N3)) operation is a direct application of Lemma 7.23
followed by computing the dynamic programming tables of the |R| new nodes inserted
by Lemma 7.23 in O(t(k) · |R|) time, and possibly also updating other auxiliary data
structures. The implementation of Output() is typically straightforward, as it just amounts
to outputting the branch decomposition that the data structure has been maintaining.

7.3.3 General algorithm

We present a general algorithm that uses the improvement data structure to either
improve the width of a given branch decomposition from k to k − 1 or to conclude that
it is already a 2-approximation, with running time t(k) · 2O(k)n.

Our algorithm is described as a pseudocode Algorithm 3. The algorithm is a depth-
first-search on the given branch decomposition T , where whenever we return from a
subtree via an edge uv of width f(uv) = k, we check if there exists a minimum split
(uv, C1, C2, C3) of T . If there is no such minimum split, then we conclude that T is
already a 2-approximation. If there is such minimum split, then we improve T with the
improvement operation. We need to be careful to proceed so that the improvement does
not break invariants of depth-first-search, and the extra work caused by improving with
an edit set R can be bounded by O(t(k) · |R|).

268 Fast 2-approximation algorithms for rankwidth and branchwidth

Algorithm 3 Iterative improvement.
Input: Branch decomposition T = (T, λ) of a connectivity function f .
Output: A branch decomposition of f of width at most width(T)− 1 or the conclusion
that width(T) ≤ 2bw(f).
1: Let k ← width(T)
2: Let state be an array initialized with the value unseen for all nodes of T , including

new nodes that will be created by the improvement operation.
3: Let s be an arbitrary leaf node of T
4: v ← s
5: u← the neighbor of v
6: state[v] ← open
7: state[u] ← open
8: while state[u] = open do
9: if exists w ∈ NT (u) with state[w] = unseen then
10: v ← u
11: u← w
12: state[u] ← open
13: else if f(uv) < k then
14: if v = s then return T
15: else
16: state[u] ← closed
17: u← v
18: v ← the node v ∈ NT (u) with state[v] = open
19: . Such a node v is unique.
20: else
21: if exists a minimum split (uv, C1, C2, C3) of T then
22: T ← Improve(T , (uv, C1, C2, C3))
23: . Where the improvement operation works as in Lemma 7.23, i.e., by

removing the edit set R and inserting a connected subtree of |R| nodes in its place.
24: v ← the node v ∈ NT (R) with state[v] = open
25: u← the node u ∈ NT (v) that was inserted by the improvement
26: . Such nodes v and u are unique.
27: state[u] ← open
28: else
29: conclude width(T) ≤ 2bw(f)

Let us explain how Algorithm 3 is implemented with the improvement data structure.
We always maintain that the root edge uv in the improvement data structure corresponds
to the edge uv in Algorithm 3. We start by calling Init(T , uv) after Line 7. In the cases
of Line 9 and Line 15 the edge uv is changed to an incident edge vw, which is done by
the Move(vw) operation. The edge uv is changed also after the improvement operation.
There we can move to the appropriate edge with |R| Move(vw) operations. Now that the
edge uv of Algorithm 3 corresponds to the edge uv of the improvement data structure,
all non-elementary operations of Algorithm 3 can be performed with the improvement
data structure. In particular, checking f(uv) on Line 13 is done by Width(), Line 21

7.3 Algorithmic framework 269

corresponds to CanImprove(), and Line 22 corresponds to EditSet() and Improve(). The
returned edit set is also used to determine the node v on Line 24.

The rest of this section is devoted to proving the correctness and the running time of
Algorithm 3. The next lemma shows that adding the improvement operation does not
significantly change the properties of depth-first-search and provides the key argument
for proving the correctness.

Lemma 7.30. Algorithm 3 maintains the invariant that the nodes with state open form
a path w1, . . . , w` in T , where ` ≥ 2, w1 = s, w`−1 = v, and w` = u.

Proof. This invariant is satisfied at the beginning of the algorithm. There are three cases
in the if-else structure that do not terminate the algorithm and alter u, v, or the states,
i.e., the cases of Line 9, Line 15, and Line 21. The case of Line 9 maintains the invariant
by extending the path by one node. The case of Line 15 maintains the invariant by
removing the last node of the path. In the case of Line 21, recall that both u and v

are in the edit set R and the edit set is a connected subtree of T , so the improvement
removes some suffix wj, . . . , w` of the path. Together with the fact that w1 is a leaf and
thus w1 /∈ R (see Lemma 7.21), this implies that the node v determined in Line 24 must
be the node wj−1 of the path. Finally, the path is extended by one node in Lines 25
and 27.

The next lemma will be used to prove the correctness of Algorithm 3 in the case when it
returns an improved branch decomposition.

Lemma 7.31. If Algorithm 3 reaches Line 14, i.e., terminates by returning a branch
decomposition, then all nodes except v and u have state closed.

Proof. We show that Algorithm 3 maintains the invariant that if a node w is closed, then
all nodes w′ in the s-subtree of w are also closed. This is trivially maintained by the case
of Line 9. In other cases all of the neighbors of u except v are closed due to Lemma 7.30.
This implies that the case of Line 15 also maintains the invariant. The case of Line 21,
i.e., the improvement operation, maintains this because by Line 24, the union of the
edit set R and the path w1, . . . , w` defined in Lemma 7.30 is a connected subtree that
contains u, v, and s.

This invariant implies the conclusion of the lemma because at Line 14 all neighbors of u
except v are closed.

We are ready to prove the correctness and the running time of Algorithm 3. In particular,
next we complete the proof of the main theorem of this section.

270 Fast 2-approximation algorithms for rankwidth and branchwidth

Theorem 7.32. Let f be a connectivity function for which there exists a improvement
data structure with running time t(k). There is an algorithm that, given a branch
decomposition T = (T, λ) of f of width k, in time t(k) · 2O(k) · |T | either outputs a branch
decomposition of f of width at most k − 1, or correctly concludes that k ≤ 2bw(f).

Proof. It suffices to prove that Algorithm 3 is correct and runs in time t(k) · 2O(k)n

provided an improvement data structure with running time t(k).

We first show the correctness. The algorithm terminates with the conclusion width(T) ≤
2bw(f) if and only if there is no split of W = T [uv], where f(W) = width(T). Therefore,
by Lemma 7.5, width(T) = f(W) ≤ 2bw(f). For the other case, let w 6= s be a node of T
and p be the s-parent of w. We note that the state of w can be closed only if f(wp) < k.
Therefore, by Lemma 7.31, when Algorithm 3 reaches Line 14, we have that f(wp) < k

for all w ∈ V (T) \ {u, v}, and by Line 13 we also have f(uv) < k. Therefore we have
that f(e) < k for all edges e of T , implying that Algorithm 3 is correct when it returns a
branch decomposition.

Then we prove the running time. By the definition of a split and Theorem 7.8, the width
of T never increases. By Lemma 7.25, with every improvement, the potential function
drops by at least |R|, the size of the edit set. While we cannot control the size of the
edit set for each new improvement, the total sum of the sizes of the edit sets over all
the sequence of improvements does not exceed Φk(T) = 2O(k)n. Thus the total running
time of the improvement operations is t(k) · 2O(k)n and the total number of new nodes
created over the course of the algorithm in improvement operations is 2O(k)n. All cases
of the algorithm advance the state of some node either from unseen to open or from open
to closed, and therefore the total number of operations is 2O(k)n and their total time
t(k) · 2O(k)n.

7.4 Approximating rankwidth

In this section we prove Theorem 1.5, that is, there is an algorithm that for an n-vertex
graph G and an integer k in time 22O(k)

n2 either computes a rank decomposition of width
at most 2k, or correctly concludes that the rankwidth of G is more than k. To this end,
we define “augmented rank decompositions”, show how to implement the improvement
data structure of Theorem 7.32 for augmented rank decompositions with running time
t(k) = 22O(k) , and then apply the algorithm of Theorem 7.32 together with iterative
compression.

7.4 Approximating rankwidth 271

In this section we assume that the input graph G is stored in the adjacency matrix format.
In particular, we assume that given two vertices u, v ∈ G, we can check if uv ∈ E(G) in
O(1) time.

7.4.1 Definitions on rank decompositions

Let us introduce further definitions about rank decompositions.

Let G be a graph and A ⊆ V (G) a set of vertices. Recall from Section 2.3 that a set
R ⊆ A is a representative of A if for every vertex v ∈ A there exists a vertex u ∈ R with
N(v) \A = N(u) \A. The representative is minimal if for each v ∈ A there exists exactly
one such u ∈ R. The size of a minimal representative of A is at most 2cutrk(A).

To do computations on minimal representatives, we usually work with representatives
of cuts (A,A). In particular, we define that a pair (R,Q) with R ⊆ A and Q ⊆ A is
a (minimal) representative of (A,A) if R is a (minimal) representative of A and Q is a
(minimal) representative of A. We say that the size of (R,Q) is |R|+ |Q|.

Given some representative of (A,A), a minimal representative can be found in polynomial
time by the following lemma.

Lemma 7.33. Let A ⊆ V (G). Given a representative (R,Q) of (A,A), a minimal
representative of (A,A) can be computed in time (|R|+ |Q|)O(1).

Proof. Because G is stored as an adjacency matrix, we can explicitly construct the graph
G[R,Q] in time (|R| + |Q|)O(1). Now, any minimal representative of the cut (R,Q) of
G[R,Q] is a minimal representative of the cut (A,A) of G, and can easily be computed
in (|R|+ |Q|)O(1) time.

We will also need the following lemma to work with representatives.

Lemma 7.34. Let RA be a representative of A and RB a representative of B. Then
RA ∪RB is a representative of A ∪B.

Proof. If N(v) \ A = N(u) \ A, then N(v) \ (A ∪B) = N(u) \ (A ∪B).

Next define the AR-representative of a vertex.

Definition 7.35 (AR-representative of a vertex). Let A ⊆ V (G), R a minimal represen-
tative of A, and v a vertex v ∈ A. The AR-representative of v, denoted by repAR(v), is
the vertex u ∈ R with N(u) \ A = N(v) \ A.

272 Fast 2-approximation algorithms for rankwidth and branchwidth

By the definition of a minimal representative, there exists exactly one AR-representative
of a vertex, so the function repAR(v) is well-defined. Using a minimal representative of
(A,A) we can compute repAR(v) efficiently.

Lemma 7.36. Let A ⊆ V (G). Given a vertex v ∈ A and a minimal representative (R,Q)

of (A,A), repAR(v) can be computed in (|R|+ |Q|)O(1) time.

Proof. Test for each u ∈ R if N(u) ∩Q = N(v) ∩Q.

We also define the AR-representative of a set.

Definition 7.37 (AR-representative of a set). Let A ⊆ V (G), R a minimal A-
representative, and X ⊆ A. The AR-representative of X, denoted by repAR(X) is the set
repAR(X) =

⋃
v∈X{repAR(v)}.

Because repAR(v) is well-defined, repAR(X) is also well-defined. By applying Lemma 7.36,
the AR-representative of a set X can be computed in |X| · (|R|+ |Q|)O(1) time. As any AR-
representative of a set is a subset of R, there are at most 2|R| different AR-representatives
of sets. Therefore if cutrk(A) ≤ k, there are at most 22k different AR-representatives of
sets.

Many computations on AR-representatives of sets rely on the following observation.

Lemma 7.38. Let A ⊆ V (G) be a set of vertices, X ⊆ A, Y ⊆ A, and let R be a
minimal representative of A, P be a minimal representative of X, and Q be a minimal
representative of Y . Let also X ′ ⊆ X and Y ′ ⊆ Y . Then it holds that repAR(X ′ ∪ Y ′) =

repAR(repXP (X ′) ∪ repYQ(Y ′)).

7.4.2 Augmented rank decompositions

In order to do dynamic programming efficiently on a rank decomposition, we define the
notion of an augmented rank decomposition.

Definition 7.39 (Augmented rank decomposition). An augmented rank decomposition is
a pair (T ,R), where T is a rank decomposition and R is an auxiliary array that stores for
each edge uv ∈ E(T) a minimal representative (R[uv],R[vu]) of the cut (T [uv], T [vu]).

For an augmented rank decomposition (T ,R), root edge r ∈ E(T), and a node w ∈ V (T)

we will also use the notation Rr[w] to denote the minimal representative of Tr[w] stored

7.4 Approximating rankwidth 273

in R. Note that because R[uv] ≤ 2cutrk(T [uv]), an augmented rank decomposition of width
k can be represented in space O(2kn).

Next we show that we can efficiently insert a vertex to an augmented rank decomposition.

Lemma 7.40. Let v ∈ V (G). Given an augmented rank decomposition (T ,R) of G\{v}
of width k, an augmented rank decomposition of G of width at most k+ 1 can be computed
in 2O(k)n time.

Proof. We obtain a rank decomposition T ′ of G by subdividing an arbitrary edge of T
and inserting v as a leaf connected to the node created by subdividing. The width of T ′

is at most k + 1 because adding one vertex to A increases cutrk(A) by at most one.

For the new edge incident with v, minimal representatives are easy to compute in O(n)

time. In particular, {v} is a minimal representative of {v} and a minimal representative
of V (G) \ {v} has one vertex from N(v) and one from V (G) \ (N(v) ∪ {v}).

All other edges of T ′ correspond to edges uv ∈ E(T) in the sense that they correspond
to some cut (A′, A′) = (T [uv] ∪ {v}, T [vu]) of G. We start by setting for each such A′

the representative as R[uv] ∪ {v}. This is not necessarily a minimal representative of A′,
but we turn it into minimal later. Now we have representatives of size at most 2k + 1 for
the sides of cuts containing v.

For the sides of cuts not containing v, we compute minimal representatives by dynamic
programming. We root the decomposition at v and proceed from the leaves to the root.
For leaves, the minimal representatives have exactly one vertex, the leaf. For non-leaves,
we want to compute a minimal representative of a set B corresponding to a subtree with
v /∈ B such that B = B1 ∪B2, where we have already computed minimal representatives
R1 and R2 of B1 and B2, and a representative RA of B of size |RA| ≤ 2k + 1. By
Lemma 7.34, R1 ∪ R2 is a representative of B, so (R1 ∪ R2, RA) is a representative of
(B,B) of size 2O(k), so we use Lemma 7.33 to compute a minimal representative of (B,B)

in time 2O(k).

7.4.3 Improvement data structure for rankwidth

This rest of this section devoted to proving the following lemma.

Lemma 7.41. There is a improvement data structure for rank decompositions with run-
ning time t(k) = 22O(k), where the Init operation requires an augmented rank decomposition
and the Output operation outputs an augmented rank decomposition.

274 Fast 2-approximation algorithms for rankwidth and branchwidth

The combination of Theorem 7.32 and lemma 7.41 implies the following corollary.

Corollary 7.42. There is an algorithm, that given an augmented rank decomposition
(T ,R) of G of width k, either outputs an augmented rank decomposition of G of width at
most k − 1 or correctly concludes that k ≤ 2 · rw(G) in time 22O(k)

n.

By inserting vertices one by one, Corollary 7.42 implies the main result of this chapter as
follows.

Theorem 1.5. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 22O(k)

n2 either outputs a rank decomposition of G of width at most 2k or
determines that the rankwidth of G is larger than k.

Proof. Let us order the vertices of G as v1, . . . , vn, and for i ∈ [n] denote Gi =

G[{v1, . . . , vi}]. Note that rw(Gi) ≤ rw(G) for all i. Now, the algorithm works by
iteratively inserting vertices. In particular, after computing an augmented rank decompo-
sition (Ti,Ri) of Gi of width at most 2k, an augmented rank decomposition (Ti+1,Ri+1)

of Gi+1 of width at most 2k can be computed by using Lemma 7.40 to insert the vertex
vi+1, and then using Corollary 7.42 to improve the width to at most 2k. If the width of
Ti+1 is 2k + 1 but the algorithm of Corollary 7.42 returns that width(Ti+1) ≤ 2 · rw(Gi+1),
then we can return that the rankwidth of G is more than k.

Our improvement data structure is based on characterizing minimum splits of T by
dynamic programming on the augmented rank decomposition (T ,R) directed towards
the root edge r ∈ E(T). In Subsection 7.4.4 we introduce the objects manipulated in this
dynamic programming and prove properties of them and in Subsection 7.4.5 we apply
this dynamic programming to provide the improvement data structure.

7.4.4 Dynamic programming

Bui-Xuan et al. [2010] characterized the rank cutrk(A) of a cut (A,A) by the existence of
an “embedding” of the bipartite graph G[A,A] into a certain bipartite graph Rk. Next we
define this notion of embedding. In our definition the function describing the embedding
is in some sense inversed. This inversion will make manipulating embeddings in dynamic
programming easier.

Definition 7.43 (Embedding). Let G and H be bipartite graphs and let (AG, BG) and
(AH , BH) be bipartitioning cuts of them. A function f : V (H)→ 2V (G) is an embedding
of G into H if

7.4 Approximating rankwidth 275

• f(u) ∩ f(v) = ∅ for u 6= v,

• AG =
⋃
v∈AH f(v), BG =

⋃
v∈BH f(v), and

• for every pair (aH , bH) ∈ AH ×BH and every (a, b) ∈ f(aH)× f(bH), it holds that
ab ∈ E(G) if and only if aHbH ∈ E(H).

When talking about embeddings of G into H, we assume that the bipartitioning cuts
(AG, BG) and (AH , BH) are clear from the context. For the graph G, it will be that G is
constructed with the notation G[X, Y], in which case the bipartitioning cut (AG, BG) of
G[X, Y] is (X, Y). For the graph H this will also be made clear soon.

Note that the embedding completely defines the edges of G[X, Y] in terms of the edges
of H, and in particular gives a representative of (X, Y) of size |V (H)|, as we formalize as
follows.

Lemma 7.44. Let G be a graph and (A,A) a cut of G. Let H be a bipartite graph with
a bipartition cut (AH , BH). Let f : V (H) → 2V (G) be an embedding of G[A,A] into H.
Let g be a function mapping each v ∈ V (H) to a subset of f(v) as

g(v) =

{
{u} where u ∈ f(v) if f(v) is non-empty,
∅ otherwise.

Then (
⋃
v∈AH g(v),

⋃
v∈BH g(v)) is a representative of (A,A) of size |V (H)|.

Next we define the graph Rk that will be used to characterize cutrk.

Definition 7.45 (Graph Rk [Bui-Xuan et al., 2010]). For each k ≥ 0, we denote by Rk

the bipartite graph with a bipartitioning cut (A,B), having for each subset X ⊆ [k] a
vertex aX ∈ A and a vertex bX ∈ B, (in particular, having |A| = 2k and |B| = 2k), and
having an edge between aX and bY if and only if |X ∩ Y | is odd.

In the embeddings defined earlier, the graph H will always be the graph Rk for some
k ≥ 0, in which case the bipartitioning cut is (A,B).

Lemma 7.46 (Bui-Xuan et al. [2010]). Let A ⊆ V (G). It holds that cutrk(A) ≤ k if and
only if there is an embedding of G[A,A] into Rk.

We will find minimum splits of T by computing embeddings into Rk by dynamic pro-
gramming. In order to manipulate embeddings and objects related to embeddings we
introduce some notation that naturally extends the definitions of intersections and unions
of sets.

276 Fast 2-approximation algorithms for rankwidth and branchwidth

Definition 7.47 (Intersection f ∩X). Let f : V (H)→ 2A be a function and X ⊆ A be
a set. We denote by f ∩X the function f ∩X : V (H)→ 2X with (f ∩X)(v) = f(v)∩X.

We note that an intersection of an embedding and a set is again an embedding.

Lemma 7.48. Let A be a set, C ⊆ A, and X ⊆ A. If f : V (H)→ 2A is an embedding
of G[A ∩ C,A \ C] into H, then f ∩X is an embedding of G[X ∩ C,X \ C] into H.

Finally, we define the union of functions.

Definition 7.49 (Union f ∪ g). Let f : V (H) → 2X and g : V (H) → 2Y be functions.
We define function f ∪ g : V (H)→ 2X∪Y with (f ∪ g)(v) = f(v) ∪ g(v).

Representatives of embeddings

Next we define the AR-representative of an embedding, extending the definition of the
AR-representative of a set.

Definition 7.50 (AR-representative of an embedding). Let A ⊆ V (G), and R be a
minimal representative of A. Let also f : V (H) → 2A be an embedding. The AR-
representative of f is the function g : V (H)→ 2R, where g(v) = repAR(f(v)).

The AR-representative of an embedding is well-defined because the AR-representative
of a set is well-defined. If cutrk(A) ≤ k, then the number of AR-representatives of
embeddings into H is at most (22k)|V (H)|. In particular, the number of AR-representatives
of embeddings into Rk is at most (22k)2·2k = 22O(k) .

We will define the compatibility and the composition of two representatives of embeddings.
The intuition is that embeddings fX and fY of disjoint subgraphs can be merged into
an embedding fX ∪ fY if and only if their representatives are compatible. Moreover, the
representative of fX ∪ fY will be the composition of the representatives of fX and fY .

Let X and Y be disjoint subsets of V (G) and A = X ∪ Y . Let also R be a minimal
representative of A, RX a minimal representative of X, and RY a minimal representative
of Y . Let also H be a bipartite graph, gX : V (H)→ 2RX an XRX -representative of an
embedding, and gY : V (H)→ 2RY an YRY -representative of an embedding.

Definition 7.51 (Compatibility). Let (AH , BH) be the bipartitioning cut of H. The
representatives gX and gY are compatible if for every pair (aH , bH) ∈ AH ×BH it holds
that

7.4 Approximating rankwidth 277

1. for every (a, b) ∈ gX(aH)× gY (bH) it holds that ab ∈ E(G)⇔ aHbH ∈ E(H) and

2. for every (a, b) ∈ gY (aH)× gX(bH) it holds that ab ∈ E(G)⇔ aHbH ∈ E(H).

Note that compatibility can be tested in (|V (H)|+ |RX |+ |RY |)O(1) time. Next we show
that two embeddings can be merged into an embedding only if their representatives are
compatible.

Lemma 7.52. Let C ⊆ A be a set and let fA be an embedding of G[A∩C,A \C] into H.
If gX is the XRX -representative of fA ∩X and gY is the YRY -representative of fA ∩ Y ,
then gX and gY are compatible.

Proof. Let fX = fA∩X, fY = fA∩Y , and let (AH , BH) be the bipartitioning cut ofH. For
the case of Item 1 of compatibility it suffices to prove for every pair (aH , bH) ∈ AH ×BH

and every (a, b) ∈ gX(aH)× gY (bH) that ab ∈ E(G) if and only if aHbH ∈ E(H).

As gX(aH) is an XRX -representative of fX(aH), there is a′ ∈ fX(aH) with N(a′) \X =

N(a) \X. Similarly there is b′ ∈ fY (bH) with N(b′) \Y = N(b) \Y . Therefore ab ∈ E(G)

if and only if a′b′ ∈ E(G). Since fX(aH) = fA(aH) ∩X and fY (bH) = fA(bH) ∩ Y , we
have that a′ ∈ fA(aH) and that b′ ∈ fA(bH). Because fA is an embedding it holds that
a′b′ ∈ E(G) if and only if aHbH ∈ E(H). This concludes the proof that the case of Item 1
of compatibility holds.

For the case of Item 2, it suffices to prove the same but for all (a, b) ∈ gY (aH)× gX(bH).
This is similar to the proof for the case of Item 1.

The composition is defined as the representative of the union.

Definition 7.53 (Composition). The composition of gX and gY is the function gA :

V (H)→ 2A defined by gA(v) = repAR(gX(v) ∪ gY (v)) for all v ∈ V (H).

By using a minimal (A,A)-representative (R,Q) the composition can be computed in
time (|V (H)|+ |R|+ |Q|+ |RX |+ |RY |)O(1).

Next we prove that two embeddings can be merged into an embedding if their representa-
tives are compatible, and in this case the composition gives the resulting representative.

Lemma 7.54. Let C ⊆ A be a set. Let gX be the XRX -representative of an embedding
fX of G[X ∩ C,X \ C] into H and gY the YRY -representative of an embedding fY of
G[Y ∩ C, Y \ C] into H. If gX and gY are compatible, then fX ∪ fY is an embedding of
G[A ∩ C,A \ C] into H so that the composition of gX and gY is the AR-representative of
fX ∪ fY .

278 Fast 2-approximation algorithms for rankwidth and branchwidth

Proof. Let (AH , BH) be the bipartitioning cut of H. We let fA = fX ∪ fY and observe
that fA is a function fA : V (H) → 2A that satisfies fA(u) ∩ fA(v) = ∅ for u 6= v,
(X∩C)∪(Y ∩C) = (A∩C) =

⋃
v∈AH fA(v), and (X\C)∪(Y \C) = (A\C) =

⋃
v∈BH fA(v).

Therefore fA is an embedding of G[A∩C,A\C] intoH if for every pair (aH , bH) ∈ AH×BH

and every (a, b) ∈ fA(aH)× fA(bH) it holds that ab ∈ E(G) if and only if aHbH ∈ E(H).
We say that fA is good for a pair (a, b) ∈ (A ∩ C) × (A \ C) if this holds for this
pair. Now fA is an embedding of G[A ∩ C,A \ C] into H if it is good for every pair
(a, b) ∈ (A ∩ C)× (A \ C).

Because fX is an embedding of G[X ∩ C,X \ C] into H we have that fX is good for all
pairs in (X ∩ C)× (X \ C) and therefore fA is good for all pairs in (X ∩ C)× (X \ C).
Analogously because fY is an embedding of G[Y ∩ C, Y \ C] into H we have that fA is
good for all pairs in (Y ∩ C)× (Y \ C). It remains to prove that fA is good for all pairs
in (X ∩ C)× (Y \ C) and in (Y ∩ C)× (X \ C).

Let (a, b) ∈ (X ∩C)× (Y \C). The set gX(aH) is a XRX -representative of fX(aH) ⊇ {a},
so there exists a′ ∈ gX(aH) so that N(a′) \ X = N(a) \ X. Similarly there exists
b′ ∈ gY (bH) so that N(b′) \Y = N(b) \Y . Therefore ab ∈ E(G) if and only if a′b′ ∈ E(G).
Now, by compatibility (Item 1) it holds that a′b′ ∈ E(G) if and only if aHbH ∈ E(G).
Therefore fA is good for (a, b).

The proof for (a, b) ∈ (Y ∩ C) × (X \ C) is symmetric, using compatibility (Item 2)
instead. Therefore fA is an embedding of G[A∩C,A\C] into H. Finally, by Lemma 7.38
the composition of gX and gY is the AR-representative of fA.

Improvement embeddings

In order to construct a minimum split (C1, C2, C3) ofW = T [uv], we build six embeddings
simultaneously in the dynamic programming, three to bound cutrk(Ci) and three to
bound cutrk(Ci ∩W). We of course also need to bound cutrk(Ci ∩W), but note that
G[(Ci ∩W) ∩W, (Ci ∩W) ∩W] = G[∅,W], so dynamic programming is not required for
building the side of W of the embedding G[Ci ∩W,Ci ∩W].

Definition 7.55 (A-restricted improvement embedding). Let A ⊆ V (G). A 10-tuple

E = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

is an A-restricted improvement embedding if there exists a tripartition (C1, C2, C3) of A
so that

1. for each i ∈ [3], fCi is an embedding of G[A ∩ Ci, A ∩ Ci] into Rki and

7.4 Approximating rankwidth 279

2. for each i ∈ [3], fWi is an embedding of G[A ∩ Ci, A ∩ Ci] into R`.

Note that an A-restricted improvement embedding E uniquely defines such a tripartition
(C1, C2, C3) of A. We call such a tripartition the tripartition of E. We say that E cuts a
set if at least two sets in its tripartition (C1, C2, C3) intersect it, and that E r-cuts a node
w if it cuts Tr[w]. We call the quadruple (k1, k2, k3, `) the shape of E. An A-restricted
improvement embedding is k-bounded if k1, k2, k3, ` ≤ k.

In the following lemma we introduce the notation E ∩ X, where E is an A-restricted
improvement embedding and X ⊆ A.

Lemma 7.56. Let A ⊆ V (G), X ⊆ A, and

E = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

be an A-restricted improvement embedding with tripartition (C1, C2, C3). The tuple

E ∩X = (fC1 ∩X, fC2 ∩X, fC3 ∩X, fW1 ∩X, fW2 ∩X, fW3 ∩X, k1, k2, k3, `)

is an X-restricted improvement embedding with tripartition (C1 ∩X,C2 ∩X,C3 ∩X).

Proof. By Lemma 7.48, for each i fCi ∩X is an embedding of G[X ∩ Ci, X ∩ Ci] to Rki

and fWi is an embedding of G[X ∩ Ci, X ∩ Ci] to R`.

We also define the union of improvement embeddings, extending the definition of the
union of embeddings.

Definition 7.57. Let X and Y be disjoint subsets,

E1 = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

an X-restricted improvement embedding, and

E2 = (gC1 , g
C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k1, k2, k3, `)

an Y -restricted improvement embedding with the same shape. We denote by E1 ∪ E2 the
10-tuple

E1 ∪ E2 = (fC1 ∪ gC1 , fC2 ∪ gC2 , fC3 ∪ gC3 , fW1 ∪ gW1 , fW2 ∪ gW2 , fW3 ∪ gW3 , k1, k2, k3, `).

280 Fast 2-approximation algorithms for rankwidth and branchwidth

Note that if the tripartition of X is (C1 ∩ X,C2 ∩ X,C3 ∩ X), the tripartition of Y
is (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y), and E1 ∪ E2 is indeed an X ∪ Y -restricted improvement
embedding, then the tripartition of E1 ∪ E2 is (C1, C2, C3).

We will use dynamic programming on the augmented rank decomposition (T ,R) to
compute improvement embeddings, minimizing the number of nodes of T cut by the
embedding.

Representatives of improvement embeddings

The definition of the AR-representative of an improvement embedding extends the
definition of the AR-representative of an embedding.

Definition 7.58 (AR-representative of improvement embedding). Let A ⊆ V (G) and R
a minimal representative of A. Let also

E = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

be an A-restricted improvement embedding. The AR-representative of E is the tuple

(gC1 , g
C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k1, k2, k3, `),

where each such g is the AR-representative of the corresponding embedding f .

The shape of the AR-representative of E is the same as the shape of E. When
cutrk(A) ≤ k, the number of AR-representatives of k-bounded improvement embed-
dings is (22O(k)

)6k4 = 22O(k) . We naturally extend the definitions of composition and
compatibility to representatives of improvement embeddings.

Let G be a graph, X and Y disjoint subsets of V (G), and A = X∪Y . Let also R be a min-
imal representative of A, RX a minimal representative of X, and RY a minimal represen-
tative of Y . Let EX = (fC1 , f

C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `) be the XRX -representative of

an X-restricted improvement embedding and EY = (gC1 , g
C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k

′
1, k
′
2, k
′
3, `
′)

the YRY -representative of an Y -restricted improvement embedding.

Definition 7.59 (C-Compatibility). EX and EY are C-compatible if they have the same
shape and for each i ∈ [3], fCi and gCi are compatible.

Definition 7.60 (Compatibility). EX and EY are compatible if they are C-compatible
and for each i ∈ [3], fWi and gWi are compatible.

We derive the following lemma directly from Lemma 7.52.

7.4 Approximating rankwidth 281

Lemma 7.61. Let E be an A-restricted improvement embedding. If EX is the XRX -
representative of E ∩X and EY is the YRY -representative of E ∩ Y , then EX and EY are
compatible.

Proof. Apply Lemma 7.52 to each embedding in E.

Next we define the composition of two representatives of improvement embeddings,
extending the definition of the composition of representatives of embeddings.

Definition 7.62 (Composition). If EX and EY are compatible, then the composition
of EX and EY is the pointwise composition of EX and EY , i.e., the composition is the
10-tuple

EA = (hC1 , h
C
2 , h

C
3 , h

W
1 , h

W
2 , h

W
3 , k1, k2, k3, `),

where for each i ∈ [3] hCi is the composition of fCi and gCi , and hWi is the composition of
fWi and gWi .

Next we prove the main lemma for computing improvement embeddings by dynamic
programming, which is an extension of Lemma 7.54.

Lemma 7.63. Let X and Y be disjoint sets, A = X ∪ Y , R a minimal representative of
A, RX a minimal representative of X, and RY a minimal representative of Y . Let E1 be
an X-restricted improvement embedding and E2 a Y -restricted improvement embedding.
Let EX be the XRX -representative of E1 and EY the YRY -representative of E2. If EX
and EY are compatible, then E1 ∪ E2 is an A-restricted improvement embedding and the
composition of EX and EY is the AR-representative of E1 ∪ E2.

Proof. Denote
E1 = (fC1 , f

C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

and
E2 = (gC1 , g

C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k1, k2, k3, `).

Let (CX
1 , C

X
2 , C

X
3) be the tripartition of E1 and (CY

1 , C
Y
2 , C

Y
3) the tripartition of E2. By

Lemma 7.54, fCi ∪gCi is an embedding of G[CX
i ∪CY

i , A\ (CX
i ∪CY

i)] to Rki and fWi ∪gWi
is an embedding of G[CX

i ∪ CY
i , A \ (CX

i ∪ CY
i)] to R` for every i. Therefore

E = (fC1 ∪ gC1 , fC2 ∪ gC2 , fC3 ∪ gC3 , fW1 ∪ gW1 , fW2 ∪ gW2 , fW3 ∪ gW3 , k1, k2, k3, `)

is an improvement embedding with tripartition (CX
1 ∪ CY

1 , C
X
2 ∪ CY

2 , C
X
3 ∪ CY

3). By
Lemma 7.54 the composition of EX and EY is the AR-representative of E.

282 Fast 2-approximation algorithms for rankwidth and branchwidth

Finding the split

In the dynamic programming we will determine if there exists a split of W based on the
representatives of W -restricted improvement embeddings and the representatives of W -
restricted improvement embeddings. For this purpose we will define the root-compatibility
of two representatives of improvement embeddings, characterizing whether they can be
merged to yield a split of W .

Let W ⊆ V (G), RW a minimal representative of W , and RW a minimal representative of
W . Let also

EW = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

be a WRW -representative of a W -restricted improvement embedding and

EW = (gC1 , g
C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k1, k2, k3, `)

be a WRW
-representative of an W -restricted improvement embedding so that EW and

EW have the same shape.

Definition 7.64 (Root-compatibility). EW and EW are root-compatible if they are
C-compatible and

1. for each i, there exists an embedding fWi of G[∅,W] into R` so that fWi is compatible
with the WRW

-representative of fWi and

2. for each i, there exists an embedding gWi of G[∅,W] into R` so that gWi is compatible
with the WRW -representative of gWi .

The definition does not directly provide an efficient algorithm for checking root-
compatibility, but a couple of observations and brute force yields a 22O(k) time algorithm
as follows.

Lemma 7.65. Let cutrk(W) ≤ k and suppose that the improvement embeddings is k-
bounded. Given EW , EW , RW , and RW , the root-compatibility of EW and EW can be
checked in time 22O(k).

Proof. We prove the case of Item 1. The case of Item 2 is similar.

Suppose there exists such an embedding fWi . Let (AH , BH) be the bipartitioning cut of
R` and let uH , vH ∈ BH be a pair of distinct vertices in BH . Suppose that there exists
u, v ∈ W such that N(u) ∩W = N(v) ∩W , u ∈ fWi (uH), and v ∈ fWi (vH). Note that
now, if we remove u from fWi (uH) and insert it into fWi (vH), we obtain an embedding

7.4 Approximating rankwidth 283

whose WRW
-representative is compatible with the same WRW -representatives as fWi .

Therefore, we can assume for any u, v ∈ W that if N(u) ∩W = N(v) ∩W , then there
exists vH ∈ BH so that {u, v} ⊆ fWi (vH).

As for any v ∈ W there is a vertex vR ∈ RW with N(v)∩W = N(vR)∩W , it is sufficient
to enumerate all intersections fWi ∩RW and assign each v to the same vertex of BH as vR.
Note that in this case, the WRW

-representative of fWi depends only on the intersection
fWi ∩RW . The number of the intersections is at most

(
2|RW |

)|BH | ≤ (22k)2k = 22O(k) and
each can be checked in time 2O(k).

We also introduce the definition of Ci-emptiness to denote whether none of the vertices
have been assigned to Ci in the tripartition.

Definition 7.66 (Ci-empty). Let ER = (fC1 , f
C
2 , f

C
3 , . . .) be the AR-representative of an

A-restricted improvement embedding. Let i ∈ [3], and let (AH , BH) be the bipartitioning
cut of Rki. ER is Ci-empty if for every v ∈ AH it holds that fCi (v) = ∅.

The definition of Ci-emptiness is for determining which of the parts of a corresponding
tripartition intersect A.

Lemma 7.67. Let ER be the AR-representative of an A-restricted improvement embedding
E and (C1, C2, C3) the tripartition of E. It holds that Ci = ∅ if and only if ER is Ci-empty.

Finally, we describe how to find splits based on representatives of improvement embed-
dings.

Lemma 7.68. Let T be a rank decomposition, uv = r ∈ E(T), and W = T [uv]. Denote
X = W = Tr[u], Y = W = Tr[v], and let RX be a minimal representative of X and RY a
minimal representative of Y . There exists a split (C1, C2, C3) of W with cutrk(Ci) ≤ ki

for each i ∈ [3] if and only if there exists Eu, Ev, and ` such that

1. Eu is the XRX -representative of an X-restricted improvement embedding with shape
(k1, k2, k3, `) whose tripartition (C1 ∩X,C2 ∩X,C3 ∩X) is,

2. Ev is the YRY -representative of an Y -restricted improvement embedding with shape
(k1, k2, k3, `) whose tripartition (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y) is,

3. Eu and Ev are root-compatible, and

4. k1, k2, k3, ` < cutrk(W).

284 Fast 2-approximation algorithms for rankwidth and branchwidth

Proof. Let us first prove the if direction. Let

EX = (fC1 , f
C
2 , f

C
3 , f

W
1 , fW2 , fW3 , k1, k2, k3, `)

be a X-restricted improvement embedding whose XRX -representative Eu is and whose
tripartition (C1 ∩X,C2 ∩X,C3 ∩X) is. Let also

EY = (gC1 , g
C
2 , g

C
3 , g

W
1 , g

W
2 , g

W
3 , k1, k2, k3, `)

be a Y -restricted improvement embedding whose YRY -representative Eu is and whose
tripartition (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y) is.

As Eu and Ev are C-compatible, Lemma 7.54 implies that for each i ∈ [3], fCi ∪ gCi is an
embedding of G[Ci, Ci] to ki. Therefore by Lemma 7.46 it holds that cutrk(Ci) ≤ ki.

As Eu and Ev are root-compatible, by the definition of root-compatibility and Lemma 7.54
for each i there exists an embedding fWi of G[∅,W] to R` so that fWi ∪fWi is an embedding
of G[Ci ∩W, (Ci ∩W) ∪W] = G[Ci ∩W,Ci ∩W] to R`. Therefore by Lemma 7.46 it
holds that cutrk(Ci ∩W) ≤ `.

Symmetrically, by root-compatibility there exists an embedding gWi of G[∅,W] to R` so
that gWi ∪ gWi is an embedding of G[Ci ∩W, (Ci ∩W) ∪W] = G[Ci ∩W,Ci ∩W] to R`.
Therefore by Lemma 7.46 it holds that cutrk(Ci ∩W) ≤ `.

Then we prove the only if direction. Let (C1, C2, C3) be a split ofW , where cutrk(Ci) = ki.
Let also ` = cutrk(W)− 1. By Lemma 7.46, for each i there exists an embedding fCi of
G[Ci, Ci] to Rki , an embedding fWi of G[Ci ∩W,Ci ∩W] to R`, and an embedding fWi
of G[Ci ∩W,Ci ∩W] to R`.

Let
EX = (fC1 ∩X, fC2 ∩X, fC3 ∩X, fW1 ∩X, fW2 ∩X, fW3 ∩X, k1, k2, k3, `)

and note that the tripartition of EX is (C1 ∩X,C2 ∩X,C3 ∩X). Let also

EY = (fC1 ∩ Y, fC2 ∩ Y, fC3 ∩ Y, fW1 ∩ Y, fW2 ∩ Y, fW3 ∩ Y, k1, k2, k3, `)

and note that the tripartition of EY is (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y). Let Eu be the XRX -
representative of EX and Ev the YRY -representative of EY . Note that now, Eu and Ev
satisfy Items 1 and 2.

By Lemma 7.52, Eu and Ev are C-compatible. Note that also by Lemma 7.52, for each
i, fWi ∩ Y is an embedding of G[∅,W] to R` whose YRY -representative is compatible
with the XRX -representative of fWi ∩X, and fWi ∩X is an embedding of G[∅,W] whose

7.4 Approximating rankwidth 285

XRX -representative is compatible with YRY -representative of fWi ∩ Y . Therefore Eu and
Ev are root-compatible by the definition of root-compatibility.

7.4.5 The data structure

Finally, we provide the improvement data structure for augmented rank decompositions
using dynamic programming building on the previous subsections. Throughout this
subsection, we assume that we are maintaining an augmented rank decomposition (T ,R)

of width width(T) ≤ k and therefore we are only interested in k-bounded improvement
embeddings.

Concrete representatives

In order to maintain an augmented rank decomposition in the improvement operation,
we need to construct a minimal representative of each set Ci of the split (C1, C2, C3). To
do this, we maintain “concrete representatives” in the dynamic programming.

Definition 7.69 (Concrete representative). Let H be bipartite graph, A ⊆ V (G), and
f : V (H) → 2A a function. A concrete representative of f is a function g defined in
Lemma 7.44, i.e., a function g mapping each v ∈ V (H) to a subset of f(v) as follows:

g(v) =

{
{u} where u ∈ f(v) if f(v) is non-empty
∅ otherwise.

Let E = (fC1 , f
C
2 , f

C
3 , . . .) be an A-restricted improvement embedding. A concrete repre-

sentative of E is a triple (gC1 , g
C
2 , g

C
3), where each gCi is a concrete representative of fCi .

Note that a concrete representative can be represented in O(|V (H)|) space. By
Lemma 7.44, a concrete representative of an embedding of G[Ci, Ci] into H can be
turned into a representative of (Ci, Ci) of size |V (H)|. In particular, using a concrete
representative of a V (G)-restricted improvement embedding with tripartition (C1, C2, C3)

we can compute a minimal representatives of each Ci in time 2O(k).

We define the union of two concrete representatives naturally.

Definition 7.70 (Union of concrete representatives). Let fR be a concrete representative
of a function f : V (H)→ 2X and gR a concrete representative of a function g : V (H)→
2Y . We denote by fR ∪ gR the function mapping each v ∈ V (H) to a subset of f(v)∪ g(v)

286 Fast 2-approximation algorithms for rankwidth and branchwidth

as follows:

(fR ∪ gR)(v) =

{
fR(v), if fR(v) 6= ∅
gR(v), otherwise.

The union of concrete representatives of improvement embeddings is the pointwise union
of such triples of concrete representatives.

Observe that such fR ∪ gR is a concrete representative of f ∪ g.

Dynamic programming tables

In the improvement data structure we maintain a dynamic programming table for each
node w ∈ V (T). We call this table the r-table of the node w to signify that this table
contains information about the r-subtree of w. Next we formally define an r-table.

Definition 7.71 (r-table). For an augmented rank decomposition (T ,R), root edge
r ∈ E(T), node w ∈ V (T), and A = Tr[w], R = Rr[w], an r-table of w is a triple
(E , I, C), where

1. E is the set of all AR-representatives of k-bounded A-restricted improvement embed-
dings,

2. I is a function mapping each ER ∈ E to the least integer i such that there exists an
A-restricted improvement embedding E whose AR-representative ER is and which
r-cuts i nodes of the r-subtree of w, and

3. C is a function mapping each ER ∈ E to a concrete representative of an A-restricted
improvement embedding E such that ER is the AR-representative of E and E r-cuts
I(ER) nodes of the r-subtree of w.

Note that an r-table can be represented by making use of 22O(k) space.

To correctly construct the improvement that matches the concrete representation obtained,
we need to spell out some additional properties of r-tables, which will be naturally satisfied
by the way the r-tables will be constructed.

Definition 7.72 (Local and global representation). Let (T ,R) be an augmented rank
decomposition, r ∈ E(T), w ∈ V (T), A = Tr[w], and R = Rr[w]. An r-table (E , I, C) of
w locally represents an A-restricted improvement embedding E if there exists ER ∈ E so
that ER is the AR-representative of E, I(ER) is the number of nodes in the r-subtree of

7.4 Approximating rankwidth 287

w r-cut by E, and C(ER) is a concrete representative of E. The r-table of w globally
represents E if the r-tables of all nodes w′ in the r-subtree of w (including w itself) locally
represent E ∩ Tr[w′].

Definition 7.73 (Linked r-table). A linked r-table of w is a 4-tuple (E , I, C,L) so that
(E , I, C) is an r-table of w and for each ER ∈ E there exists an A-restricted improvement
embedding E so that

1. ER is the AR-representative of E,

2. (E , I, C) globally represents E, and

3. if w is non-leaf and has r-children w1 and w2 with r-tables (E1, I1, C1) and (E2, I2, C2),
then L is a function mapping ER to a pair L(ER) = (E1, E2) such that E1 ∈ E1,
E2 ∈ E2, E1 is the Tr[w1]Rr[w1]-representative of E∩Tr[w1], and E2 is the Tr[w2]Rr[w2]-
representative of E ∩ Tr[w2].

The existence of a linked r-table will be formally proved in Lemma 7.75 when also its
construction is given. Note that a linked r-table of a node w can be represented in 22O(k)

space. We start implementing the dynamic programming from the leaves.

Lemma 7.74. Let (T ,R) be an augmented rank decomposition, r ∈ E(T), and w a leaf
node of T . A linked r-table of w can be constructed in time 2O(k).

Proof. Let A = Tr[w]. As |A| = 1, the number of A-restricted improvement embeddings
is 2O(k) and we can iterate over all of them and construct the r-table directly by definition.
Moreover, the r-table is by definition linked because A is the minimal representative of
itself and so there is bijection between A-restricted improvement embeddings and their
AA-representatives.

The next lemma is the main dynamic programming lemma. It specifies the computation
of linked r-tables for non-leaf nodes.

Lemma 7.75. Let (T ,R) be an augmented rank decomposition, r ∈ E(T), w a non-leaf
node of T , and w1 and w2 the r-children of w. Given linked r-tables of the nodes w1 and
w2, a linked r-table (E , I, C,L) of w can be constructed in time 22O(k).

Proof. Let A = Tr[w], X = Tr[w1], Y = Tr[w2], R = Rr[w], RX = Rr[w1], and RY =

Rr[w2]. Let (E1, I1, C1) be the given r-table of w1 and (E2, I2, C2) the given r-table of w2.

Let E be a k-bounded A-restricted improvement embedding. Note that the number of
nodes in the r-subtree of w that E r-cuts is i1 + i2 + iw, where i1 is the number of nodes

288 Fast 2-approximation algorithms for rankwidth and branchwidth

in the r-subtree of w1 that E ∩X r-cuts, i2 is the number of nodes in the r-subtree of
w2 that E ∩ Y r-cuts, and iw = 1 if E r-cuts w and 0 otherwise. Moreover, the fact
whether E r-cuts w can be determined only by considering the AR-representative of E,
in particular by whether it is Ci-empty for at most one i.

We enumerate all pairs (E1, E2) ∈ E1 × E2. If E1 is compatible with E2, then by
Lemma 7.63, for any EX and EY such that E1 is a XRX -representative of EX and E2 is
a YRY -representative of EY it holds that E = EX ∪ EY is an A-restricted improvement
embedding such that E ∩ X = EX , E ∩ Y = EY , and the composition ER of E1 and
E2 is the AR-representative of E. Let us fix such EX and EY so that they are globally
represented by (E1, I1, C1) and (E2, I2, C2), respectively. If ER /∈ E , or ER ∈ E but
I(ER) > I1(E1) + I2(E2) + iw, we insert ER to E and set I(ER)← I1(E1) + I2(E2) + iw,
C(ER)← C1(E1) ∪ C2(E2) and L(ER)← (E1, E2). Now (E , I, C) globally represents E.

The fact that for all A-restricted improvement embeddings E we actually considered
a pair (E1, E2) ∈ E1 × E2 so that E1 is a XRX -representative of E ∩ X and E2 is a
YRY -representative of E ∩ Y follows from the definition of r-table and Lemma 7.56,
i.e., the fact that E ∩ X is an X-restricted improvement embedding and E ∩ Y is an
Y -restricted improvement embedding.

Now the Init(T , r) operation can be implemented in 22O(k) · |T | time by constructing a
linked r-table of each node in the order from leaves to root with |T | applications of
Lemma 7.75. For the Move(vw) operation, observe that the linked r-table of a node
x ∈ V (T) depends only on the r-subtree of x, and therefore by Lemma 7.29 it suffices to
recompute only the linked r-table of v when using Move(vw). Therefore Move(vw) can be
implemented in 22O(k) time by a single application of Lemma 7.75. The operation Width()

is implemented without r-tables. It amounts to finding an embedding of G[R[uv],R[vu]]

to R`, for the smallest possible `, by brute-force in time 22O(k) . The Output() operation
also is straightforward as we just output the augmented rank decomposition we are
maintaining.

It remains to implement CanImprove(), EditSet(), and Improve(R, (N1, N2, N3)). The
following is the main lemma for them, providing the implementations of CanImprove()

and EditSet() and setting the stage for Improve(R, (N1, N2, N3)).

Lemma 7.76. Let (T ,R) be an augmented rank decomposition, uv = r ∈ E(T), and
W = T [uv]. For each node w ∈ V (T), let (Ew, Iw,Rw,Lw) be the linked r-table of w.
There is an algorithm that returns ⊥ if there is no split of W , and otherwise returns a
tuple (R,N1, N2, N3, C

R
1 , C

R
2 , C

R
3), where (r, C1, C2, C3) is a minimum split of T , R is the

edit set of (r, C1, C2, C3), (N1, N2, N3) is the neighborhood partition of R, and for each
i ∈ [3], CR

i is a minimal representative of Ci. The algorithm runs in time 22O(k)
(|R|+ 1).

7.4 Approximating rankwidth 289

Proof. Denote X = W = Tr[u], Y = W = Tr[v], let RX = Rr[u] and RY = Rr[v].

We iterate over all pairs (Eu, Ev) ∈ Eu × Ev satisfying the conditions in Lemma 7.68 and
determine the sum-width of a corresponding split as in Lemma 7.68. Also, the minimum
number of nodes of T r-cut by a split corresponding to (Eu, Ev) can be determined as
Iu(Eu) + Iv(Ev). If no such pair is found we return ⊥. Otherwise we find a pair (Eu, Ev)

so that Eu is the XRX -representative of an X-restricted improvement embedding EX that
is globally represented by (Eu, Iu, Cu) and whose tripartition (C1 ∩X,C2 ∩X,C3 ∩X)

is, Ev is the YRY -representative of an Y -restricted improvement embedding EY that is
globally represented by (Ev, Iv, Cv) and whose tripartition (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y) is, and
(r, C1, C2, C3) is a minimum split of T . As |Eu| · |Ev| = 22O(k) and each pair can be checked
in time 22O(k) (root-compatibility by Lemma 7.65), this phase has running time 22O(k) .

Let (fC1 , f
C
2 , f

C
3) = Cu(Eu)∪Cv(Ev). Now fCi is a concrete representative of an embedding

of G[(X ∩ Ci) ∪ (Y ∩ Ci), (X \ Ci) ∪ (Y \ Ci)] = G[Ci, Ci] to Rki , and therefore by
Lemma 7.44 we obtain a representative of (Ci, Ci) of size at most 2 · 2ki from fCi . We
compute a minimal representative CR

i of Ci in time 2O(k) by Lemma 7.33

We compute the edit set and the neighborhood partition with a BFS-type algorithm that
maintains a queue Q containing pairs (w,Ew), where w ∈ V (T), with the invariant that
if w is in the r-subtree of u, then Ew is the Tr[w]Rr[w]-representative of EX ∩ Tr[w] and
if w is in the r-subtree of v, then Ew is the Tr[w]Rr[w]-representative of EY ∩ Tr[w]. We
start by inserting the pairs (u,Eu) and (v, Ev) to Q. Then, we iteratively pop a pair
(w,Ew) from the queue. If there is i such that Ew is Cj-empty for all j 6= i, then it holds
that Tr[w] ⊆ Ci, and therefore we insert w to Ni. Otherwise, we insert w to R, let w1 and
w2 be the r-children of w, and let (E1, E2) = Lw(Ew). We insert (E1, w1) and (E2, w2)

into Q. This maintains the invariant by the definition of a linked r-table.

For each node w ∈ R ∪ N1 ∪ N2 ∪ N3 we access tables indexed by Ew and determine
Ci-emptiness, so the work is bounded by |R ∪N1 ∪N2 ∪N3| · 22O(k)

= |R| · 22O(k) .

What is left is the Improve(R, (N1, N2, N3)) operation. Computing the improvement T ′

of T itself is a direct application of Lemma 7.23 and computing the linked r-tables of
the new nodes is done by |R| applications of Lemma 7.75, but in order to compute the
linked r-tables we must first make T ′ augmented, that is, for each new edge uv compute
a minimal representative of (T ′[uv], T ′[vu]). We use the minimal representatives of C1,
C2, and C3 returned by the algorithm of Lemma 7.76 for this.

Lemma 7.77. Let T be a rank decomposition, r ∈ E(T), and (r, C1, C2, C3) a minimum
split of T . Let w be a non-leaf node of T and let w1 and w2 be the r-children of w.
Let i,j, and ` be such that {i, j, `} = [3]. Given minimal representatives of Tr[w1] ∩ Ci,

290 Fast 2-approximation algorithms for rankwidth and branchwidth

Tr[w2] ∩ Ci, Tr[w], Cj, and C`, a minimal representative of (Tr[w] ∩ Ci, Tr[w] ∩ Ci) can
be computed in 2O(k) time.

Proof. As (r, C1, C2, C3) is a minimum split of T , each of the given minimal representatives
has size at most 2k.

It holds that
Tr[w] ∩ Ci = (Tr[w1] ∩ Ci) ∪ (Tr[w2] ∩ Ci),

so by Lemma 7.34 we obtain a representative of Tr[w] ∩ Ci as the union of the given
minimal representatives of Tr[w1] ∩ Ci and Tr[w2] ∩ Ci. It also holds that

Tr[w] ∩ Ci = Tr[w] ∪ Ci = Tr[w] ∪ Cj ∪ C`,

so again by Lemma 7.34 we obtain a representative of Tr[w] ∩ Ci as the union of the
given minimal representatives of Tr[w], Cj, and C`. Now we have a representative of
(Tr[w] ∩ Ci, Tr[w] ∩ Ci) of size 2O(k), so we can use Lemma 7.33 to compute a minimal
representative in time 2O(k).

In particular, a minimal representative of Tr[w] is available in (T ,R) as R[pw], where
p is the r-parent of w, and minimal representatives of Tr[w1] ∩ Ci and Tr[w2] ∩ Ci are
available by doing the construction in an order towards the root r.

This completes the description of the improvement data structure for augmented rank
decompositions and thus also the proof of Lemma 7.41.

7.5 Approximating branchwidth of graphs

In this section we prove the following theorem.

Theorem 1.7. There is an algorithm that, given an n-vertex graph G and an integer
k, in time 2O(k)n either outputs a branch decomposition of G of width at most 2k or
determines that the branchwidth of G is larger than k.

For branchwidth we do not need iterative compression as we can use the algorithm of
Theorem 1.1 and the connection between branchwidth and treewidth [Robertson and
Seymour, 1991] (presented as Lemma 2.18 in this thesis) to obtain a branch decomposition
of G of width at most 3k in 2O(k)n time.

7.5 Approximating branchwidth of graphs 291

The following is the main lemma for proving Theorem 1.7, and this section is devoted to
its proof.

Lemma 7.78. There is a improvement data structure for branch decompositions of graphs
with running time t(k) = 2O(k).

Combined with Theorem 7.32 and the aforementioned connections to treewidth,
Lemma 7.78 implies Theorem 1.7.

The remaining part of this section is organized as follows. In Subsection 7.5.1 we
define augmented branch decompositions, in Subsection 7.5.2 we introduce the objects
manipulated in our dynamic programming and prove some properties of them. Then
in Subsection 7.5.3 we give the improvement data structure for branch decompositions
using this dynamic programming.

7.5.1 Augmented branch decompositions

In our improvement data structure we maintain an augmented branch decomposition.
An augmented branch decompositions stores the border description of each set T [uv].

Definition 7.79 (Border description). Let X ⊆ E(G). The border description of X is
the pair (δ(X), f), where f : δ(X)→ Z≥0 is the function so that f(v) is the number of
edges in X incident to v.

An augmented branch decomposition is a branch decomposition T where for each edge
uv ∈ E(T) the border descriptions of T [uv] and T [vu] are stored. Note that an augmented
branch decomposition can be represented in O(|T | · width(T)) space.

The following lemma leads to an algorithm for computing the border descriptions. We
assume that our representation of the input graph G supports reporting the degree of a
given vertex in O(1) time.

Lemma 7.80. Let X, Y be disjoint subsets of E(G). Given the border descriptions of X
and Y , the border description of X ∪ Y can be computed in O(|δ(X)|+ |δ(Y)|) time.

Proof. Let (δ(X), f) be the border description of X and (δ(Y), g) the border description
of Y . It holds that δ(X ∪ Y) ⊆ δ(X) ∪ δ(Y), where (δ(X) ∪ δ(Y)) \ δ(X ∪ Y) can be
identified as the vertices v for which f(v) + g(v) is the degree of v. Now (δ(X ∪Y), f + g)

is the border description of X ∪ Y .

292 Fast 2-approximation algorithms for rankwidth and branchwidth

Because δ(X) = δ(X) and the number of edges in X incident to v is the degree of v minus
the number of edges in X incident to v, the border description of X can be computed
from the border description of X in O(|δ(X)|) time. It follows that given a branch
decomposition T , a corresponding augmented branch decomposition can be computed in
O(|T | · width(T)) time by using Lemma 7.80 O(|T |) times.

7.5.2 Borders of tripartitions

We define the partial solutions stored in dynamic programming tables.

Definition 7.81 (Border of a tripartition). Let A ⊆ E(G) and (C1, C2, C3) a tripartition
of A. The border of (C1, C2, C3) is the 9-tuple

(R1, R2, R3, r1, r2, r3, k1, k2, k3),

where for each i ∈ [3] it holds that Ri = δ(Ci)∩δ(A), ri = 0 if Ci = ∅ and otherwise ri = 1,
and ki is the number of vertices v ∈ V (G) \ δ(A) such that there exists an edge e1 ∈ Ci
incident to v and an edge e2 ∈ A \ Ci incident to v, i.e., ki = |δ(Ci) ∩ δ(A \ Ci) \ δ(A)|.

We call a border of tripartition k-bounded if for each i it holds that ki ≤ k. Note
that if |δ(A)| ≤ k, then the number of k-bounded borders of tripartitions of A is
≤ (2k)323k3 = 2O(k), and each of them can be represented in O(k) space.

We define the composition of borders of tripartitions to combine partial solutions.

Definition 7.82 (Composition). Let X and Y be disjoint subsets of E(G) and A =

X ∪ Y . Let RX = (RX
1 , R

X
2 , R

X
3 , r

X
1 , r

X
2 , r

X
3 , k

X
1 , k

X
2 , k

X
3) be the border of a tripartition

of X and RY = (RY
1 , R

Y
2 , R

Y
3 , r

Y
1 , r

Y
2 , r

Y
3 , k

Y
1 , k

Y
2 , k

Y
3) the border of a tripartition of Y .

Denote F = (δ(X) ∪ δ(Y)) \ δ(A). The composition of RY and RY is the 9-tuple
(R1, R2, R3, r1, r2, r3, k1, k2, k3), where for each i ∈ [3],

1. Ri = δ(A) ∩ (RX
i ∪RY

i),

2. ri = max(rXi , r
Y
i), and

3. ki = kXi + kYi + |F ∩ (RX
i ∪RY

i) ∩ (RX
j ∪RX

l ∪RY
j ∪RY

l)|, where {i, j, l} = [3].

Note that when the sets δ(X), δ(Y), and δ(A) are given and have size ≤ k, the composition
can be computed in O(k) time.

Next we prove that the composition operation really combines partial solutions as
expected.

7.5 Approximating branchwidth of graphs 293

Lemma 7.83. Let X and Y be disjoint subsets of E(G) and A = X ∪ Y . If RX

is the border of a tripartition (CX
1 , C

X
2 , C

X
3) and RY is the border of a tripartition

(CY
1 , C

Y
2 , C

Y
3), then the composition of RX and RY is the border of the tripartition

(CX
1 ∪ CY

1 , C
X
2 ∪ CY

2 , C
X
3 ∪ CY

3).

Proof. Let V X be the set of vertices incident to X and V Y the set of vertices incident
to Y . Let also F = (δ(X) ∪ δ(Y)) \ δ(A). Let i ∈ [3] and let j and l be such that
{i, j, l} = [3]. It holds that

δ(CX
i ∪ CY

i) = (δ(CX
i) ∪ δ(CY

i)) ∩ (δ(CX
j) ∪ δ(CX

l) ∪ δ(CY
j) ∪ δ(CY

l) ∪ δ(A)).

Therefore by observing that δ(A) = δ(A), δ(A) ∩ V X ⊆ δ(X), and δ(A) ∩ V Y ⊆ δ(Y) we
get

δ(CX
i ∪ CY

i) ∩ δ(A) = (δ(CX
i) ∪ δ(CY

i)) ∩ δ(A) = (RX
i ∪RY

i) ∩ δ(A),

so the sets R1, R2, and R3 in the composition are correct.

By observing that V X ∩ F ⊆ δ(X) and V Y ∩ F ⊆ δ(Y), we have that

δ(CX
i ∪ CY

i) ∩ F =F ∩ (δ(CX
i) ∪ δ(CY

i)) ∩ (δ(CX
j) ∪ δ(CX

l) ∪ δ(CY
j) ∪ δ(CY

l))

=F ∩ (RX
i ∪RY

i) ∩ (RX
j ∪RX

l ∪RY
j ∪RY

l).

Since V X \ (F ∪ δ(A)) = V X \ δ(X) and V Y \ (F ∪ δ(A)) = V Y \ δ(Y) are disjoint, we
get that

|δ(CX
i ∪CY

i) \ (F ∪ δ(A))|

=|(δ(CX
i) ∩ (δ(CX

j) ∪ δ(CX
l)) \ δ(X)|+ |(δ(CY

i) ∩ (δ(CY
j) ∪ δ(CY

l)) \ δ(Y)|

=|δ(CX
i) ∩ δ(X \ CX

i) \ δ(X)|+ |δ(CY
i) ∩ δ(Y \ CY

i) \ δ(Y)|.

Hence the numbers k1, k2, and k3 in the composition are correct. The numbers r1, r2,
and r3 are correct by observing that CX

i ∪ CY
i is empty if and only if both CX

i and CY
i

are empty.

The next lemma gives the method for determining if there exists a split of W based on
borders of tripartitions.

Lemma 7.84. Let T be a branch decomposition, uv = r ∈ E(T), and W = T [uv].
Denote X = W and Y = W . There exists a split (C1, C2, C3) of W with |δ(Ci)| = ki for
each i ∈ [3] if and only if there exists RX and RY such that

294 Fast 2-approximation algorithms for rankwidth and branchwidth

1. RX = (RX
1 , R

X
2 , R

X
3 , r

X
1 , r

X
2 , r

X
3 , k

X
1 , k

X
2 , k

X
3) is the border of the tripartition (C1 ∩

X,C2 ∩X,C3 ∩X),

2. RY = (RY
1 , R

Y
2 , R

Y
3 , r

Y
1 , r

Y
2 , r

Y
3 , k

Y
1 , k

Y
2 , k

Y
3) is the border of the tripartition (C1 ∩

Y,C2 ∩ Y,C3 ∩ Y),

3. the composition of RX and RY is (∅, ∅, ∅, r1, r2, r3, k1, k2, k3), where ki < |δ(W)| for
each i, and

4. for each i it holds that kXi + |RX
i | < |δ(W)| and kYi + |RY

i | < |δ(W)|.

Proof. Suppose that such RX and RY exists. By Lemma 7.83 and the fact that δ(E(G)) =

∅, (∅, ∅, ∅, r1, r2, r3, k1, k2, k3) is the border of (C1, C2, C3). By the definition of border
we have that ki = |δ(Ci)|. It remains to prove that |δ(Ci ∩W)| = kXi + |RX

i | and that
|δ(Ci ∩W)| = kYi + |RY

i | for each i. We have that

δ(W ∩ Ci) =(δ(W ∩ Ci) ∩ δ(W)) ∪ (δ(W ∩ Ci) ∩ δ(W \ Ci))

=(δ(X ∩ Ci) ∩ δ(X)) ∪ (δ(X ∩ Ci) ∩ δ(X \ Ci))

=(δ(X ∩ Ci) ∩ δ(X)) ∪ (δ(X ∩ Ci) ∩ δ(X \ Ci) ∩ δ(X))

∪ (δ(X ∩ Ci) ∩ δ(X \ Ci) \ δ(X))

=(δ(X ∩ Ci) ∩ δ(X)) ∪ (δ(X ∩ Ci) ∩ δ(X \ Ci) \ δ(X)).

Therefore, by the definition of border,

|(δ(X ∩ Ci) ∩ δ(X)) ∪ (δ(X ∩ Ci) ∩ δ(X \ Ci) \ δ(X))|

= |δ(X ∩ Ci) ∩ δ(X)|+ |δ(X ∩ Ci) ∩ δ(X \ Ci) \ δ(X)| = |RX
i |+ kXi .

The other case is symmetric.

The above is the proof of the if direction. The proof for the only if direction is the same
but starting from supposing that such split (C1, C2, C3) of W exists and letting RX be
the border of (C1∩X,C2∩X,C3∩X) and RY the border of (C1∩Y,C2∩Y,C3∩Y).

7.5.3 Improvement data structure for graph branch decomposi-

tions

In the improvement data structure for branch decompositions we maintain an augmented
branch decomposition T rooted at edge r ∈ E(T) and a dynamic programming table
that stores for each node w ∈ V (T) all k-bounded borders of tripartitions of Tr[w] and

7.5 Approximating branchwidth of graphs 295

information about how many nodes in the r-subtree of w they r-cut. We call this dynamic
programming table an r-table, to signify that it is directed towards r.

In this subsection we always assume that k is an integer such that width(T) ≤ k, and
therefore we only care about k-bounded borders of tripartitions. Next we formally define
the contents of an r-table.

Definition 7.85 (r-table). Let T be a branch decomposition, r ∈ E(T) an edge of T ,
w ∈ V (T), and A = Tr[w]. The r-table of w is the pair (B, I), where B is the set of all
k-bounded borders of tripartitions of A, and I is a function mapping each R ∈ B to the
least integer i such that there exists a tripartition of A whose border R is and that r-cuts
i nodes of the r-subtree of w.

As there are 2O(k) k-bounded tripartitions of Tr[w], the r-table of w can be represented
in 2O(k) space.

Lemma 7.86. Let T be an augmented branch decomposition, r ∈ E(T), and w a non-leaf
node of T with r-children w1 and w2. Given the r-tables of w1 and w2, the r-table of w
can be constructed in 2O(k) time.

Proof. Denote A = Tr[w], X = Tr[w1], and Y = Tr[w2]. Let (Bw1 , Iw1) and (Bw2 , Iw2) be
the r-tables of w1 and w2.

We construct the r-table (B, I) of w as follows. We iterate over all pairs

(RX , RY) ∈ Bw1 × Bw2

and let B be the set of compositions of those pairs. This correctly constructs B by
Lemma 7.83 and the observation that if (C1, C2, C3) is a tripartition of A whose border
is k-bounded, then (C1 ∩ X,C2 ∩ X,C3 ∩ X) is a tripartition of X whose border is
k-bounded and (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y) is a tripartition of Y whose border is k-bounded.
For each R ∈ B we set I(R) as the minimum value of Iw1(RX) + Iw2(RY) + iw over such
pairs RX , RY whose composition R is, where iw = 1 if R is of form (. . . , r1, r2, r3, . . .)

where r1 + r2 + r3 ≥ 2, and iw = 0 otherwise. This correctly constructs I by the
observations that (C1, C2, C3) r-cuts a node w′ in the r-subtree of w1 if and only if
(C1 ∩X,C2 ∩X,C3 ∩X) r-cuts w′, (C1, C2, C3) r-cuts a node w′ in the r-subtree of w2 if
and only if (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y) r-cuts w′, and that (C1, C2, C3) r-cuts w if and only
if r1 + r2 + r3 ≥ 2.

As |Bw1||Bw2| = 2O(k), the running time is 2O(k).

296 Fast 2-approximation algorithms for rankwidth and branchwidth

Now the Init(T , r) operation can be implemented in 2O(k) · |T | time by first making T
augmented by 2 · |T | applications of Lemma 7.80 and then constructing the k-bounded
r-tables of all nodes in the order from leaves to root by |T | applications of Lemma 7.86.
For the Move(vw) operation, we note the r-table of a node x ∈ V (T) depends only on the
r-subtree of x, and therefore by Lemma 7.29 it suffices to recompute only the r-table of
the node v when using Move(vw). Therefore Move(vw) can be implemented in 2O(k) time
by a single application of Lemma 7.86. The Width() operation returns |δ(T [uv])|, which
is available because T is augmented. The Output() operation is also straightforward as it
just returns the branch decomposition we are maintaining.

The following lemma implements the operations CanImprove() and EditSet() based on
Lemma 7.84.

Lemma 7.87. Let T be a branch decomposition, uv = r ∈ E(T), and W = T [uv].
For each node w ∈ V (T) let (Bw, Iw) be the r-table of w. There is an algorithm that
returns ⊥ if there is no split of W , and otherwise returns a tuple (R,N1, N2, N3), where
(r, C1, C2, C3) is a minimum split of T , R is the edit set of (r, C1, C2, C3) and (N1, N2, N3)

is the neighborhood partition of R. The algorithm runs in time 2O(k)(|R|+ 1).

Proof. Denote X = W = Tr[u], Y = W = Tr[v]. We iterate over all pairs (RX , RY) ∈
Bu ×Bv, using Lemma 7.84 to either conclude that there exists no split of W or to find a
pair (RX , RY) such that there is a minimum split (r, C1, C2, C3) of T so that RX is the
border of (C1 ∩X,C2 ∩X,C3 ∩X), RY is the border of (C1 ∩ Y,C2 ∩ Y,C3 ∩ Y), and the
number of nodes of T r-cut by (C1, C2, C3) is Iu(RX) + Iv(RY). In time 2O(k) we either
find such a pair or conclude that there is no split of W .

We compute the edit set and the neighborhood partition with a BFS-type algorithm that
maintains a queue Q containing pairs (w,Rw), where w ∈ V (T), with the invariant that
there exists a minimum split (r, C1, C2, C3) of T so that for all (w,Rw) that appear in
the queue, Rw is the border of (C1 ∩ Tr[w], C2 ∩ Tr[w], C3 ∩ Tr[w]). We start by inserting
the pairs (u,RX) and (v,RY) to Q. We iteratively pop a pair (w,Rw) from the queue.
Denote Rw = (. . . , r1, r2, r3, . . .). If there is i such that rj = 0 for both j 6= i, then it
holds that Tr[w] ⊆ Ci, and therefore we insert w to Ni. Otherwise, we insert w to R, let
w1 and w2 be the r-children of w, and find a pair (Rw1 , Rw2) ∈ Bw1 × Bw2 so that the
composition of Rw1 and Rw2 is Rw and Iw1(Rw1) + Iw2(Rw2) + 1 = Iw(Rw). This kind of
pair exists and maintains the invariant by the definition of r-table and Lemma 7.83.

For each node w ∈ R ∪N1 ∪N2 ∪N3 we iterate over Bw1 × Bw2 and access some tables,
so the total amount of work is bounded by 2O(k) · |R ∪N1 ∪N2 ∪N3| = 2O(k) · |R|.

7.5 Approximating branchwidth of graphs 297

What is left is the Improve(R, (N1, N2, N3)) operation. Computing the improvement of T
is done in O(|R|) time by applying Lemma 7.23. Computing the border descriptions of
the newly inserted edges can be done in a bottom-up fashion starting from N1 ∪N2 ∪N3

by 2|R| applications of Lemma 7.80. Then, computing the r-tables of the newly inserted
nodes can be done also in a similar fashion in 2O(k) · |R| time by |R| applications of
Lemma 7.86.

This completes the description of the improvement data structure for branch decomposi-
tions of graphs and thus also the proof of Lemma 7.78.

298 Fast 2-approximation algorithms for rankwidth and branchwidth

Chapter 8

Conclusions

In this thesis, we introduced the local improvement technique for computing graph width
parameters. We applied this technique to a range of problems about FPT algorithms for
computing graph width parameters in various settings, from approximation to exact, from
static to dynamic, and from treewidth to rankwidth, solving several open problems from
the literature. Perhaps it could be argued that the local improvement technique represents
the third major technique for designing FPT algorithms for graph width parameters,
in addition to the top-down construction of Robertson and Seymour, and the dynamic
programming using typical sequences by Bodlaender, Kloks, Lagergren, and Arnborg.

In this chapter, we first summarize our contributions, then discuss follow-up works, and
then future directions and open problems.

8.1 Summary of contributions

We briefly summarize the contributions of Chapters 4 to 7 and provide additional remarks.

Fast 2-approximation algorithm for treewidth

In Chapter 4, we gave a O(210.8kn) time 2-approximation algorithm for treewidth. This
is an improvement over the 5-approximation algorithm by Bodlaender et al. [2016a], both
in terms of the approximation ratio and the running time as a function of k. Bodlaender
et al. did not explicitly analyze the factor 2O(k) in their algorithm’s running time, nor
did they attempt to optimize this factor in any way, but we note that their algorithm
makes use of dynamic programming with running time Ω(9w) on a tree decomposition

300 Conclusions

of width w, where an upper bound for w is 30k, yielding a rough estimate of 295k for
this factor. While our algorithm constitutes progress in improving the dependency on
k, the worst-case bound of 210.8k is still far from practical. Nevertheless, we believe our
techniques could be useful in practical implementations. In fact, the MSVS heuristic
proposed by [Koster, 1999; Koster et al., 2002] already shares some similarities with our
algorithm.

More important than the running time bounds is the new technique. We designed
a tree decomposition improvement operation based on ideas from the proofs on lean
tree decompositions from the graph theory literature, and introduced several additional
techniques to improve the approximation ratio to 2 and make the resulting algorithm
run in linear time. To the best of our knowledge, these ideas have not been previously
used in the context of computing graph width parameters. As shown by Chapters 5 to 7
of this thesis, these ideas and their generalizations turned out to also be applicable to
several other problems in the field.

Exact and (1 + ε)-approximation algorithms for treewidth

In Chapter 5, we gave a 2O(k2)n4 time algorithm for deciding if a given graph has treewidth
at most k and computing the corresponding tree decomposition, and also a kO(k/ε)n4 time
(1 + ε)-approximation algorithm for the same problem. The former algorithm answers
the long-standing open question of whether there exists a 2o(k

3)nO(1) time algorithm for
treewidth, being the first improvement in the dependence on k in exact FPT algorithms
for treewidth since the 2O(k3)nO(1) time algorithms of Bodlaender and Kloks [1996], and
Lagergren and Arnborg [1991].

For our algorithms, we introduced a problem called Subset Treewidth, extended the local
improvement technique to show that algorithms for Subset Treewidth imply algorithms
for treewidth, and finally gave branching algorithms for solving Subset Treewidth. These
techniques are in contrast to previous FPT (and also XP) algorithms for computing
treewidth exactly, all of which use dynamic programming.

In both of the algorithms of Chapter 5, the running time dependence n4 on the number
of vertices n is unusually high for FPT algorithms for treewidth. The bottleneck lies in
the polynomial-time process of iteratively improving the torso tree decomposition (X, TX)

in Subsection 5.2.3. In particular, the running times in Theorems 1.2 and 1.3 could be
stated in a tighter way as 2O(k2)n3 + kO(1)n4 and kO(k/ε)n3 + kO(1)n4, respectively.

The statement of Theorem 5.2 connecting treewidth and Subset Treewidth is technical
because we paid attention to the factors polynomial in n, so let us here note that

8.1 Summary of contributions 301

Lemma 5.14 used together with iterative compression implies the following elegant
connection between treewidth and Subset Treewidth.

Theorem 8.1. For any function f : N→ N, there is an f(k) · nO(1) time algorithm for
treewidth if and only if there is an f(k) · nO(1) time algorithm for Subset Treewidth.

Here, the “if”-direction stems from iterative application of Lemma 5.14, inserting vertices
into the graph one by one. The “only if”-direction follows from the fact that the statement
of Subset Treewidth allows us to conclude that the treewidth of G is more than k,
which implies that any algorithm for treewidth is trivially also an algorithm for Subset
Treewidth.

The proof that algorithms for Subset Treewidth imply algorithms for treewidth signifi-
cantly generalizes the techniques introduced in Chapter 4. We further made use of this
generalization in the refinement operation of Chapter 6.

Dynamic treewidth

In Chapter 6 we gave a data structure for maintaining a tree decomposition of width
at most 6k + 5 of a dynamic graph G of treewidth at most k under edge insertions and
deletions, with amortized update time 2k

O(1)
√

logn log logn. Our data structure furthermore
supports maintaining any dynamic programming scheme on the tree decomposition, with
overhead depending on the running time of computing the state of a node based on the
states of its children, which is for example 2O(k) if we wish to maintain the cardinality of
the maximum independent set of G.

Our data structure is the first non-trivial solution to the dynamic treewidth problem that
maintains a tree decomposition with width bounded by a function of an arbitrary fixed
treewidth bound k. This addresses open problems asked by [Alman et al., 2020; Bod-
laender, 1993; Chen et al., 2021; Dvořák et al., 2014; Majewski et al., 2023], although it
is not clear whether we can count these problems as fully resolved, as the running time
2k

O(1)
√

logn log logn is probably not optimal.

The main ingredient of our data structure is the refinement operation, which builds on
the generalized version of the local improvement technique introduced in Chapter 5,
combining it with the amortization ideas introduced in Chapter 4 and several other
techniques from the literature of treewidth computing.

As we discussed in Subsection 3.3.3, treewidth is an important ingredient in many
algorithms, so we hope that the dynamic treewidth data structure will be useful for

302 Conclusions

lifting these algorithms to the dynamic setting. Let us mention here a direct application
about H-minor-containment for planar graphs H, and postpone further discussion about
applications to the subsequent sections of this chapter.

Corollary 8.2. Let H be a planar graph. There exists a data structure, that for an
n-vertex dynamic graph G that is updated by edge insertions and deletions, maintains
whether H is a minor of G. The amortized initialization time on an edgeless n-vertex
graph G is f(|V (H)|) · n, and the amortized updated time is 2f(|V (H)|)·

√
logn log logn, for

some computable function f .

Proof. By the Grid Minor Theorem of Robertson and Seymour [1986b] (discussed as
Theorem 3.13 in Subsection 3.3.1), there exists an integer f(|V (H)|) so that if the
treewidth of G is more than f(|V (H)|), then G contains H as a minor. Now, we initialize
the dynamic treewidth data structure of Theorem 1.4 with the treewidth bound f(|V (H)|)
and a CMSO2 sentence ϕH that is true in G if and only if G contains H as a minor. Now,
whenever the data structure of Theorem 1.4 displays the marker “Treewidth too large” , we
know by the Grid Minor Theorem that H must be a minor of G. Otherwise, the data
structure tells whether ϕH is true in G, which tells whether H is a minor of G.

Fast 2-approximation algorithms for rankwidth and branchwidth

In Chapter 7 we gave a framework for designing FPT 2-approximation algorithms for
instantiations of branchwidth of connectivity functions. The main applications of this
framework are 2-approximation algorithms for rankwidth and branchwidth of graphs, with
running times 22O(k)

n2 and 2O(k)n, respectively. The algorithm for rankwidth answers
the open question of whether there exists a g(k)-approximation algorithm for rankwidth
running in time f(k) · nc, for c < 3 and functions g(k) and f(k). This problem had been
open since the work of Oum [2008b] and was explicitly asked by Oum [2017].

In particular, our algorithm for rankwidth has the major implication that now all CMSO1-
expressible problems can be solved in quadratic time on graphs of bounded rankwidth,
even when no decomposition is given as an input, in contrast to the previous cubic time.

Our framework extends the local improvement technique from the setting of treewidth
to the general setting of branchwidth of connectivity functions. We note that even
though a concept similar to lean tree decompositions was introduced for this setting
by Geelen et al. [2002], it appears that the definitions of Geelen et al. are too weak to
obtain approximation algorithms. Therefore we designed our own adaptation of the local
improvement technique to this setting.

8.2 Follow-up work 303

8.2 Follow-up work

Before discussing future directions, we note that the author, along with coauthors, has
already addressed some natural follow-up questions arising from the contributions of this
thesis, particularly from Chapters 6 and 7. We mention two follow-up works not included
in the thesis due to time constraints.

Dynamic Baker’s scheme. Given the dynamic treewidth algorithm, it is natural to
ask if it can be used to lift classical applications of treewidth to the dynamic setting.
Together with Wojciech Nadara, Michał Pilipczuk, and Marek Sokołowski, we explored
this question about the Baker’s scheme (see Subsection 3.3.3) in [Korhonen et al., 2024].
We partly answered this question, giving a (1− ε)-approximation algorithm for maximum
weight independent set in dynamic apex-minor-free graphs with update time f(ε) · no(1),
where f(ε) is doubly-exponential in O(1/ε2), and also a similar algorithm for weighted
dominating set, but with an extra restriction of bounded degree. Ultimately, we did
not use the dynamic treewidth data structure in this algorithm, but instead used an
ad-hoc method for dealing with tree decompositions in the dynamic setting tailored for
the Baker’s scheme.

Dynamic rankwidth. With Marek Sokołowski, we recently generalized the dynamic
treewidth data structure of Chapter 6 to rankwidth [Korhonen and Sokołowski, 2024].
We obtained a similar result as in Theorem 1.4 but for rankwidth and CMSO1 instead
of treewidth and CMSO2. This dynamic rankwidth algorithm builds upon the dynamic
treewidth algorithm, and also further develops several techniques introduced in Chapter 7.
By using the dynamic rankwidth algorithm and additional ideas, we were able to also give
a f(k)·n·2

√
logn log logn+O(m) time algorithm for computing optimal rank decompositions,

for some computable function f . This algorithm also outputs a (2k+1 − 1)-expression for
cliquewidth within the same running time, implying that CMSO1-expressible problems
can be solved with that running time on graphs of cliquewidth k.

8.3 Future directions and open problems

Finally, let us discuss future directions and pose some open problems.

304 Conclusions

Further applications of local improvement

Let us start by discussing further potential settings in which our local improvement
technique could be applied.

The first obvious class of applications is width parameters that can be expressed as
special cases of branchwidth of connectivity functions. In Chapter 7 we applied our
framework to rankwidth and branchwidth of graphs. However, parameters such as carving
width, matroid branchwidth, and hypergraph branchwidth are also expressible within
this framework (see e.g. [Jeong et al., 2021]). The main reason for not pursuing these
directions further is that it is not clear if there are applications in these settings that
make significant improvements compared to already existing algorithms.

The techniques introduced in [Korhonen and Sokołowski, 2024] suggest that an analogue
of the Subset Treewidth problem also exists in the setting of branchwidth of connectivity
functions. It could be interesting to explore whether this would be useful for faster exact
FPT algorithms in this setting. In particular, could we design an exact FPT algorithm
for computing the branchwidth of graphs by using an approach similar to the one for
treewidth in Chapter 5? This is interesting not only for the sake of computing branchwidth
but the different formalism of branchwidth could help to gain a deeper understanding of
these techniques.

It appears that the local improvement technique requires some “submodularity properties”
of decompositions to work, ruling out its application to parameters like α-treewidth
[Yolov, 2018] and fractional hypertreewidth [Grohe and Marx, 2014], at least at first
glance. A width parameter that does not fall into the framework of branchwidth of
connectivity functions but enjoys these properties is the tree-cut width [Wollan, 2015], and
indeed there exists an analogue of lean tree decompositions in that setting [Giannopoulou
et al., 2021].

Another direction is the path-like parameters, like pathwidth, cutwidth, and the linear
analogue of branchwidth of connectivity functions. In these settings, analogues of lean
tree decompositions are known to exist [Kanté et al., 2023; Lagergren, 1998], but at
least superficially it appears that techniques related to them are not applicable for
approximation algorithms. As a concrete open problem, we ask the following.

Question 1. Is there a constant-factor approximation algorithm for pathwidth with
running time 2O(k)nO(1), where k is the pathwidth and n is the number of vertices?

8.3 Future directions and open problems 305

Computing treewidth

We then turn to the topic of computing treewidth. In Chapter 4 we made progress in
the questions of what is the smallest approximation ratio with which treewidth can be
approximated (1) in 2O(k)n time, or (2) in 2O(k)nO(1) time. In Chapter 5 we addressed
the questions of what is the asymptotically smallest function f(k) so that treewidth can
be (1) computed exactly in f(k) · nO(1) time, or (2) (1 + ε)-approximated, for every fixed
ε > 0, in f(k) · nO(1) time. While all of these questions remain open and would be very
interesting to make further progress in, let us specifically highlight a case that is an
important challenge in the author’s opinion.

Question 2. Is there a 1.99-approximation algorithm for treewidth, running in time
2O(k)nO(1), where k is the treewidth and n the number of vertices?

Possible routes for solving Question 2 could be an improved algorithm for Partitioned
Subset Treewidth when the number of parts is constant, or an entirely new approach.

On the lower bound side, we are not aware of any lower bounds under the ETH for
computing treewidth, apart from the lower bound that follows from the NP-hardness
proof of Arnborg et al. [1987]. By tracing the chain of reductions in the proof, we observe
in Appendix B of the arXiv version of Article 2 [Korhonen and Lokshtanov, 2022] that it
implies the following lower bound under the ETH.

Proposition 8.3. Assuming the ETH, there is no 2o(
√
n) time algorithm for computing

treewidth.

This of course implies also a 2o(
√
k) lower bound on the dependence on k, but nothing

better since the graph produced by the reduction is co-bipartite. It would be very
surprising if there were a subexponential time algorithm for treewidth, so on the lower
bound side we ask the following question.

Question 3. Does the ETH imply that there is no 2o(n) time algorithm for computing
treewidth?

An easier version of Question 3 would be to prove a lower bound 2o(k) for the dependence
on the treewidth k in FPT algorithms. While we believe that 2O(n) should be the right
running time in the non-parameterized setting, we do not conjecture where between 2O(k)

and 2O(k2) the right answer for the dependence on k in FPT algorithms should lie.

On the approximation side, the lower bound situation is even more dire, as even the
NP-hardness of constant-factor approximation is only known conditional to the Small Set

306 Conclusions

Expansion conjecture [Raghavendra and Steurer, 2010; Wu et al., 2014]. In this setting,
the possibility for subexponential time algorithms seems more realistic than for exact
algorithms, so we ask the following question.

Question 4. Is there a 2o(n) time constant-factor approximation algorithm for treewidth?

Question 4 is closely related to the question of approximating balanced separator in
subexponential time, which is also open, see e.g. [Manurangsi and Trevisan, 2018].

Let us then discuss the running time dependence n4 on the number of vertices n in
the algorithms of Chapter 5, which is unusually high as we already noted. We believe
that improving the dependence on n in these algorithms significantly is an interesting
problem. Improving it below n3 should require new techniques, and below n2 could need
a completely new approach.

It seems that although the Bodlaender-Kloks dynamic programming is more than 30
years old, we are not aware of arguments for why it could not simply be optimized to run
in 2o(k

3)n time. As a possible direction for arguing that Bodlaender-Kloks is the optimal
“dynamic programming algorithm” for treewidth, we ask the following question about the
communication complexity of computing treewidth.

Question 5. Let k ∈ Z≥1, G be a graph, and (A, S,B) a separation of G of order
|S| ≤ O(k). Suppose Alice holds the graph G[A ∪ S] and Bob holds the graph G[B ∪ S],
and both know the set S. How many bits of information do they need to exchange to know
whether the treewidth of G is at most k?

Note that the Bodlaender-Kloks dynamic programming gives an upper bound of 2O(k3)

for the number of bits needed, but on the other hand, the algorithm of Chapter 5 does
not seem to imply an improved upper bound.

Dynamic treewidth

For dynamic treewidth, the main open problem is whether the running time of the data
structure can be improved. We ask three questions with increasing difficulty about this.

Question 6. Can the amortized update time of the dynamic treewidth data structure of
Theorem 1.4 be improved to (1) (log n)f(k), (2) f(k) · (log n)O(1), or (3) f(k) · log n, for
some function f(k) depending on the treewidth bound k?

We would be happy to answer these questions even with the width bound 6k + 5 of the
maintained tree decomposition in Theorem 1.4 weakened to any function g(k) on the

8.3 Future directions and open problems 307

treewidth bound k. In the author’s opinion, Question 6 is among the most important
open problems we ask here, due to its applications and fundamental nature. In the static
setting, the complexity of computing treewidth for fixed k was resolved over 30 years ago
by Bodlaender [1996]. Question 6 can be seen as asking for an analogue of Bodlaender’s
result in the dynamic setting.

We note that most of the techniques introduced in Chapter 6 appear to be suitable even
for achieving an update time of form f(k) · (log n)O(1). In particular, it could be that only
a slightly more clever height-reduction scheme would be required to improve Theorem 1.4
to solve the cases (1) and (2) of Question 6.

Other questions related to improving Theorem 1.4 are whether the amortized bounds can
be turned into worst-case bounds and whether the dependence on k could be improved.
While these questions are interesting, it is maybe too early to focus on them at this point,
before making progress on Question 6.

Let us then discuss potential applications of dynamic treewidth. We already mentioned
that to produce potential applications, one can take an application of treewidth in the
static setting, and ask whether it could be made dynamic, as we did in [Korhonen
et al., 2024] with the Baker’s scheme. As the area of dynamic FPT algorithms has
recently received increased attention (see e.g. [Alman et al., 2020; Chen et al., 2021; Grez
et al., 2022; Iwata and Oka, 2014; Olkowski et al., 2023]), we hope that dynamic treewidth
would see multiple applications in that context. One concrete fundamental question is
about dynamic planar k-disjoint paths.

Question 7. Is there a dynamic data structure for the k-disjoint paths problem on
dynamic planar graphs with (amortized) update time f(k) · no(1), where f(k) is some
function depending on the number of terminal pairs k.

Applying dynamic treewidth to improve the running times of static FPT algorithms,
like we did in [Korhonen and Sokołowski, 2024] with dynamic rankwidth, is another
interesting direction. Even more interesting would be if there would be applications of
dynamic treewidth outside of traditional FPT problems. For example, could replacing
dynamic trees in some applications with dynamic graphs of treewidth, say O(log log n),
be fruitful?

Computing rankwidth and cliquewidth

In Chapter 7 we made progress on the fundamental question of the complexity of
CMSO1-expressible problems on graphs of bounded rankwidth, and in [Korhonen and

308 Conclusions

Sokołowski, 2024] we further improved upon the result of Chapter 7. Clearly, the ultimate
goal is to obtain a linear-time algorithm.

Question 8. Is there an algorithm, that given an n-vertex m-edge graph G, integer k,
and a CMSO1 sentence ϕ, in time f(k, ϕ) · (n+m) either decides whether ϕ is true in G
or concludes that the rankwidth of G is more than k, for some computable function f .

We formulated Question 8 as about CMSO1, as strictly speaking algorithms for computing
rankwidth are not known to directly imply an answer for it. However, the approach for
solving Question 8 should be to give a f(k) · (n+m) time g(k)-approximation algorithm
for rankwidth, for some functions f(k) and g(k) depending on the rankwidth k.

In the case of treewidth, typical dynamic programming algorithms on tree decompositions
of width k run in time 2O(k)n, and we can obtain this running time parameterized by
the treewidth k of a given graph even when we are not given a decomposition. For
cliquewidth, typical dynamic programming algorithms also run in time 2O(k)n when given
a k-expression, but we do not know how to obtain such running times parameterized by
the cliquewidth k when not given a k-expression. As discussed before, Oum et al. [2014]
obtained 2O(k log k)nO(1) time algorithms parameterized by cliquewidth k. We ask if this
can be improved.

Question 9. Is there a 2O(k)nO(1) time algorithm for maximum independent set parame-
terized by cliquewidth k, when a k-expression is not given?

Question 9 was also asked by Oum et al. [2014]. Another well-known open problem about
cliquewidth, asked by Fellows et al. [2009], is whether computing cliquewidth exactly is
FPT parameterized by cliquewidth, or even XP. This question appears to be open even for
g(k)-approximation, for a subexponential function g(k) depending on the cliquewidth k.

Bibliography

I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Fast minor testing in
planar graphs. Algorithmica, 64(1):69–84, 2012. URL https://doi.org/10.1007/

s00453-011-9563-9.

I. Adler, S. G. Kolliopoulos, P. K. Krause, D. Lokshtanov, S. Saurabh, and D. M. Thilikos.
Irrelevant vertices for the planar disjoint paths problem. Journal of Combinatorial
Theory, Series B, 122:815–843, 2017. URL https://doi.org/10.1016/j.jctb.2016.

10.001.

J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Proceedings of the 5th Latin American Symposium on
Theoretical Informatics (LATIN 2002), volume 2286 of LNCS, pages 613–627. Springer,
2002. URL https://doi.org/10.1007/3-540-45995-2_52.

J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica, 33
(4):461–493, 2002. URL https://doi.org/10.1007/s00453-001-0116-5.

B. Alecu, M. Chudnovsky, S. Hajebi, and S. Spirkl. Induced subgraphs and tree de-
compositions XIII. Basic obstructions in H-free graphs for finite H. arXiv math,
abs/2311.05066, 2023. URL https://doi.org/10.48550/arXiv.2311.05066.

M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies. In
Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002),
pages 593–603. IEEE, 2002. URL https://doi.org/10.1109/SFCS.2002.1181983.

M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies.
Computational Complexity, 20(4):649–678, 2011. URL https://doi.org/10.1007/

s00037-011-0033-1.

J. Alman, M. Mnich, and V. V. Williams. Dynamic parameterized problems and
algorithms. ACM Transactions on Algorithms, 16(4):45:1–45:46, 2020. URL https:

//doi.org/10.1145/3395037.

https://doi.org/10.1007/s00453-011-9563-9
https://doi.org/10.1007/s00453-011-9563-9
https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.1007/3-540-45995-2_52
https://doi.org/10.1007/s00453-001-0116-5
https://doi.org/10.48550/arXiv.2311.05066
https://doi.org/10.1109/SFCS.2002.1181983
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037

310 BIBLIOGRAPHY

S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully
dynamic trees with top trees. ACM Transactions on Algorithms, 1(2):243–264, 2005.
URL https://doi.org/10.1145/1103963.1103966.

A. Amarilli and M. Monet. Weighted counting of matchings in unbounded-treewidth
graph families. In Proceedings of the 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241 of LIPIcs, pages 9:1–9:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL https://doi.org/10.

4230/LIPIcs.MFCS.2022.9. Full version: https://arxiv.org/abs/2205.00851.

A. Amarilli, P. Bourhis, and P. Senellart. Tractable lineages on treelike instances: Limits
and extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS 2016), pages 355–370. ACM, 2016. URL
https://doi.org/10.1145/2902251.2902301.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Enumeration on trees with tractable
combined complexity and efficient updates. arXiv CoRR, abs/1812.09519, 2018. URL
https://doi.org/10.48550/arXiv.1812.09519.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth. Enumeration on trees with tractable
combined complexity and efficient updates. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2019), pages
89–103. ACM, 2019. URL https://doi.org/10.1145/3294052.3319702.

A. Amarilli, F. Capelli, M. Monet, and P. Senellart. Connecting knowledge compilation
classes and width parameters. Theory of Computing Systems, 64(5):861–914, 2020.
URL https://doi.org/10.1007/s00224-019-09930-2.

E. Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448–479, 2010.
URL https://doi.org/10.1007/s00453-008-9180-4.

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted
to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989. URL https:

//doi.org/10.1016/0166-218X(89)90031-0.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8:277–284, 1987. URL
https://doi.org/10.1137/0608024.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991. URL https://doi.org/10.

1016/0196-6774(91)90006-K.

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.4230/LIPIcs.MFCS.2022.9
https://doi.org/10.4230/LIPIcs.MFCS.2022.9
https://arxiv.org/abs/2205.00851
https://doi.org/10.1145/2902251.2902301
https://doi.org/10.48550/arXiv.1812.09519
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1137/0608024
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/0196-6774(91)90006-K

BIBLIOGRAPHY 311

P. Austrin, P. Kaski, and K. Kubjas. Tensor network complexity of multilinear maps.
Theory of Computing, 18:1–54, 2022. URL https://doi.org/10.4086/toc.2022.

v018a016.

B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs
(preliminary version). In Proceedings of the 24th Annual Symposium on Foundations
of Computer Science (FOCS 1983), pages 265–273. IEEE, 1983. URL https://doi.

org/10.1109/SFCS.1983.7.

B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41(1):153–180, 1994. URL https://doi.org/10.1145/174644.

174650.

J. Baste, I. Sau, and D. M. Thilikos. Hitting minors on bounded treewidth graphs.
IV. An optimal algorithm. SIAM Journal on Computing, 52(4):865–912, 2023. URL
https://doi.org/10.1137/21m140482x.

P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351,
2004. URL https://doi.org/10.1613/jair.1410.

M. Belbasi and M. Fürer. Finding all leftmost separators of size ≤ k. In Proceedings
of 15th International Conference on Combinatorial Optimization and Applications
(COCOA 2021), volume 13135 of LNCS, pages 273–287. Springer, 2021. URL https://

doi.org/10.1007/978-3-030-92681-6_23. Full version: https://arxiv.org/abs/
2111.02614.

M. Belbasi and M. Fürer. An improvement of Reed’s treewidth approximation. Journal
of Graph Algorithms and Applications, 26(2):257–282, 2022. URL https://doi.org/

10.7155/jgaa.00593.

P. Bellenbaum and R. Diestel. Two short proofs concerning tree-decompositions. Combi-
natorics, Probability and Computing, 11(6):541–547, 2002. URL https://doi.org/10.

1017/S0963548302005369.

B. Bergougnoux and M. M. Kanté. More applications of the d-neighbor equivalence:
Acyclicity and connectivity constraints. SIAM Journal on Discrete Mathematics, 35
(3):1881–1926, 2021. URL https://doi.org/10.1137/20M1350571.

B. Bergougnoux, T. Korhonen, and J. Nederlof. Tight lower bounds for problems
parameterized by rank-width. In Proceedings of the 40th International Symposium
on Theoretical Aspects of Computer Science (STACS 2023), volume 254 of LIPIcs,
pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL

https://doi.org/10.4086/toc.2022.v018a016
https://doi.org/10.4086/toc.2022.v018a016
https://doi.org/10.1109/SFCS.1983.7
https://doi.org/10.1109/SFCS.1983.7
https://doi.org/10.1145/174644.174650
https://doi.org/10.1145/174644.174650
https://doi.org/10.1137/21m140482x
https://doi.org/10.1613/jair.1410
https://doi.org/10.1007/978-3-030-92681-6_23
https://doi.org/10.1007/978-3-030-92681-6_23
https://arxiv.org/abs/2111.02614
https://arxiv.org/abs/2111.02614
https://doi.org/10.7155/jgaa.00593
https://doi.org/10.7155/jgaa.00593
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1137/20M1350571

312 BIBLIOGRAPHY

https://doi.org/10.4230/LIPIcs.STACS.2023.11. Full version: https://arxiv.

org/abs/2210.02117.

U. Bertele and F. Brioschi. On non-serial dynamic programming. Journal of Combi-
natorial Theory, Series A, 14(2):137–148, 1973. URL https://doi.org/10.1016/

0097-3165(73)90016-2.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast
subset convolution. In Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC 2007), pages 67–74. ACM, 2007. URL https://doi.org/10.

1145/1250790.1250801.

A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion.
SIAM Journal on Computing, 39(2):546–563, 2009. URL https://doi.org/10.1137/

070683933.

H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Proceedings of the 15th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 1988), volume 317 of LNCS, pages 105–118. Springer, 1988. URL
https://doi.org/10.1007/3-540-19488-6_110.

H. L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proceedings of
the 19th International Workshop on Graph-Theoretic Concepts in Computer Science,
(WG 1993), volume 790 of LNCS, pages 112–124. Springer, 1993. URL https://doi.

org/10.1007/3-540-57899-4_45.

H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded treewidth.
Discrete Applied Mathematics, 54(2-3):101–115, 1994. URL https://doi.org/10.

1016/0166-218X(94)90018-3.

H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. URL https://doi.

org/10.1137/S0097539793251219.

H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM Journal on Computing, 27(6):1725–1746, 1998. URL https://doi.

org/10.1137/S0097539795289859.

H. L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and treewidth of
graphs. In Proceedings of the 18th International Colloquium of Automata, Languages
and Programming (ICALP 1991), volume 510 of LNCS, pages 544–555. Springer, 1991.
URL https://doi.org/10.1007/3-540-54233-7_162.

https://doi.org/10.4230/LIPIcs.STACS.2023.11
https://arxiv.org/abs/2210.02117
https://arxiv.org/abs/2210.02117
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1137/070683933
https://doi.org/10.1137/070683933
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1007/3-540-57899-4_45
https://doi.org/10.1007/3-540-57899-4_45
https://doi.org/10.1016/0166-218X(94)90018-3
https://doi.org/10.1016/0166-218X(94)90018-3
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1007/3-540-54233-7_162

BIBLIOGRAPHY 313

H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996. URL https:

//doi.org/10.1006/jagm.1996.0049.

H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete
Mathematics, 306(3):337–350, 2006. URL https://doi.org/10.1016/j.disc.2005.

12.017.

H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth.
In Proceedings of the 24th International Colloquium on Automata, Languages and
Programming (ICALP 1997), volume 1256 of LNCS, pages 627–637. Springer, 1997.
URL https://doi.org/10.1007/3-540-63165-8_217. Full version: http://hdl.

handle.net/2117/96447.

H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear
time. In Proceedings of the First International Workshop on Parameterized and Exact
Computation (IWPEC 2004), volume 3162 of LNCS, pages 37–48. Springer, 2004. URL
https://doi.org/10.1007/978-3-540-28639-4_4.

H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):
238–255, 1995. URL https://doi.org/10.1006/jagm.1995.1009.

H. L. Bodlaender, L. Cai, J. Chen, M. R. Fellows, J. A. Telle, and D. Marx. Open problems
in parameterized and exact computation – IWPEC 2006. Technical Report UU-CS-
2006-052, Department of Information and Computing Sciences, Utrecht University,
2006. URL https://dspace.library.uu.nl/handle/1874/22186.

H. L. Bodlaender, M. R. Fellows, and D. M. Thilikos. Derivation of algorithms for cutwidth
and related graph layout parameters. Journal of Computer and System Sciences, 75
(4):231–244, 2009. URL https://doi.org/10.1016/j.jcss.2008.10.003.

H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential
time algorithms for connectivity problems parameterized by treewidth. Information and
Computation, 243:86–111, 2015. URL https://doi.org/10.1016/j.ic.2014.12.008.

H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016a. URL https://doi.org/10.1137/130947374.

H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) Kernelization. Journal of the ACM, 63(5):44:1–44:69, 2016b. URL
https://doi.org/10.1145/2973749.

https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1016/j.disc.2005.12.017
https://doi.org/10.1016/j.disc.2005.12.017
https://doi.org/10.1007/3-540-63165-8_217
http://hdl.handle.net/2117/96447
http://hdl.handle.net/2117/96447
https://doi.org/10.1007/978-3-540-28639-4_4
https://doi.org/10.1006/jagm.1995.1009
https://dspace.library.uu.nl/handle/1874/22186
https://doi.org/10.1016/j.jcss.2008.10.003
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1145/2973749

314 BIBLIOGRAPHY

H. L. Bodlaender, L. Jaffke, and J. A. Telle. Typical sequences revisited - Computing
width parameters of graphs. Theory of Computing Systems, 67(1):52–88, 2023. URL
https://doi.org/10.1007/s00224-021-10030-3.

M. Bojanczyk and M. Pilipczuk. Definability equals recognizability for graphs of bounded
treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2016), pages 407–416. ACM, 2016. URL https://doi.org/

10.1145/2933575.2934508. Full version: https://arxiv.org/abs/1605.03045.

M. Bojanczyk, M. Grohe, and M. Pilipczuk. Definable decompositions for graphs of
bounded linear cliquewidth. Logical Methods in Computer Science, 17(1), 2021. URL
https://doi.org/10.23638/LMCS-17(1:5)2021.

M. Bojańczyk and M. Pilipczuk. Optimizing tree decompositions in MSO. Logical Methods
in Computer Science, 18(1), 2022. URL https://doi.org/10.46298/lmcs-18(1:

26)2022.

É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: Tractable FO
model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. URL https://doi.org/

10.1145/3486655.

R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica, 7(5&6):555–581, 1992. URL https://doi.org/10.1007/

BF01758777.

B. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable graphs and algorithms
with runtime single exponential in rankwidth. Discrete Applied Mathematics, 158(7):
809–819, 2010. URL https://doi.org/10.1016/j.dam.2009.09.009.

B. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs. Theoretical
Computer Science, 412(39):5187–5204, 2011. URL https://doi.org/10.1016/j.tcs.

2011.05.022.

S. Buss and J. Nordström. Proof complexity and SAT solving. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 233–350. IOS
Press, 2021. URL https://doi.org/10.3233/FAIA200990.

A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC 1977), pages 77–90. ACM, 1977. URL https://doi.org/10.

1145/800105.803397.

https://doi.org/10.1007/s00224-021-10030-3
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508
https://arxiv.org/abs/1605.03045
https://doi.org/10.23638/LMCS-17(1:5)2021
https://doi.org/10.46298/lmcs-18(1:26)2022
https://doi.org/10.46298/lmcs-18(1:26)2022
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://doi.org/10.1007/BF01758777
https://doi.org/10.1007/BF01758777
https://doi.org/10.1016/j.dam.2009.09.009
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.3233/FAIA200990
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397

BIBLIOGRAPHY 315

V. Chandrasekaran, N. Srebro, and P. Harsha. Complexity of inference in graphical
models. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence
(UAI 2008), pages 70–78. AUAI Press, 2008. Accessed from https://arxiv.org/abs/

1206.3240.

C. Chekuri and J. Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal of
the ACM, 63(5):40:1–40:65, 2016. URL https://doi.org/10.1145/2820609.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoret-
ical Computer Science, 239(2):211–229, 2000. URL https://doi.org/10.1016/

S0304-3975(99)00220-0.

J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node
multiway cut problem. Algorithmica, 55(1):1–13, 2009. URL https://doi.org/10.

1007/s00453-007-9130-6.

J. Chen, W. Czerwiński, Y. Disser, A. E. Feldmann, D. Hermelin, W. Nadara, M. Pilipczuk,
M. Pilipczuk, M. Sorge, B. Wróblewski, and A. Zych-Pawlewicz. Efficient fully dynamic
elimination forests with applications to detecting long paths and cycles. In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages
796–809. SIAM, 2021. URL https://doi.org/10.1137/1.9781611976465.50. Full
version: https://arxiv.org/abs/2006.00571.

L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. In Proceedings of the 63rd IEEE
Annual Symposium on Foundations of Computer Science (FOCS 2022), pages 612–623.
IEEE, 2022. URL https://doi.org/10.1109/FOCS54457.2022.00064. Full version:
https://arxiv.org/abs/2203.00671.

K. Cho, E. Oh, and S. Oh. Parameterized algorithm for the disjoint path problem on
planar graphs: Exponential in k2 and linear in n. In Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3734–3758. SIAM, 2023.
URL https://doi.org/10.1137/1.9781611977554.ch144. Full version: https://

arxiv.org/abs/2211.03341.

J. Chuzhoy and Z. Tan. Towards tight(er) bounds for the excluded grid theorem. Journal
of Combinatorial Theory, Series B, 146:219–265, 2021. URL https://doi.org/10.

1016/j.jctb.2020.09.010.

R. F. Cohen, S. Sairam, R. Tamassia, and J. S. Vitter. Dynamic algorithms for opti-
mization problems in bounded tree-width graphs. In Proceedings of the 3rd Integer
Programming and Combinatorial Optimization Conference (IPCO 1993), pages 99–112.
CIACO, 1993. The author notes he could not access this reference.

https://arxiv.org/abs/1206.3240
https://arxiv.org/abs/1206.3240
https://doi.org/10.1145/2820609
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1137/1.9781611976465.50
https://arxiv.org/abs/2006.00571
https://doi.org/10.1109/FOCS54457.2022.00064
https://arxiv.org/abs/2203.00671
https://doi.org/10.1137/1.9781611977554.ch144
https://arxiv.org/abs/2211.03341
https://arxiv.org/abs/2211.03341
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.jctb.2020.09.010

316 BIBLIOGRAPHY

W. Cook and P. D. Seymour. Tour merging via branch-decomposition. INFORMS
Journal on Computing, 15:233–248, 2003. URL https://doi.org/10.1287/ijoc.15.

3.233.16078.

D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth.
SIAM Journal on Computing, 34(4):825–847, 2005. URL https://doi.org/10.1137/

S0097539701385351.

B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990. URL https://doi.org/10.

1016/0890-5401(90)90043-H.

B. Courcelle. The monadic second-order logic of graphs V: On closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153–202, 1991.
URL https://doi.org/10.1016/0304-3975(91)90387-H.

B. Courcelle. The monadic second-order logic of graphs VIII: Orientations. Annals
of Pure and Applied Logic, 72(2):103–143, 1995. URL https://doi.org/10.1016/

0168-0072(95)94698-V.

B. Courcelle and J. Engelfriet. A logical characterization of the sets of hypergraphs
defined by hyperedge replacement grammars. Mathematical Systems Theory, 28(6):
515–552, 1995.

B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic —
A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and
its applications. Cambridge University Press, 2012. ISBN 978-0-521-89833-1. URL
https://doi.org/10.1017/CBO9780511977619.

B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Dis-
crete Applied Mathematics, 101(1-3):77–114, 2000. URL https://doi.org/10.1016/

S0166-218X(99)00184-5.

B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a conjecture
by Seese. Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007. URL
https://doi.org/10.1016/j.jctb.2006.04.003.

B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars.
Journal of Computer and System Sciences, 46(2):218–270, 1993. URL https://doi.

org/10.1016/0022-0000(93)90004-G.

B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. URL https://doi.org/10.1007/s002249910009.

https://doi.org/10.1287/ijoc.15.3.233.16078
https://doi.org/10.1287/ijoc.15.3.233.16078
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0168-0072(95)94698-V
https://doi.org/10.1016/0168-0072(95)94698-V
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1007/s002249910009

BIBLIOGRAPHY 317

B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discrete Applied Math-
ematics, 108(1-2):23–52, 2001. URL https://doi.org/10.1016/S0166-218X(00)

00221-3.

W. H. Cunningham and J. Geelen. On integer programming and the branch-width of the
constraint matrix. In Proceedings of the 12th International Integer Programming and
Combinatorial Optimization Conference (IPCO 2007), volume 4513 of LNCS, pages
158–166. Springer, 2007. URL https://doi.org/10.1007/978-3-540-72792-7_13.

M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. In Proceedings of the 52nd Annual Symposium on Foundations of
Computer Science (FOCS 2011), pages 150–159. IEEE, 2011. URL https://doi.org/

10.1109/FOCS.2011.23.

M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk. The planar directed k-Vertex-
Disjoint Paths problem is fixed-parameter tractable. In Proceedings of the 54th Annual
Symposium on Foundations of Computer Science (FOCS 2013), pages 197–207. IEEE,
2013. URL https://doi.org/10.1109/FOCS.2013.29. Full version: https://arxiv.
org/abs/1304.4207.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015. URL https://doi.org/

10.1007/978-3-319-21275-3.

M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known algorithms for edge clique cover
are probably optimal. SIAM Journal on Computing, 45(1):67–83, 2016. URL https:

//doi.org/10.1137/130947076.

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Minimum
bisection is fixed-parameter tractable. SIAM Journal on Computing, 48(2):417–450,
2019. URL https://doi.org/10.1137/140988553.

M. Cygan, P. Komosa, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, and
M. Wahlström. Randomized contractions meet lean decompositions. ACM Transactions
on Algorithms, 17(1):6:1–6:30, 2021. URL https://doi.org/10.1145/3426738.

M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. URL
https://doi.org/10.1145/3506707.

https://doi.org/10.1016/S0166-218X(00)00221-3
https://doi.org/10.1016/S0166-218X(00)00221-3
https://doi.org/10.1007/978-3-540-72792-7_13
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1109/FOCS.2013.29
https://arxiv.org/abs/1304.4207
https://arxiv.org/abs/1304.4207
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://doi.org/10.1137/130947076
https://doi.org/10.1137/140988553
https://doi.org/10.1145/3426738
https://doi.org/10.1145/3506707

318 BIBLIOGRAPHY

C. Dallard, F. V. Fomin, P. A. Golovach, T. Korhonen, and M. Milanic. Computing tree
decompositions with small independence number. arXiv CoRR, abs/2207.09993, 2022.
URL https://doi.org/10.48550/arXiv.2207.09993.

V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from
the other side. Theoretical Computer Science, 329(1-3):315–323, 2004. URL https:

//doi.org/10.1016/j.tcs.2004.08.008.

G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recognition: Application
to cographs and distance hereditary graphs. Theoretical Computer Science, 263(1-2):
99–111, 2001. URL https://doi.org/10.1016/S0304-3975(00)00234-6.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17:229–264, 2002. URL https://doi.org/10.1613/jair.989.

A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation schemes for first-
order definable optimisation problems. In Proceedings of the 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), pages 411–420. IEEE, 2006. URL https:

//doi.org/10.1109/LICS.2006.13.

A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Proceedings of the
22nd IEEE Symposium on Logic in Computer Science (LICS 2007), pages 270–279.
IEEE, 2007. URL https://doi.org/10.1109/LICS.2007.31.

A. de Colnet and S. Mengel. Characterizing tseitin-formulas with short regular resolution
refutations. Journal of Artificial Intelligence Research, 76:265–286, 2023. URL https:

//doi.org/10.1613/jair.1.13521.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41–85, 1999. URL https://doi.org/10.1016/S0004-3702(99)00059-4.

R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38(3):353–366, 1989. URL https://doi.org/10.1016/0004-3702(89)90037-4.

E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applications
through bidimensionality. Combinatorica, 28(1):19–36, 2008. URL https://doi.org/

10.1007/s00493-008-2140-4.

E. D. Demaine and M. T. Hajiaghayi. Equivalence of local treewidth and linear local
treewidth and its algorithmic applications. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2004), pages 840–849. SIAM, 2004.
URL https://dl.acm.org/doi/10.5555/982792.982919.

https://doi.org/10.48550/arXiv.2207.09993
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/S0304-3975(00)00234-6
https://doi.org/10.1613/jair.989
https://doi.org/10.1109/LICS.2006.13
https://doi.org/10.1109/LICS.2006.13
https://doi.org/10.1109/LICS.2007.31
https://doi.org/10.1613/jair.1.13521
https://doi.org/10.1613/jair.1.13521
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi.org/10.1007/s00493-008-2140-4
https://doi.org/10.1007/s00493-008-2140-4
https://dl.acm.org/doi/10.5555/982792.982919

BIBLIOGRAPHY 319

E. D. Demaine and M. T. Hajiaghayi. Bidimensionality: New connections between FPT
algorithms and ptass. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2005), pages 590–601. SIAM, 2005. URL https:

//dl.acm.org/doi/10.5555/1070432.1070514.

E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential param-
eterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of
the ACM, 52(6):866–893, 2005a. URL https://doi.org/10.1145/1101821.1101823.

E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos. Exponential speedup of
fixed-parameter algorithms for classes of graphs excluding single-crossing graphs
as minors. Algorithmica, 41(4):245–267, 2005b. URL https://doi.org/10.1007/

s00453-004-1125-y.

E. D. Demaine, M. Hajiaghayi, and D. M. Thilikos. The bidimensional theory of bounded-
genus graphs. SIAM Journal on Discrete Mathematics, 20(2):357–371, 2006. URL
https://doi.org/10.1137/040616929.

E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory:
Improved grid minor bounds and Wagner’s contraction. Algorithmica, 54(2):142–180,
2009. URL https://doi.org/10.1007/s00453-007-9138-y.

I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of
the 46th Symposium on Theory of Computing (STOC 2014), pages 624–633. ACM,
2014. URL https://doi.org/10.1145/2591796.2591884. Full version: https://

arxiv.org/abs/1305.1979.

S. Dong, Y. T. Lee, and G. Ye. A nearly-linear time algorithm for linear programs with
small treewidth: A multiscale representation of robust central path. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021),
pages 1784–1797. ACM, 2021. URL https://doi.org/10.1145/3406325.3451056.
Full version: https://arxiv.org/abs/2011.05365.

R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999. ISBN
978-0-387-94883-6. URL https://doi.org/10.1007/978-1-4612-0515-9.

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complex-
ity. Springer, 2013. ISBN 978-1-4471-5558-4. URL https://doi.org/10.1007/

978-1-4471-5559-1.

J. Dreier, N. Mählmann, and S. Siebertz. First-order model checking on structurally
sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing (STOC 2023). ACM, 2023. URL https://doi.org/10.1145/3564246.

3585186. Full version: https://arxiv.org/abs/2302.03527.

https://dl.acm.org/doi/10.5555/1070432.1070514
https://dl.acm.org/doi/10.5555/1070432.1070514
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1007/s00453-004-1125-y
https://doi.org/10.1007/s00453-004-1125-y
https://doi.org/10.1137/040616929
https://doi.org/10.1007/s00453-007-9138-y
https://doi.org/10.1145/2591796.2591884
https://arxiv.org/abs/1305.1979
https://arxiv.org/abs/1305.1979
https://doi.org/10.1145/3406325.3451056
https://arxiv.org/abs/2011.05365
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.1145/3564246.3585186
https://arxiv.org/abs/2302.03527

320 BIBLIOGRAPHY

Z. Dvorák. Thin graph classes and polynomial-time approximation schemes. In Proceedings
of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pages
1685–1701. SIAM, 2018. URL https://doi.org/10.1137/1.9781611975031.110.
Full version: https://arxiv.org/abs/1704.00125.

Z. Dvorák, D. Král, and R. Thomas. Testing first-order properties for subclasses of
sparse graphs. Journal of the ACM, 60(5):36:1–36:24, 2013. URL https://doi.org/

10.1145/2499483.

Z. Dvořák, M. Kupec, and V. Tůma. A dynamic data structure for MSO properties
in graphs with bounded tree-depth. In Proceedings of the 22th Annual European
Symposium on Algorithms (ESA 2014), volume 8737 of LNCS, pages 334–345. Springer,
2014. URL https://doi.org/10.1007/978-3-662-44777-2_28.

M. Elberfeld and P. Schweitzer. Canonizing graphs of bounded tree width in logspace.
ACM Transactions on Computation Theory, 9(3):12:1–12:29, 2017. URL https://doi.

org/10.1145/3132720.

M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender
and Courcelle. In Proceedings of the 51th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2010), pages 143–152. IEEE, 2010. URL https://doi.

org/10.1109/FOCS.2010.21. Full version: https://eccc.weizmann.ac.il/report/
2010/062/.

D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27
(3):275–291, 2000. URL https://doi.org/10.1007/s004530010020.

D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer. Separator based sparsification.
I. Planary testing and minimum spanning trees. Journal of Computer and System
Sciences, 52(1):3–27, 1996. URL https://doi.org/10.1006/jcss.1996.0002.

J. Erde. A unified treatment of linked and lean tree-decompositions. Journal of Com-
binatorial Theory, Series B, 130:114–143, 2018. URL https://doi.org/10.1016/j.

jctb.2017.12.001.

W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial time. In Proceedings of the 27th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG 2001), volume
2204 of LNCS, pages 117–128. Springer, 2001. URL https://doi.org/10.1007/

3-540-45477-2_12.

C. C. Fast and I. V. Hicks. A branch decomposition algorithm for the p-median problem.
INFORMS Journal on Computing, 29(3):474–488, 2017. URL https://doi.org/10.

1287/ijoc.2016.0743.

https://doi.org/10.1137/1.9781611975031.110
https://arxiv.org/abs/1704.00125
https://doi.org/10.1145/2499483
https://doi.org/10.1145/2499483
https://doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1145/3132720
https://doi.org/10.1145/3132720
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1109/FOCS.2010.21
https://eccc.weizmann.ac.il/report/2010/062/
https://eccc.weizmann.ac.il/report/2010/062/
https://doi.org/10.1007/s004530010020
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1016/j.jctb.2017.12.001
https://doi.org/10.1016/j.jctb.2017.12.001
https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1287/ijoc.2016.0743
https://doi.org/10.1287/ijoc.2016.0743

BIBLIOGRAPHY 321

T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory.
SIAM Journal on Computing, 28(1):57–104, 1998. URL https://doi.org/10.1137/

S0097539794266766.

U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for minimum
weight vertex separators. SIAM Journal on Computing, 38(2):629–657, 2008. URL
https://doi.org/10.1137/05064299X.

M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of polynomial-
time algorithms. Journal of Computer and System Sciences, 49(3):769–779, 1994. URL
https://doi.org/10.1016/S0022-0000(05)80079-0.

M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-complete.
SIAM Journal on Discrete Mathematics, 23(2):909–939, 2009. URL https://doi.org/

10.1137/070687256.

J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM Journal on Computing, 31(1):113–145, 2001. URL https://doi.org/10.1137/

S0097539799360768.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. ISBN
978-3-540-29952-3. URL https://doi.org/10.1007/3-540-29953-X.

F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width
and exponential speed-up. SIAM Journal on Computing, 36:281–309, 2006. URL
https://doi.org/10.1137/S0097539702419649.

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Intractability of clique-
width parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010. URL
https://doi.org/10.1137/080742270.

F. V. Fomin, P. A. Golovach, and D. M. Thilikos. Contraction obstructions for treewidth.
Journal of Combinatorial Theory, Series B, 101(5):302–314, 2011a. URL https:

//doi.org/10.1016/j.jctb.2011.02.008.

F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms for
partial cover problems. Information Processing Letters, 111(16):814–818, 2011b. URL
https://doi.org/10.1016/j.ipl.2011.05.016.

F. V. Fomin, I. Todinca, and Y. Villanger. Large induced subgraphs via triangulations
and CMSO. SIAM Journal on Computing, 44(1):54–87, 2015. URL https://doi.org/

10.1137/140964801.

https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/05064299X
https://doi.org/10.1016/S0022-0000(05)80079-0
https://doi.org/10.1137/070687256
https://doi.org/10.1137/070687256
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1137/080742270
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.1016/j.ipl.2011.05.016
https://doi.org/10.1137/140964801
https://doi.org/10.1137/140964801

322 BIBLIOGRAPHY

F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient computation of
representative families with applications in parameterized and exact algorithms. Journal
of the ACM, 63(4):29:1–29:60, 2016. URL https://doi.org/10.1145/2886094.

F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Representative families of
product families. ACM Transactions on Algorithms, 13(3):36:1–36:29, 2017. URL
https://doi.org/10.1145/3039243.

F. V. Fomin, D. Lokshtanov, S. Saurabh, M. Pilipczuk, and M. Wrochna. Fully polynomial-
time parameterized computations for graphs and matrices of low treewidth. ACM
Transactions on Algorithms, 14(3):34:1–34:45, 2018. URL https://doi.org/10.1145/

3186898.

F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and
kernels. SIAM Journal on Computing, 49(6):1397–1422, 2020. URL https://doi.

org/10.1137/16M1080264.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian journal of
Mathematics, 8:399–404, 1956. URL https://doi.org/10.4153/CJM-1956-045-5.

E. Fox-Epstein, P. N. Klein, and A. Schild. Embedding planar graphs into low-treewidth
graphs with applications to efficient approximation schemes for metric problems.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2019), pages 1069–1088. SIAM, 2019. URL https://doi.org/10.1137/1.

9781611975482.66.

G. N. Frederickson. A data structure for dynamically maintaining rooted trees. Journal
of Algorithms, 24(1):37–65, 1997. URL https://doi.org/10.1006/jagm.1996.0835.

G. N. Frederickson. Maintaining regular properties dynamically in k-terminal graphs.
Algorithmica, 22(3):330–350, 1998. URL https://doi.org/10.1007/PL00009227.

E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In
Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990),
pages 4–9. AAAI Press / The MIT Press, 1990. URL http://www.aaai.org/Library/

AAAI/1990/aaai90-001.php.

M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM, 48(6):1184–1206, 2001. URL https://doi.org/10.

1145/504794.504798.

H. Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathemat-

https://doi.org/10.1145/2886094
https://doi.org/10.1145/3039243
https://doi.org/10.1145/3186898
https://doi.org/10.1145/3186898
https://doi.org/10.1137/16M1080264
https://doi.org/10.1137/16M1080264
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1006/jagm.1996.0835
https://doi.org/10.1007/PL00009227
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
https://doi.org/10.1145/504794.504798
https://doi.org/10.1145/504794.504798

BIBLIOGRAPHY 323

ics, pages 105–135. Elsevier, 1982. URL https://doi.org/10.1016/S0049-237X(08)

71879-2.

R. Ganian and P. Hliněný. On parse trees and myhill-nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics, 158(7):851–867, 2010.
URL https://doi.org/10.1016/j.dam.2009.10.018.

R. Ganian, P. Hliněný, and J. Obdrzálek. Better algorithms for satisfiability problems
for formulas of bounded rank-width. Fundamenta Informaticae, 123(1):59–76, 2013.
URL https://doi.org/10.3233/FI-2013-800.

R. Ganian, P. Hliněný, A. Langer, J. Obdrzálek, P. Rossmanith, and S. Sikdar. Lower
bounds on the complexity of MSO1 model-checking. Journal of Computer and System
Sciences, 80(1):180–194, 2014. URL https://doi.org/10.1016/j.jcss.2013.07.

005.

J. Geelen, O. Kwon, R. McCarty, and P. Wollan. The grid theorem for vertex-minors.
Journal of Combinatorial Theory, Series B, 158(1):93–116, 2023. URL https://doi.

org/10.1016/j.jctb.2020.08.004.

J. F. Geelen, A. M. H. Gerards, and G. Whittle. Branch-width and well-quasi-ordering
in matroids and graphs. Journal of Combinatorial Theory, Series B, 84(2):270–290,
2002. URL https://doi.org/10.1006/jctb.2001.2082.

M. U. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoretical Computer Science, 299(1-3):719–734, 2003. URL
https://doi.org/10.1016/S0304-3975(02)00725-9.

A. C. Giannopoulou, M. Pilipczuk, J. Raymond, D. M. Thilikos, and M. Wrochna.
Cutwidth: Obstructions and algorithmic aspects. Algorithmica, 81(2):557–588, 2019.
URL https://doi.org/10.1007/s00453-018-0424-7.

A. C. Giannopoulou, O. Kwon, J. Raymond, and D. M. Thilikos. A Menger-like property
of tree-cut width. Journal of Combinatorial Theory, Series B, 148:1–22, 2021. URL
https://doi.org/10.1016/j.jctb.2020.12.005.

V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In Proceedings
of the 20th Conference in Uncertainty in Artificial Intelligence (UAI 2004), pages
201–208. AUAI Press, 2004. Accessed from https://arxiv.org/abs/1207.4109.

G. Goranci, H. Räcke, T. Saranurak, and Z. Tan. The expander hierarchy and
its applications to dynamic graph algorithms. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA 2021), pages 2212–2228. SIAM,

https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1016/j.dam.2009.10.018
https://doi.org/10.3233/FI-2013-800
https://doi.org/10.1016/j.jcss.2013.07.005
https://doi.org/10.1016/j.jcss.2013.07.005
https://doi.org/10.1016/j.jctb.2020.08.004
https://doi.org/10.1016/j.jctb.2020.08.004
https://doi.org/10.1006/jctb.2001.2082
https://doi.org/10.1016/S0304-3975(02)00725-9
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.1016/j.jctb.2020.12.005
https://arxiv.org/abs/1207.4109

324 BIBLIOGRAPHY

2021. URL https://doi.org/10.1137/1.9781611976465.132. Full version: https:
//arxiv.org/abs/2005.02369.

G. Gottlob and R. Pichler. Hypergraphs in model checking: Acyclicity and hypertree-
width versus clique-width. SIAM Journal on Computing, 33(2):351–378, 2004. URL
https://doi.org/10.1137/S0097539701396807.

G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
Journal of Computer and System Sciences, 64(3):579–627, 2002. URL https://doi.

org/10.1006/jcss.2001.1809.

A. Grez, F. Mazowiecki, M. Pilipczuk, G. Puppis, and C. Riveros. Dynamic data
structures for timed automata acceptance. Algorithmica, 84(11):3223–3245, 2022. URL
https://doi.org/10.1007/s00453-022-01025-8.

M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Combina-
torica, 23(4):613–632, 2003. URL https://doi.org/10.1007/s00493-003-0037-9.

M. Grohe. Computing crossing numbers in quadratic time. Journal of Computer and
System Sciences, 68(2):285–302, 2004. URL https://doi.org/10.1016/j.jcss.2003.

07.008.

M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007. URL https:

//doi.org/10.1145/1206035.1206036.

M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Transactions
on Algorithms, 11(1):4:1–4:20, 2014. URL https://doi.org/10.1145/2636918.

M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015.
URL https://doi.org/10.1137/120892234.

M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries
tractable? In Proceedings on 33rd Annual ACM Symposium on Theory of Computing
(STOC 2001), pages 657–666. ACM, 2001. URL https://doi.org/10.1145/380752.

380867.

M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense
graphs. Journal of the ACM, 64(3):17:1–17:32, 2017. URL https://doi.org/10.

1145/3051095.

Q. Gu and H. Tamaki. Improved bounds on the planar branchwidth with respect to the
largest grid minor size. Algorithmica, 64(3):416–453, 2012. URL https://doi.org/

10.1007/s00453-012-9627-5.

https://doi.org/10.1137/1.9781611976465.132
https://arxiv.org/abs/2005.02369
https://arxiv.org/abs/2005.02369
https://doi.org/10.1137/S0097539701396807
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1007/s00453-022-01025-8
https://doi.org/10.1007/s00493-003-0037-9
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/2636918
https://doi.org/10.1137/120892234
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3051095
https://doi.org/10.1007/s00453-012-9627-5
https://doi.org/10.1007/s00453-012-9627-5

BIBLIOGRAPHY 325

T. Hagerup. Dynamic algorithms for graphs of bounded treewidth. Algorithmica, 27(3):
292–315, 2000. URL https://doi.org/10.1007/s004530010021.

R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976. URL
https://doi.org/10.1007/BF01917434.

P. Hliněný. A parametrized algorithm for matroid branch-width. SIAM Journal on Com-
puting, 35(2):259–277, 2005. URL https://doi.org/10.1137/S0097539702418589.

P. Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids.
Journal of Combinatorial Theory, Series B, 96(3):325–351, 2006. URL https://doi.

org/10.1016/j.jctb.2005.08.005.

P. Hliněný and S. Oum. Finding branch-decompositions and rank-decompositions. SIAM
Journal on Computing, 38(3):1012–1032, 2008. URL https://doi.org/10.1137/

070685920.

P. Hliněný and D. Seese. Trees, grids, and MSO decidability: From graphs to matroids.
Theoretical Computer Science, 351(3):372–393, 2006. URL https://doi.org/10.1016/

j.tcs.2005.10.006.

P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width
and their applications. Comput. J., 51(3):326–362, 2008. URL https://doi.org/10.

1093/comjnl/bxm052.

H. B. Hunt, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. Journal of Algorithms, 26(2):238–274, 1998. URL https:

//doi.org/10.1006/jagm.1997.0903.

R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001. URL https://doi.org/10.1006/jcss.2000.

1727.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity. Journal of Computer and System Sciences, 63(4):512–530, 2001. URL
https://doi.org/10.1006/jcss.2001.1774.

T. Inamdar, D. Lokshtanov, S. Saurabh, and V. Surianarayanan. Parameterized com-
plexity of fair bisection: (FPT-approximation meets unbreakability). In Proceedings
of the 31st Annual European Symposium on Algorithms (ESA 2023), volume 274 of
LIPIcs, pages 63:1–63:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
URL https://doi.org/10.4230/LIPIcs.ESA.2023.63.

https://doi.org/10.1007/s004530010021
https://doi.org/10.1007/BF01917434
https://doi.org/10.1137/S0097539702418589
https://doi.org/10.1016/j.jctb.2005.08.005
https://doi.org/10.1016/j.jctb.2005.08.005
https://doi.org/10.1137/070685920
https://doi.org/10.1137/070685920
https://doi.org/10.1016/j.tcs.2005.10.006
https://doi.org/10.1016/j.tcs.2005.10.006
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jagm.1997.0903
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.ESA.2023.63

326 BIBLIOGRAPHY

D. Itsykson, A. Riazanov, D. Sagunov, and P. Smirnov. Near-optimal lower
bounds on regular resolution refutations of tseitin formulas for all constant-degree
graphs. Computational Complexity, 30(2):13, 2021. URL https://doi.org/10.1007/

s00037-021-00213-2.

D. Itsykson, A. Riazanov, and P. Smirnov. Tight bounds for Tseitin formulas. In Proceed-
ings of the 25th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2022), volume 236 of LIPIcs, pages 6:1–6:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. URL https://doi.org/10.4230/LIPIcs.SAT.2022.6.

Y. Iwata and K. Oka. Fast dynamic graph algorithms for parameterized problems.
In Proceedings of the 14th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2014), volume 8503 of LNCS, pages 241–252. Springer, 2014. URL
https://doi.org/10.1007/978-3-319-08404-6_21.

B. M. P. Jansen, J. J. H. de Kroon, and M. Wlodarczyk. 5-approximation for H-treewidth
essentially as fast as H-deletion parameterized by solution size. In Proceedings of the
31st Annual European Symposium on Algorithms (ESA 2023), volume 274 of LIPIcs,
pages 66:1–66:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL
https://doi.org/10.4230/LIPIcs.ESA.2023.66.

J. Jeong, E. J. Kim, and S. Oum. The "art of trellis decoding" is fixed-parameter tractable.
IEEE Trans. Inf. Theory, 63(11):7178–7205, 2017. URL https://doi.org/10.1109/

TIT.2017.2740283.

J. Jeong, E. J. Kim, and S. Oum. Finding branch-decompositions of matroids, hypergraphs,
and more. SIAM Journal on Discrete Mathematics, 35(4):2544–2617, 2021. URL
https://doi.org/10.1137/19M1285895.

M. Jerrum and M. Snir. Some exact complexity results for straight-line computations
over semirings. Journal of the ACM, 29(3):874–897, 1982. URL https://doi.org/10.

1145/322326.322341.

M. Johnson, B. Martin, J. J. Oostveen, S. Pandey, D. Paulusma, S. Smith, and E. J. van
Leeuwen. Complexity framework for forbidden subgraphs. arXiv CoRR, abs/2211.12887,
2022. URL https://doi.org/10.48550/arXiv.2211.12887.

T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal
of Combinatorial Theory, Series B, 82(1):138–154, 2001. URL https://doi.org/10.

1006/jctb.2000.2031.

S. Jukna. Tropical Circuit Complexity: Limits of Pure Dynamic Programming.
Springer, 2023. ISBN 978-3-031-42353-6. URL https://doi.org/10.1007/

978-3-031-42354-3.

https://doi.org/10.1007/s00037-021-00213-2
https://doi.org/10.1007/s00037-021-00213-2
https://doi.org/10.4230/LIPIcs.SAT.2022.6
https://doi.org/10.1007/978-3-319-08404-6_21
https://doi.org/10.4230/LIPIcs.ESA.2023.66
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.1137/19M1285895
https://doi.org/10.1145/322326.322341
https://doi.org/10.1145/322326.322341
https://doi.org/10.48550/arXiv.2211.12887
https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1007/978-3-031-42354-3
https://doi.org/10.1007/978-3-031-42354-3

BIBLIOGRAPHY 327

M. M. Kanté, E. J. Kim, O. Kwon, and S. Oum. Obstructions for matroids of path-width
at most k and graphs of linear rank-width at most k. Journal of Combinatorial Theory,
Series B, 160:15–35, 2023. URL https://doi.org/10.1016/j.jctb.2022.12.004.

K. Kawarabayashi and Y. Kobayashi. Linear min-max relation between the treewidth of
an H -minor-free graph and its largest grid minor. Journal of Combinatorial Theory,
Series B, 141:165–180, 2020. URL https://doi.org/10.1016/j.jctb.2019.07.007.

K. Kawarabayashi and S. Kreutzer. The directed grid theorem. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC 2015),
pages 655–664. ACM, 2015. URL https://doi.org/10.1145/2746539.2746586. Full
version: https://arxiv.org/abs/1411.5681.

K. Kawarabayashi and P. Wollan. A simpler algorithm and shorter proof for the graph mi-
nor decomposition. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC 2011), pages 451–458. ACM, 2011. URL https://doi.org/10.1145/1993636.

1993697. Full version: http://research.nii.ac.jp/~k_keniti/easystruct.pdf.

K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.
URL https://doi.org/10.1016/j.jctb.2011.07.004.

S. Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing (STOC 2002), pages 767–775. ACM, 2002.
URL https://doi.org/10.1145/509907.510017.

E. J. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos. An FPT 2-approximation for
tree-cut decomposition. Algorithmica, 80(1):116–135, 2018. URL https://doi.org/

10.1007/s00453-016-0245-5.

U. Kjærulff. Optimal decomposition of probabilistic networks by simulated annealing.
Statistics and Computing, 2:7–17, 1992. URL https://doi.org/10.1007/BF01890544.

P. N. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC 1993), pages 682–690. ACM, 1993. URL https://doi.org/10.

1145/167088.167261.

J. Kleinberg and É. Tardos. Algorithm design. Pearson, 2005. ISBN 0-321-29535-8.

T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994. ISBN 3-540-58356-4. URL https://doi.org/10.1007/BFb0045375.

https://doi.org/10.1016/j.jctb.2022.12.004
https://doi.org/10.1016/j.jctb.2019.07.007
https://doi.org/10.1145/2746539.2746586
https://arxiv.org/abs/1411.5681
https://doi.org/10.1145/1993636.1993697
https://doi.org/10.1145/1993636.1993697
http://research.nii.ac.jp/~k_keniti/easystruct.pdf
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1145/509907.510017
https://doi.org/10.1007/s00453-016-0245-5
https://doi.org/10.1007/s00453-016-0245-5
https://doi.org/10.1007/BF01890544
https://doi.org/10.1145/167088.167261
https://doi.org/10.1145/167088.167261
https://doi.org/10.1007/BFb0045375

328 BIBLIOGRAPHY

D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003. URL https:

//doi.org/10.1016/S0166-218X(02)00198-1.

P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
Journal of Computer and System Sciences, 61(2):302–332, 2000. URL https://doi.

org/10.1006/jcss.2000.1713.

B. Komarath, A. Pandey, and C. S. Rahul. Monotone arithmetic complexity of graph
homomorphism polynomials. Algorithmica, 85(9):2554–2579, 2023. URL https://doi.

org/10.1007/s00453-023-01108-0.

T. Korhonen. Lower bounds on dynamic programming for maximum weight independent
set. In Proceedings of the 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021), volume 198 of LIPIcs, pages 87:1–87:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL https://doi.org/10.4230/

LIPIcs.ICALP.2021.87.

T. Korhonen. Grid induced minor theorem for graphs of small degree. Journal of
Combinatorial Theory, Series B, 160:206–214, 2023. URL https://doi.org/10.1016/

j.jctb.2023.01.002.

T. Korhonen and D. Lokshtanov. An improved parameterized algorithm for treewidth.
arXiv CoRR, abs/2211.07154, 2022. URL https://doi.org/10.48550/arXiv.2211.

07154.

T. Korhonen and M. Sokołowski. Almost-linear time parameterized algorithm for
rankwidth via dynamic rankwidth. arXiv CoRR, abs/2402.12364, 2024. URL
https://doi.org/10.48550/arXiv.2402.12364. Accepted to appear in STOC 2024.

T. Korhonen, W. Nadara, M. Pilipczuk, and M. Sokołowski. Fully dynamic approximation
schemes on planar and apex-minor-free graphs. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 296–313. SIAM,
2024. URL https://doi.org/10.1137/1.9781611977912.12. Full version: https:

//arxiv.org/abs/2310.20623.

A. M. C. A. Koster. Frequency Assignment: Models and Algorithms. PhD thesis,
Maastricht University, 1999. URL https://doi.org/10.26481/dis.19991104ak.

A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40(3):170–180, 2002. URL
https://doi.org/10.1002/net.10046.

https://doi.org/10.1016/S0166-218X(02)00198-1
https://doi.org/10.1016/S0166-218X(02)00198-1
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1007/s00453-023-01108-0
https://doi.org/10.1007/s00453-023-01108-0
https://doi.org/10.4230/LIPIcs.ICALP.2021.87
https://doi.org/10.4230/LIPIcs.ICALP.2021.87
https://doi.org/10.1016/j.jctb.2023.01.002
https://doi.org/10.1016/j.jctb.2023.01.002
https://doi.org/10.48550/arXiv.2211.07154
https://doi.org/10.48550/arXiv.2211.07154
https://doi.org/10.48550/arXiv.2402.12364
https://doi.org/10.1137/1.9781611977912.12
https://arxiv.org/abs/2310.20623
https://arxiv.org/abs/2310.20623
https://doi.org/10.26481/dis.19991104ak
https://doi.org/10.1002/net.10046

BIBLIOGRAPHY 329

S. Kreutzer and S. Tazari. On brambles, grid-like minors, and parameterized in-
tractability of Monadic Second-Order logic. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages 354–364. SIAM,
2010a. URL https://doi.org/10.1137/1.9781611973075.30. Full version: https:
//arxiv.org/abs/0907.3076.

S. Kreutzer and S. Tazari. Lower bounds for the complexity of Monadic Second-Order
logic. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science (LICS 2010), pages 189–198. IEEE, 2010b. URL https://doi.org/10.1109/

LICS.2010.39.

K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathe-
maticae, 15:271–283, 1930. URL https://eudml.org/doc/212352.

J. H. P. Kwisthout, H. L. Bodlaender, and L. C. van der Gaag. The necessity of bounded
treewidth for efficient inference in bayesian networks. In Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010), volume 215 of Frontiers
in Artificial Intelligence and Applications, pages 237–242. IOS Press, 2010. URL
https://doi.org/10.3233/978-1-60750-606-5-237.

J. Lagergren. Efficient parallel algorithms for tree-decomposition and related problems.
In Proceedings of the 31st Annual Symposium on Foundations of Computer Science
(FOCS 1990), pages 173–182. IEEE, 1990. URL https://doi.org/10.1109/FSCS.

1990.89536.

J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. Journal of
Algorithms, 20(1):20–44, 1996. URL https://doi.org/10.1006/jagm.1996.0002.

J. Lagergren. Upper bounds on the size of obstructions and intertwines. Journal of
Combinatorial Theory, Series B, 73(1):7–40, 1998. URL https://doi.org/10.1006/

jctb.1997.1788.

J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite congruence.
In Proceedings of the 18th International Colloquium of Automata, Languages and
Programming (ICALP 1991), volume 510 of LNCS, pages 532–543. Springer, 1991.
URL https://doi.org/10.1007/3-540-54233-7_161.

M. Lampis. Finer tight bounds for coloring on clique-width. SIAM Journal on Discrete
Mathematics, 34(3):1538–1558, 2020. URL https://doi.org/10.1137/19M1280326.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), 50(2):157–224, 1988. URL https://www.jstor.

org/stable/2345762.

https://doi.org/10.1137/1.9781611973075.30
https://arxiv.org/abs/0907.3076
https://arxiv.org/abs/0907.3076
https://doi.org/10.1109/LICS.2010.39
https://doi.org/10.1109/LICS.2010.39
https://eudml.org/doc/212352
https://doi.org/10.3233/978-1-60750-606-5-237
https://doi.org/10.1109/FSCS.1990.89536
https://doi.org/10.1109/FSCS.1990.89536
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1137/19M1280326
https://www.jstor.org/stable/2345762
https://www.jstor.org/stable/2345762

330 BIBLIOGRAPHY

A. Leaf and P. D. Seymour. Tree-width and planar minors. Journal of Combinatorial
Theory, Series B, 111:38–53, 2015. URL https://doi.org/10.1016/j.jctb.2014.

09.003.

F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999. URL
https://doi.org/10.1145/331524.331526.

Y. Li, A. A. Razborov, and B. Rossman. On the AC0 complexity of subgraph isomorphism.
SIAM Journal on Computing, 46(3):936–971, 2017. URL https://doi.org/10.1137/

14099721X.

D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter tractable
canonization and isomorphism test for graphs of bounded treewidth. SIAM Journal on
Computing, 46(1):161–189, 2017. URL https://doi.org/10.1137/140999980.

D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized
problems. SIAM Journal on Computing, 47(3):675–702, 2018a. URL https://doi.

org/10.1137/16M1104834.

D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Transactions on Algorithms, 14(2):13:1–13:30,
2018b. URL https://doi.org/10.1145/3170442.

D. Lokshtanov, P. Misra, M. Pilipczuk, S. Saurabh, and M. Zehavi. An exponential
time parameterized algorithm for planar disjoint paths. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (STOC 2020), pages
1307–1316. ACM, 2020a. URL https://doi.org/10.1145/3357713.3384250. Full
version: https://arxiv.org/abs/2103.17041.

D. Lokshtanov, S. Saurabh, and V. Surianarayanan. A parameterized approximation
scheme for min k-cut. In Proceedings of the 61st IEEE Annual Symposium on Foun-
dations of Computer Science (FOCS 2020), pages 798–809. IEEE, 2020b. URL
https://doi.org/10.1109/FOCS46700.2020.00079. Full version: https://arxiv.

org/abs/2005.00134.

K. Majewski, M. Pilipczuk, and M. Sokołowski. Maintaining CMSO2 properties on
dynamic structures with bounded feedback vertex number. In Proceedings of the
40th International Symposium on Theoretical Aspects of Computer Science (STACS
2023), volume 254 of LIPIcs, pages 46:1–46:13. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik, 2023. URL https://doi.org/10.4230/LIPIcs.STACS.2023.46. Full
version: https://arxiv.org/abs/2107.06232.

https://doi.org/10.1016/j.jctb.2014.09.003
https://doi.org/10.1016/j.jctb.2014.09.003
https://doi.org/10.1145/331524.331526
https://doi.org/10.1137/14099721X
https://doi.org/10.1137/14099721X
https://doi.org/10.1137/140999980
https://doi.org/10.1137/16M1104834
https://doi.org/10.1137/16M1104834
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3357713.3384250
https://arxiv.org/abs/2103.17041
https://doi.org/10.1109/FOCS46700.2020.00079
https://arxiv.org/abs/2005.00134
https://arxiv.org/abs/2005.00134
https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://arxiv.org/abs/2107.06232

BIBLIOGRAPHY 331

J. A. Makowsky and J. Mariño. Tree-width and the monadic quantifier hierarchy.
Theoretical Computer Science, 303(1):157–170, 2003. URL https://doi.org/10.

1016/S0304-3975(02)00449-8.

P. Manurangsi and L. Trevisan. Mildly exponential time approximation algorithms
for vertex cover, balanced separator and uniform sparsest cut. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2018), volume 116 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. URL https://doi.org/10.4230/LIPIcs.

APPROX-RANDOM.2018.20. Full version: https://arxiv.org/abs/1807.09898.

I. L. Markov and Y. Shi. Simulating quantum computation by contracting tensor networks.
SIAM Journal on Computing, 38(3):963–981, 2008. URL https://doi.org/10.1137/

050644756.

D. Marx. Parameterized graph separation problems. Theoretical Computer Science, 351
(3):394–406, 2006. URL https://doi.org/10.1016/j.tcs.2005.10.007.

D. Marx. Approximating fractional hypertree width. ACM Transactions on Algorithms,
6(2):29:1–29:17, 2010a. URL https://doi.org/10.1145/1721837.1721845.

D. Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010b. URL
https://doi.org/10.4086/toc.2010.v006a005.

D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM, 60(6):42:1–42:51, 2013. URL https://doi.org/10.

1145/2535926.

D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM Journal on Computing, 43(2):355–388, 2014. URL
https://doi.org/10.1137/110855247.

J. Matoušek and R. Thomas. Algorithms finding tree-decompositions of graphs. Journal
of Algorithms, 12(1):1–22, 1991. URL https://doi.org/10.1016/0196-6774(91)

90020-Y.

K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
URL http://eudml.org/doc/211191.

C. J. Muise, S. A. McIlraith, J. C. Beck, and E. I. Hsu. Dsharp: Fast d-DNNF compi-
lation with sharpSAT. In Proceedings of the 25th Canadian Conference on Artificial
Intelligence (Canadian AI 2012), volume 7310 of LNCS, pages 356–361. Springer, 2012.
URL https://doi.org/10.1007/978-3-642-30353-1_36.

https://doi.org/10.1016/S0304-3975(02)00449-8
https://doi.org/10.1016/S0304-3975(02)00449-8
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
https://arxiv.org/abs/1807.09898
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1145/1721837.1721845
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1145/2535926
https://doi.org/10.1145/2535926
https://doi.org/10.1137/110855247
https://doi.org/10.1016/0196-6774(91)90020-Y
https://doi.org/10.1016/0196-6774(91)90020-Y
http://eudml.org/doc/211191
https://doi.org/10.1007/978-3-642-30353-1_36

332 BIBLIOGRAPHY

M. Niewerth. MSO queries on trees: Enumerating answers under updates using forest
algebras. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2018), pages 769–778. ACM, 2018. URL https://doi.org/

10.1145/3209108.3209144.

J. Olkowski, M. Pilipczuk, M. Rychlicki, K. Węgrzycki, and A. Zych-Pawlewicz. Dynamic
data structures for parameterized string problems. In Proceedings of the 40th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2023), volume
254 of LIPIcs, pages 50:1–50:22. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
2023. URL https://doi.org/10.4230/LIPIcs.STACS.2023.50.

S. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B, 95
(1):79–100, 2005. URL https://doi.org/10.1016/j.jctb.2005.03.003.

S. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory, 57
(3):239–244, 2008a. URL https://doi.org/10.1002/jgt.20280.

S. Oum. Approximating rank-width and clique-width quickly. ACM Transactions on
Algorithms, 5(1), 2008b. URL https://doi.org/10.1145/1435375.1435385.

S. Oum. Excluding a bipartite circle graph from line graphs. Journal of Graph Theory,
60(3):183–203, 2009. URL https://doi.org/10.1002/jgt.20353.

S. Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathematics,
231:15–24, 2017. URL https://doi.org/10.1016/j.dam.2016.08.006.

S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006. URL https://doi.org/10.

1016/j.jctb.2005.10.006.

S. Oum and P. D. Seymour. Testing branch-width. Journal of Combinatorial Theory,
Series B, 97(3):385–393, 2007. URL https://doi.org/10.1016/j.jctb.2006.06.

006.

S. Oum, S. H. Sæther, and M. Vatshelle. Faster algorithms for vertex partitioning
problems parameterized by clique-width. Theoretical Computer Science, 535:16–24,
2014. URL https://doi.org/10.1016/j.tcs.2014.03.024.

L. Perković and B. A. Reed. An improved algorithm for finding tree decompositions of
small width. International Journal of Foundations of Computer Science, 11(3):365–371,
2000. URL https://doi.org/10.1142/S0129054100000247.

M. Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A
logical approach. In Proceedings of the 36th International Symposium on Mathematical

https://doi.org/10.1145/3209108.3209144
https://doi.org/10.1145/3209108.3209144
https://doi.org/10.4230/LIPIcs.STACS.2023.50
https://doi.org/10.1016/j.jctb.2005.03.003
https://doi.org/10.1002/jgt.20280
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1002/jgt.20353
https://doi.org/10.1016/j.dam.2016.08.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2006.06.006
https://doi.org/10.1016/j.jctb.2006.06.006
https://doi.org/10.1016/j.tcs.2014.03.024
https://doi.org/10.1142/S0129054100000247

BIBLIOGRAPHY 333

Foundations of Computer Science (MFCS 2011), volume 6907 of LNCS, pages 520–531.
Springer, 2011. URL https://doi.org/10.1007/978-3-642-22993-0_47.

M. Pilipczuk. Computing tree decompositions. In F. V. Fomin, S. Kratsch, and E. J. van
Leeuwen, editors, Treewidth, Kernels, and Algorithms — Essays Dedicated to Hans
L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of LNCS, pages
189–213. Springer, 2020. URL https://doi.org/10.1007/978-3-030-42071-0_14.

P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010),
pages 755–764. ACM, 2010. URL https://doi.org/10.1145/1806689.1806792.

B. A. Reed. Finding approximate separators and computing tree width quickly. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC
1992), pages 221–228. ACM, 1992. URL https://doi.org/10.1145/129712.129734.

B. A. Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213–227,
1995. URL https://doi.org/10.1016/0166-218X(94)00104-L.

B. A. Reed and D. R. Wood. Polynomial treewidth forces a large grid-like-minor. European
Journal of Combinatorics, 33(3):374–379, 2012. URL https://doi.org/10.1016/j.

ejc.2011.09.004.

B. A. Reed, N. Robertson, A. Schrijver, and P. D. Seymour. Finding disjoint trees in planar
graphs in linear time. In N. Robertson and P. D. Seymour, editors, Graph Structure
Theory, Proceedings of a AMS-IMS-SIAM Joint Summer Research Conference on Graph
Minors held June 22 to July 5, 1991, at the University of Washington, Seattle, USA,
volume 147 of Contemporary Mathematics, pages 295–301. American Mathematical
Society, 1993.

N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. URL https://doi.org/10.1016/

0095-8956(84)90013-3.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7(3):309–322, 1986a. URL https://doi.org/10.1016/

0196-6774(86)90023-4.

N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41(1):92–114, 1986b. URL https://doi.org/10.

1016/0095-8956(86)90030-4.

https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1007/978-3-030-42071-0_14
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/129712.129734
https://doi.org/10.1016/0166-218X(94)00104-L
https://doi.org/10.1016/j.ejc.2011.09.004
https://doi.org/10.1016/j.ejc.2011.09.004
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90030-4

334 BIBLIOGRAPHY

N. Robertson and P. D. Seymour. Graph minors. IV. Tree-width and well-quasi-ordering.
Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990. URL https://doi.

org/10.1016/0095-8956(90)90120-O.

N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. URL https://doi.

org/10.1016/0095-8956(91)90061-N.

N. Robertson and P. D. Seymour. Graph Minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. URL https://doi.

org/10.1006/jctb.1995.1006.

N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003. URL https://doi.

org/10.1016/S0095-8956(03)00042-X.

N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325–357, 2004. URL https://doi.org/10.

1016/j.jctb.2004.08.001.

N. Robertson and P. D. Seymour. Graph minors. XXII. Irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012. URL
https://doi.org/10.1016/j.jctb.2007.12.007.

N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal
of Combinatorial Theory, Series B, 62(2):323–348, 1994. URL https://doi.org/10.

1006/jctb.1994.1073.

D. Seese. The structure of models of decidable monadic theories of graphs. Annals
of Pure and Applied Logic, 53(2):169–195, 1991. URL https://doi.org/10.1016/

0168-0072(91)90054-P.

P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):
217–241, 1994. URL https://doi.org/10.1007/BF01215352.

M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2012. ISBN 978-1133187790.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. In Proceedings of the
13th Annual ACM Symposium on Theory of Computing (STOC 1981), pages 114–122.
ACM, 1981. URL https://doi.org/10.1145/800076.802464.

R. P. Soares. Pursuit-evasion, decompositions and convexity on graphs. PhD thesis, Univer-
sité Nice Sophia Antipolis, 2013. URL https://theses.hal.science/tel-00908227.

https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1007/BF01215352
https://doi.org/10.1145/800076.802464
https://theses.hal.science/tel-00908227

BIBLIOGRAPHY 335

K. Suchan and I. Todinca. On powers of graphs of bounded NLC-width (clique-width).
Discrete Applied Mathematics, 155(14):1885–1893, 2007. URL https://doi.org/10.

1016/j.dam.2007.03.014.

S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Proceedings of
the 6th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2003), volume 2919 of LNCS, pages 188–202. Springer, 2003. URL https:

//doi.org/10.1007/978-3-540-24605-3_15.

J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997. URL https:

//doi.org/10.1137/S0895480194275825.

D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. URL https://doi.

org/10.1016/j.jalgor.2004.12.001.

R. Thomas. A Menger-like property of tree-width: The finite case. Journal of Com-
binatorial Theory, Series B, 48(1):67–76, 1990. URL https://doi.org/10.1016/

0095-8956(90)90130-R.

M. Thorup. All structured programs have small tree-width and good register allocation.
Information and Computation, 142(2):159–181, 1998. URL https://doi.org/10.

1006/inco.1997.2697.

S. Torunczyk. Flip-width: Cops and robber on dense graphs. In Proceedings of the 64th
IEEE Annual Symposium on Foundations of Computer Science (FOCS 2023), pages
663–700. IEEE, 2023. URL https://doi.org/10.1109/FOCS57990.2023.00045. Full
version: https://arxiv.org/abs/2302.00352.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O. Slisenko,
editor, Structures in Constructive Mathematics and Mathematical Logic, Part II, pages
115–125. Consultants Bureau, New York-London, 1968.

J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on tree
decompositions using generalised fast subset convolution. In Proceedings of the 17th
Annual European Symposium on Algorithms (ESA 2009), volume 5757 of LNCS, pages
566–577. Springer, 2009. URL https://doi.org/10.1007/978-3-642-04128-0_51.

E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics, 54
(2-3):251–266, 1994. URL https://doi.org/10.1016/0166-218X(94)90026-4.

https://doi.org/10.1016/j.dam.2007.03.014
https://doi.org/10.1016/j.dam.2007.03.014
https://doi.org/10.1007/978-3-540-24605-3_15
https://doi.org/10.1007/978-3-540-24605-3_15
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/0095-8956(90)90130-R
https://doi.org/10.1016/0095-8956(90)90130-R
https://doi.org/10.1006/inco.1997.2697
https://doi.org/10.1006/inco.1997.2697
https://doi.org/10.1109/FOCS57990.2023.00045
https://arxiv.org/abs/2302.00352
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1016/0166-218X(94)90026-4

336 BIBLIOGRAPHY

P. Wollan. The structure of graphs not admitting a fixed immersion. Journal of
Combinatorial Theory, Series B, 110:47–66, 2015. URL https://doi.org/10.1016/j.

jctb.2014.07.003.

Y. Wu, P. Austrin, T. Pitassi, and D. Liu. Inapproximability of treewidth and related
problems. Journal of Artificial Intelligence Research, 49:569–600, 2014. URL https:

//doi.org/10.1613/jair.4030.

N. Yolov. Minor-matching hypertree width. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2018), pages 219–233. SIAM, 2018.
URL https://doi.org/10.1137/1.9781611975031.16. Full version: http://arxiv.
org/abs/1704.02939.

D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007. URL https://doi.

org/10.4086/toc.2007.v003a006.

https://doi.org/10.1016/j.jctb.2014.07.003
https://doi.org/10.1016/j.jctb.2014.07.003
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.1137/1.9781611975031.16
http://arxiv.org/abs/1704.02939
http://arxiv.org/abs/1704.02939
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

	Scientific environment
	Acknowledgements
	Abstract
	Abstract in Norwegian
	List of publications
	I Introduction and preliminaries
	Introduction
	Computing treewidth
	Dynamic treewidth
	Rankwidth, branchwidth, and cliquewidth
	Computing rankwidth
	Computing branchwidth of graphs

	Definitions and preliminary results
	Basic notation
	Graphs
	Separators and linkedness
	Trees

	Width parameters
	Treewidth
	Branchwidth of connectivity functions
	Branchwidth of graphs
	Rankwidth
	Cliquewidth

	Computational complexity

	Survey of the literature
	Robertson-Seymour algorithm
	The algorithm
	Related literature

	Bodlaender's algorithm
	Bodlaender-Kloks dynamic programming
	Bodlaender's self-reduction scheme
	Related literature

	Applications
	Graph Minors
	Monadic second-order logic of graphs
	Algorithms
	Complexity

	Lean tree decompositions
	The proof
	Discussion

	II Contributions
	Fast 2-approximation algorithm for treewidth
	Overview
	Improving a tree decomposition
	Splittable sets of vertices
	The improvement operation

	Amortized local improvement
	Pruned improvement operation
	Amortization

	Implementation in linear time
	Overview
	The data structure
	The algorithm
	Analysis of the exp(O(k)) factor

	Exact and (1+eps)-approximation algorithms for treewidth
	Subset Treewidth
	Computing treewidth via Subset Treewidth
	Overview
	Pulling Lemma
	Improving a tree decomposition
	Reducing treewidth to Subset Treewidth

	Important separators
	Algorithm for Partitioned Subset Treewidth
	Overview
	Flow potential
	Safe separations
	Branching
	The algorithm
	Running time analysis

	Faster algorithm for Subset Treewidth
	Terminal covers and degenerate separations
	Maintaining valid instances
	Branching
	The algorithm
	Running time analysis

	Dynamic treewidth
	Overview
	High-level description
	The refinement operation
	Height reduction

	Dynamic dynamic programming
	Prefix-rebuilding data structures
	Tree decomposition automata
	Automata constructions
	Dynamic maintenance of automata runs

	Closures
	Small closures
	Linked closures
	Blockages and explored nodes

	Computing closures
	Closure automaton
	Data structure for closures

	Refinement operation
	Potential function
	Refinement of components
	Combining the components
	Refinement operation

	Height improvement
	Unbalanced binary trees
	Reducing the height

	Putting things together
	Maintaining a tree decomposition
	Additional features

	Fast 2-approximation algorithms for rankwidth and branchwidth
	Notation on branch decompositions
	Combinatorial framework
	Improvement operation
	Improving with splits
	Existence of a split
	Improving globally

	Algorithmic framework
	Amortized analysis
	Improvement data structure
	General algorithm

	Approximating rankwidth
	Definitions on rank decompositions
	Augmented rank decompositions
	Improvement data structure for rankwidth
	Dynamic programming
	The data structure

	Approximating branchwidth of graphs
	Augmented branch decompositions
	Borders of tripartitions
	Improvement data structure for graph branch decompositions

	Conclusions
	Summary of contributions
	Follow-up work
	Future directions and open problems

