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Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages
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1 Introduction

Graphs and trees are ubiquitous objects in computer science. Graphs are used to represent
any data with pairwise relations, such as flights between cities, connections in social net-
works, or dependencies between variables. On the other hand, trees are used to represent
more structured data, such as elements in a web page or indexed databases. Graphs allow
the representation of more general structures than trees. However, this comes with the
cost that many algorithmic problems solved efficiently in trees are intractable in graphs
in general. For example, the graph problems of maximum independent set and minimum
dominating set are NP-hard in general but can be solved in linear time if the input graph
is a tree [5]. The desire to attain the best of both worlds motivates the task of organizing
arbitrary graphs into tree-like structures.
A tree decomposition of a graph is a tree whose nodes correspond to bags that contain
vertices of the graph and whose structure maintains certain connectivity properties of the
graph [15]. Tree decompositions have been rediscovered multiple times [14, 57, 91] and are
also known as join trees [8], clique trees [46], and junction trees [62] in different contexts.
It is trivial to obtain a tree decomposition of a graph in the form of a single bag containing
all vertices of the graph. However, such a tree decomposition does not give any insight
on the structure of the graph, and is thus not useful. To quantify the usefulness of a tree
decomposition, multiple different cost functions on the quality of tree decompositions have
been introduced, each with the associated goal to find tree decompositions with as small
cost as possible, or in other words, optimal tree decompositions.
Perhaps the most well-known cost function associated with tree decompositions is the
width of a tree decomposition, measuring the number of vertices in the largest bag of
the decomposition [15]. The graph parameter of treewidth denotes the smallest width of
a tree decomposition of a graph [15]. The graphs with small treewidth generalize trees,
trees having treewidth one. Many classical NP-hard graph problems, such as maximum
independent set, minimum dominating set, chromatic number, and Hamiltonicity can
be solved with dynamic programming over a tree decomposition, with a running time
exponential in the width of the decomposition but linear in the size of the graph [5]. The
areas in which tree decompositions with small width have been applied in practice include
probabilistic inference [31], propositional model counting [39], and register allocation in
compilers [74].
The notion of treewidth has been extended in multiple directions. In the context of
probabilistic inference, the total table size of a tree decomposition measures the running
time of the junction tree algorithm using the decomposition more accurately than the
treewidth [62, 67, 83]. Generalized and fractional hypertreewidth extend the notion of
treewidth to hypergraphs, opening up more islands of tractability in constraint satisfaction
problems [50, 52] and having applications in database systems [1, 66]. Moreover, problems
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in phylogenetics on finding evolutionary trees have been formulated directly as finding
optimal tree decompositions with respect to certain cost functions [21, 25].
This thesis is about finding optimal tree decompositions of graphs. We consider a total
of seven graph problems, each defined as finding an optimal tree decomposition of a given
graph with respect to a cost function. The problems we consider are treewidth [15],
minimum fill-in [102], generalized hypertreewidth [50], fractional hypertreewidth [52], total
table size [62, 83], phylogenetic character compatibility [21, 96], and treelength [34]. All of
these problems are NP-hard [15, 21, 50, 52, 79, 80, 102]. To briefly describe the problems
not mentioned in the previous paragraph, the goal in minimum fill-in is to minimize the
number of so-called fill-edges of the decomposition, motivated by the task of finding an
ordering for variable elimination in sparse matrices that minimizes the amount of extra
memory required [92, 102]. Treelength is a more recent graph parameter, with applications
in data structures for distance queries [34].
In particular, we focus on the BT algorithm of Bouchitté and Todinca [22, 23] as a method
of finding optimal tree decompositions. The BT algorithm makes use of the theory of
minimal triangulations, characterizing the minimal triangulations of a graph via objects
called minimal separators and potential maximal cliques of the graph [23]. With respect
to the cost functions considered in this thesis, the concept of minimal triangulations is
roughly equivalent to the concept of tree decompositions for the purpose of finding optimal
tree decompositions.
The BT algorithm was introduced in 2001 [22, 23]. Despite high interest from the the-
oretical side [16, 17, 42, 43, 44, 45, 86], the first implementations of the algorithm were
introduced only recently in the 2nd Parameterized Algorithms and Computational Ex-
periments Challenge (PACE 2017) [33]. PACE 2017 was an algorithm implementation
competition whose topics included the exact computation of treewidth and minimum fill-
in. Implementations based on the BT algorithm took the top three places in the minimum
fill-in track and the second place in the treewidth track [33]. The author’s implementation
took the second place in the minimum fill-in track. After PACE 2017, we have developed
our implementation by generalizing it to further problems [71, 72] and by considering al-
ternative approaches for some parts of the algorithm [70]. In this thesis we introduce a
further improved implementation of the BT algorithm for each of the seven problems.
In addition to generalizing and improving our implementation of the BT algorithm, we
empirically compare the implementation to a total of 15 different alternative approaches
for the problems. The alternative approaches are based on multiple different algorith-
mic ideas. The QuickBB algorithm for computing treewidth [48], the EDFS algorithm
for computing total table size [77], and the FraSMT declarative approach for generalized
and fractional hypertreewidth [38] make use of the elimination ordering characterization
of triangulations [93]. The MCCP approach for minimum fill-in [10] and two approaches
for phylogenetic character compatibility [53, 97] use problem-specific integer programming
encodings. Other alternative approaches include implementations of fixed parameter al-
gorithms [26], slice-wise polynomial-time algorithms [33, 40, 51], and alternative variants
of the BT algorithm [33, 99].
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In addition to the competition entries in PACE 2017 [33], the other experimental works
on the BT algorithm that we are aware of are variants for computing treewidth by
Tamaki [98, 99] and an adaptation for enumerating minimal triangulations by Ravid et
al. [89]. On the theory side, the BT algorithm has been used to yield the best known time
complexities for treewidth, minimum fill-in, fractional hypertreewidth, total table size, and
treelength, yielding O(1.7347n)-time algorithms for each of the problems [16, 43, 80, 86].
We remark that our implementation does not respect the O(1.7347n) time bound because
we use a different, arguably more practical, subroutine for enumerating potential maxi-
mal cliques. On the other hand, our implementation realizes the theoretical result that
treewidth, minimum fill-in, total table size, and treelength can be computed in polynomial
time in graph classes with a polynomial number of minimal separators [22, 23].

1.1 Contributions

This thesis is mainly based on the author’s articles [71, 72] and highly related to the
author’s article [70]. The original contributions of these articles presented in this thesis
are an implementation of the BT algorithm for treewidth, minimum fill-in, generalized and
fractional hypertreewidth, and total table size of Bayesian networks [71] and an adaptation
of the BT algorithm for the maximum compatibility problem of multi-state phylogenetic
characters and its implementation [72].
In addition to presenting the contributions of [71, 72], this thesis also includes further
contributions. We introduce a new implementation of the BT algorithm, which in com-
parison to our earlier implementations includes new problem-specific variants of BT for
perfect phylogeny, the maximum compatibility problem of binary phylogenetic charac-
ters, and treelength. We also improve the efficiency of the implementation in general,
resulting in the new implementation being faster than the earlier implementations on all
of the problems considered. Especially, we introduce a novel modification of the part of
the BT algorithm that enumerates the potential maximal cliques of a graph. In addition
to practical improvements, this modification reduces the upper bound of the number of
potential maximal cliques of a graph from ∆2n+ ∆n+ 1 [22] to ∆2 + ∆n + 1 and the
time complexity of enumerating them from O(∆2n2m) [22] to O(∆2nm + ∆n2m), where
n is the number of vertices, m is the number of edges, and ∆ is the number of minimal
separators of the graph (Theorem 3).
In the experimental evaluation, our implementation of the BT algorithm solves more test
instances within a 1-hour time limit than any alternative approach on multiple problems.
On both generalized and fractional hypertreewidth, our implementation solves over 20%
more instances on the Hyperbench dataset [40] than any other approach. On the max-
imum compatibility problem of multi-state phylogenetic characters, our implementation
outperforms other approaches in scalability on generated data with respect to multiple
parameters underlying the problem. On minimum fill-in, our implementation solves 8
instances more on a dataset of 330 instances in comparison to the algorithm that took
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the first place in PACE 2017 [33] and significantly more instances than other approaches.
On total table size, our implementation solves as many instances as the previous state-
of-the-art [77] but does so several orders of magnitude faster. Furthermore, to the best
of our knowledge our implementation is the first implementation for exact computing of
treelength.

1.2 Organization of the Thesis

In Chapter 2 we present necessary background on tree decompositions and triangulations
and the generic reduction from finding optimal tree decompositions to finding optimal
minimal triangulations. In Chapter 3 we briefly review the background of each of the prob-
lems and the formulations of them in terms of finding optimal minimal triangulations. In
Chapter 4 we review the BT algorithm for finding optimal minimal triangulations. We also
introduce our novel modification of the part of the algorithm that enumerates potential
maximal cliques and our novel adaptation of the algorithm for the maximum compatibility
problem of multi-state phylogenetic characters. In Chapter 5 we introduce our implemen-
tation of the BT algorithm, presenting the preprocessing techniques that we use, further
optimization for enumerating potential maximal cliques, and other implementation de-
tails. In Chapter 6 we empirically compare our implementation of the BT algorithm to
alternative approaches for the problems. In Chapter 7 we further empirically analyze our
implementation. Finally, we conclude the thesis in Chapter 8, also presenting ideas for
future work.



2 Preliminaries

In this chapter we review background on tree decompositions and triangulations. First we
recall necessary definitions and notations in graph theory. Then we define tree decompo-
sitions and state some of their key properties. Finally, we explain how the computation
of optimal tree decompositions reduces to the computation of optimal minimal triangula-
tions.

2.1 Graph Theory and Notations

We often consider collections of sets that have maximal and minimal elements. Unless
otherwise specified, a set S in a collection S is maximal if there is no set S ′ ∈ S with
S ⊂ S ′. A set S ∈ S is minimal if there is no set S ′ ∈ S with S ′ ⊂ S.
We consider graphs that are finite, simple and undirected, unless otherwise stated. A
graph G consists of a set of vertices V (G) and a set of edges E(G). The edges of a graph
are unordered pairs of distinct vertices. When the graph G is clear from the context, we
use n = |V (G)| and m = |E(G)| to denote the numbers of vertices and edges, respectively.
A path between vertices v1 and vp is a sequence of distinct vertices v1, v2, . . . , vp, such that
for each 1 ≤ i < p there is an edge {vi, vi+1} ∈ E(G). A cycle is a path v1, v2, . . . , vp with
{vp, v1} ∈ E(G) and p ≥ 3. A pair of vertices is connected if there is a path between them.
A connected component C ⊆ V (G) of a graph G is a maximal subset of vertices such that
each pair of vertices u, v ∈ C is connected. The set of connected components of a graph
G is denoted by C(G). A graph is connected if it has exactly one connected component.
A tree is a connected graph that has no cycles.
The neighborhood of a vertex v is N(v) = {u | {v, u} ∈ E(G)} and the neighborhood
of a vertex set X is N(X) = ⋃

v∈X N(v) \ X. The closed neighborhood of a vertex v is
N [v] = N(v)∪ {v}. The vertices u ∈ N(v) are neighbors of v. For a vertex set X, the set
of all possible edges within X is X2 = {{u, v} | u, v ∈ X, u 6= v}. The induced subgraph
G[X] of a graph G, where X ⊆ V (G), has V (G[X]) = X and E(G[X]) = E(G)∩X2. We
also use the notation G \X = G[V (G) \X] to denote induced subgraphs. The vertex set
X is a clique in a graph G if E(G[X]) = X2.

2.2 Tree Decompositions

This thesis is about finding optimal tree decompositions of graphs. A property that makes
trees useful in the design of algorithms is that they have no cycles, or equivalently, that
there is an unique path between any two nodes of a tree. Tree decompositions generalize
this concept to graphs. A tree decomposition of a graph G is a tree whose nodes are labeled
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a

b c

e
f

g

d
a, b, c

b, c, f

b, e, f c, f, g

a, c, d
b, c

Figure 2.1: A graph (left) and one of its tree decompositions (right).

with bags that are subsets of V (G). If u and v are nodes of a tree decomposition and the
path between u and v goes through a node w, then all paths in G between any vertex of
the bag of u and any vertex of the bag of v go through at least one vertex of the bag of
w. More precisely, tree decompositions are defined as follows.

Definition 1 ([15]). Let G be a graph, and consider a pair (T,B) where T is a tree and
B is a collection of bags that correspond to the nodes of T and contain vertices of G,
i.e., B = {Bi | i ∈ V (T )} and Bi ⊆ V (G) for all i ∈ V (T ). The pair (T,B) is a tree
decomposition of G if

1. V (G) = ⋃
i∈V (T ) Bi, i.e., each vertex is in a bag,

2. E(G) ⊆ ⋃i∈V (T ) B
2
i , i.e., each edge is in a bag, and

3. for all v ∈ V (G) the subgraph T [{i | v ∈ Bi}] of T induced by bags that contain v is
connected.

Example 1. Consider the graph G in Figure 2.1 (left) and one of its tree decomposi-
tions (T,B) in Figure 2.1 (right). The bags of (T,B) are B = {{a, b, c}, {b, c}, {b, c, f},
{b, e, f}, {c, f, g}, {a, c, d}}, containing all vertices and edges of G and thus satisfying con-
ditions 1 and 2 of Definition 1. We can also verify that (T,B) satisfies condition 3 of
Definition 1. For example, for the vertex f ∈ V (G), the nodes corresponding to bags
{b, e, f}, {b, c, f} and {c, f, g} form a connected subgraph of T . In the tree T , all paths
between the node corresponding to bag {a, c, d} and the node corresponding to bag {b, e, f}
go through the node corresponding to bag {b, c}. Correspondingly, all paths in the graph G
from a or d to e or f go through b or c.

In this thesis we consider multiple different cost functions that measure the quality of a
tree decomposition. Perhaps the most well-known of such measures is the width of a tree
decomposition. The width of a tree decomposition is tw(T,B) = maxBi∈B |Bi| − 1, i.e.,
the size of the largest bag minus one. The treewidth of a graph G, tw(G), is the smallest
possible width of a tree decomposition of G [15]. Note that a single bag that contains all
vertices is always a tree decomposition, and therefore tw(G) ≤ n− 1.

Example 2. Consider the graph G and one of its tree decompositions (T,B) in Figure 2.1.
The largest bag of (T,B) has size 3. Therefore, tw(T,B) = 3−1 = 2, and thus tw(G) ≤ 2.
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a

b c

d e f g

a

b c

d e f g

a, b a, c

b, d b, e c, f c, g

a, b a, c

b, d b, e c, f c, g

Figure 2.2: A tree (left) and two of its tree decompositions (middle and right).

The following two properties of tree decompositions can be used to deduce that the
treewidth of the graph in Example 2 is exactly 2.

Proposition 1 ([15]). If a graph G contains a clique W ⊆ V (G), then all of its tree
decompositions (T,B) have a bag Bi ∈ B with W ⊆ Bi.

Example 3. Consider the graph G in Figure 2.1. As G contains a clique {a, b, c}, by
Proposition 1 every tree decomposition of G has a bag that is a superset of {a, b, c}. There-
fore, every tree decomposition of G has width at least 2, and thus tw(G) = 2.

A forest is a graph whose all connected components are trees.

Proposition 2 ([15]). A graph has treewidth at most 1 if and only if it is a forest.

Example 4. Consider the graph G in Figure 2.1. It has a cycle b, c, g, f, e, so it is not
a forest, and thus it has treewidth at least 2. On the other hand, consider the tree T in
Figure 2.2 (left). We can obtain a tree decomposition of T of width 1 by having a bag
for each vertex and for each edge, as shown in Figure 2.2 (middle). This construction
can be further simplified by removing the bags containing only single vertices, as shown in
Figure 2.2 (right).

The construction of Example 4 can be generalized to any tree. Note that it also applies to
forests because tree decompositions of different connected components can be arbitrarily
connected to each other without increasing treewidth.

2.3 Triangulations

Triangulations of graphs are a central graph-theoretic concept in the computation of tree
decompositions. Triangulations are defined via chordality of graphs.
A graph G is chordal if every cycle in G with at least 4 vertices contains a chord, i.e., an
edge between two non-adjacent vertices of the cycle [93]. Correspondingly, a non-chordal
graph has at least one chordless cycle, i.e., a cycle with at least 4 vertices that does not
have a chord.
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Figure 2.3: A non-chordal graph (left) and one of its triangulations (right).

Example 5. Consider the graph G in Figure 2.3 (left). The graph is not chordal because
it contains the chordless cycle b, c, f, d. It also contains the chordless cycles a, b, c, f, e and
a, b, d, f, e. The graph H in Figure 2.3 (right) also contains the cycle b, c, f, d. However,
the cycle has a chord {b, f} in H. All cycles of H with at least 4 vertices have chords, so
H is a chordal graph.

Definition 2 ([93]). A graph H is a triangulation of a graph G if H is chordal, V (G) =
V (H), and E(G) ⊆ E(H).

In words, a triangulation H of a graph G is a chordal graph obtained by adding edges
to G. The additional edges, i.e., edges in E(H) \ E(G), are called fill-edges. All graphs
have at least one triangulation because complete graphs are chordal, and any graph can
be turned into a complete graph by adding edges.

Example 6. Consider the graph G in Figure 2.3 (left) and the chordal graph H in Fig-
ure 2.3 (right). The graph H is a triangulation of G because it is chordal, it has the same
vertex set as G, and the set of its edges includes all edges of G. The fill-edges of H with
respect to G are E(H) \ E(G) = {{a, f}, {b, f}}.

The concept of elimination orderings is closely related to chordal graphs and triangula-
tions. An elimination ordering of a graph G is an ordering π : [1 . . . n] → V (G) of its
vertices. A perfect elimination ordering of a graph G is an elimination ordering π such
that for each vertex v = π(i), the neighbors of v that appear after v in the ordering form
a clique, i.e., for all 1 ≤ i ≤ n the set N(π(i)) ∩ {π(j) | j > i} is a clique [93].

Proposition 3 ([93]). A graph is chordal if and only if it has a perfect elimination order-
ing.

To give intuition on Proposition 3, let π be an elimination ordering and let us consider
the process of removing vertices in the order π(1), π(2), . . . , π(n). If the neighbors of
π(1) form a clique, then no chordless cycle can pass through π(1), and thus the graph
G[{π(1), . . . , π(n)}] is chordal if and only if the graph G[{π(2), . . . , π(n)}] is chordal. It
also holds that any chordal graph has a vertex whose neighbors form a clique [93]. This
process gives an algorithm to recognize if a graph is chordal. The algorithm repeatedly
removes a vertex whose neighborhood is a clique, until either all vertices are removed (in
which case the graph is chordal), or no vertices can be removed (in which case the graph
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is not chordal) [93]. While this algorithm is not linear-time, there are multiple linear-time
algorithms for finding perfect elimination orderings [93, 101].
Triangulations of graphs can be computed via elimination orderings. For a graph G

and an elimination ordering π, the graph G(π) is defined by the process of removing
the vertices of G in the order given by π and in each step i adding edges to G so that
N(π(i)) ∩ {π(j) | j > i} forms a clique. The graph G(π) is a triangulation of G whose
fill-edges are the edges added in this process [93]. Moreover, π is a perfect elimination
ordering of G(π).

Example 7. Consider the graph G in Figure 2.3 (left) and one of its triangulations H
in Figure 2.3 (right). An elimination ordering π with π(1) = e, π(2) = a, π(3) = d,
π(4) = b, π(5) = f , π(6) = c is a perfect elimination ordering of H. It is also an
elimination ordering of G that defines the triangulation G(π) = H. Note that different
elimination orderings can result in the same triangulation. In this case, for example, any
order of the last 3 vertices in π would have resulted in the same triangulation H.

A set of vertices is a maximal clique if it is a clique and no strict superset of it is a clique.
The set of maximal cliques of a graph G is denoted by MC(G). The maximal cliques of
a chordal graph have a special structure [46]. For any perfect elimination ordering π of a
chordal graph H, each maximal clique W ∈ MC(H) is equal to N [π(i)] ∩ {π(j) | j ≥ i}
for some i [46]. In other words, each maximal clique appears in the elimination process
as a closed neighborhood of a vertex that is being eliminated. It follows that a chordal
graph has at most n maximal cliques.

Example 8. Consider the chordal graph H in Figure 2.3 (right). The maximal cliques of
H are MC(H) = {{e, a, f}, {a, b, f}, {d, b, f}, {b, c, f}}, listed in the order of finding them
via the perfect elimination ordering e, a, d, b, f, c.

2.4 From Tree Decompositions to Triangulations

We will now explain how finding a tree decomposition of a graph can be reduced to finding
a triangulation of the graph. Triangulations and tree decompositions are connected by
the fact that the maximal cliques of a chordal graph can be arranged into a tree so that
they form a tree decomposition.

Proposition 4 ([46]). Every chordal graph H has a tree decomposition td(H) = (T,B)
with B = MC(H). Moreover, td(H) can be computed in linear time.

The observation that makes Proposition 4 central in finding tree decompositions is that if
H is a triangulation of a graph G, then any tree decomposition of H is a tree decomposition
of G. In particular, td(H) is a tree decomposition of G.

Example 9. Consider the graph G and one of its triangulations H in Figure 2.4 (left and
middle). The maximal cliques of H are MC(H) = {{a, b, c}, {b, c, e}, {b, d, e}, {c, e, f}}.
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Figure 2.4: A graph (left), one of its triangulations (middle), and a tree decomposition that corresponds
to the triangulation (right).

The tree decomposition td(H) shown in Figure 2.4 (right) has these cliques as its bags.
As H is a triangulation of G and td(H) is a tree decomposition of H, td(H) is also a tree
decomposition of G.

Recall that by Proposition 1 each clique of a graph G must be contained in some bag of any
tree decomposition of G. Therefore, the tree decomposition td(H) given by Proposition 4
is optimal for H in the sense that each of its bags must appear as a bag or as a subset of
a bag in every tree decomposition of H.
The algorithm for computing td(H) in linear time first computes a perfect elimination
ordering and then builds the tree decomposition starting from the leaves [46]. The intuition
behind the algorithm is that eliminating a vertex corresponds to removing a leaf from the
tree decomposition. The details of this algorithm are somewhat involved, so we omit them
and refer the reader to [46] for details.
The notation td(H) is a bit ambiguous since a chordal graph H can have multiple different
(non-isomorphic) tree decompositions td(H) = (T,B) with B = MC(H) [46]. However,
in the problems considered in this thesis the structure of T is not relevant apart from the
fact that (T,B) is a valid tree decomposition, so we will not assume any other properties
of T . Note that, for example, the width of a tree decomposition depends only on B.
By Proposition 4 a tree decomposition of a graph G can be computed by first computing a
triangulation H of G and then computing a corresponding tree decomposition td(H). The
following proposition demonstrates that the tree decompositions arising from this process
characterize all interesting tree decompositions.

Proposition 5 ([15]). Let (T,B) be a tree decomposition. The graph ch(T,B) with the
set of vertices V (ch(T,B)) = ⋃

i∈V (T ) Bi and the set of edges E(ch(T,B)) = ⋃
i∈V (T ) B

2
i is

chordal and MC(ch(T,B)) ⊆ B.

An important observation following Proposition 5 is that if (T,B) is a tree decomposi-
tion of a graph G, then ch(T,B) is a triangulation of G. The notable difference in the
transformations td(H) and ch(T,B) is that when transforming a tree decomposition into
a chordal graph, some bags of the tree decomposition might not be maximal cliques of
the chordal graph. This happens when B contains non-maximal bags which subsequently
become non-maximal cliques of the chordal graph. However, one may argue that tree
decompositions with non-maximal bags are not interesting. In particular, if Bi ∈ B is a
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non-maximal bag, it has a neighbor Bj ∈ B with Bi ⊆ Bj and the node i can be merged
into the node j in the tree decomposition, yielding a tree decomposition with a set of bags
B \ {Bi}. Note that this does not change the width of the tree decomposition nor does it
negatively affect any other cost function on tree decompositions that we consider in this
thesis.
Putting together Propositions 4 and 5, we can conclude that triangulations of graphs
can be used to compute exactly those tree decompositions that have only maximal bags.
Furthermore, only these tree decompositions are interesting in our context. Next we
detail an even smaller set of tree decompositions that is sufficient for finding optimal tree
decompositions.

2.5 Cost Functions on Minimal Triangulations

A triangulation H of a graph G is a minimal triangulation if no triangulation H ′ of G
has E(H ′) ⊂ E(H) [93]. The set of minimal triangulations is often significantly smaller
than the set of all triangulations. For example, a chordal graph has exactly one mini-
mal triangulation but may have an exponential number of triangulations in general. In
this section we detail how minimal triangulations are sufficient for finding optimal tree
decompositions with respect to many different cost functions. The BT algorithm makes
use of the combinatorial properties of minimal triangulations, characterizing exactly the
minimal triangulations of a graph [23].

Example 10. Consider the graph G in Figure 2.5 (left) and one of its triangulations H
in Figure 2.5 (middle). The triangulation H is minimal because it has only one fill edge
{a, e} and G is not a chordal graph. Consider an other triangulation H ′ of G illustrated
in Figure 2.5 (right). The triangulation H ′ is not minimal because E(H) ⊂ E(H ′).

Computing treewidth is equivalent to finding a triangulation where the largest clique
is as small as possible [15]. It is straightforward to show that we can consider only
minimal triangulations for this purpose. In particular, if H and H ′ are triangulations with
E(H) ⊆ E(H ′), then all cliques of H are also cliques of H ′, and therefore the largest clique
of H is not larger than the largest clique of H ′.
The argument for treewidth can be generalized to a large class of cost functions on triangu-
lations. For a graph G, let Tr(G) denote the set of triangulations of G and MT(G) denote

a

b c d

e

a

b c d

e

a

b c d

e

Figure 2.5: A graph (left), one of its minimal triangulations (middle), and one of its non-minimal
triangulations (right).
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the set of minimal triangulations of G. For any set X, let P(X) denote its power set, i.e.,
the set of all subsets of X. We detail three types of cost functions on triangulations with
the property that there is a minimal triangulation that is optimal, i.e., takes the minimum
value of the cost function over all triangulations.
Definition 3 (Clique-max-type [45]). Let G be a graph and f : P(V (G)) → R≥0 a
function that is monotone with respect to set inclusion, i.e., f(W ) ≤ f(W ′) for W ⊆ W ′.
The function C : Tr(G)→ R≥0 with

C(H) = max
W∈MC(H)

f(W )

is a clique-max-type cost function with a clique function f .

Computing the treewidth of a graph can be formulated as finding an optimal triangulation
with respect to a clique-max-type cost function with a clique function f(W ) = |W |−1 [45].
Definition 4 (Fill-in-type [45]). Let G be a graph and f : V (G)2 → R≥0 a function.
The function C : Tr(G)→ R≥0 with

C(H) =
∑

e∈E(H)\E(G)
f(e)

is a fill-in-type cost function with a fill-edge function f .

To define the third type of cost functions, we make use of fast functions. A function
f : P(X) → R≥0 is fast if for all Y ⊆ X and y ∈ Y , f(Y ) ≥ 2f(Y \ {y}) [16]. A fast
function f(Y ) grows fast when new items are added to the set Y . For example, a function
f(Y ) = c|Y | is fast for all c ≥ 2.
Definition 5 (Clique-sum-type [16]). Let G be a graph and f : P(V (G))→ R≥0 a fast
function. The function C : Tr(G)→ R≥0 with

C(H) =
∑

W∈MC(H)
f(W )

is a clique-sum-type cost function with a clique function f .

All cost functions on triangulations that are clique-max-type, fill-in-type, or clique-sum-
type admit optimal minimal triangulations.
Proposition 6 ([16, 45]). Let G be a graph and C : Tr(G)→ R≥0 a clique-max-type, fill-
in-type, or clique-sum-type cost function. There is a minimal triangulation H ∈ MT(G)
such that C(H) ≤ C(H ′) for all H ′ ∈ Tr(G).

The proof of Proposition 6 for clique-max-type follows our earlier sketch for treewidth. For
fill-in-type it is straightforward from the definition that a fill-edge function outputs non-
negative values. For clique-sum-type the proof is more complex. The intuition is that if
we remove an edge e from triangulation H, each maximal clique containing e breaks down
to at most two smaller maximal cliques [16]. We note that the constant 2 in the definition
of a fast function is the smallest possible. In particular, for a cost function optimizing
the sum of 1.99|W | over maximal cliques W ∈ MC(H) all optimal triangulations may be
non-minimal [16].



3 Optimal Tree Decompositions

In this thesis we apply the Bouchitté–Todinca algorithm for solving problems that are
defined as finding optimal tree decompositions with respect to some notion of optimal-
ity. In this chapter we define each of these problems, namely treewidth, minimum fill-in,
generalized and fractional hypertreewidth, total table size of Bayesian networks, perfect
phylogeny, maximum compatibility of phylogenetic characters, and treelength. We formu-
late the problems in terms of finding optimal minimal triangulations of graphs, using the
three generic cost function types defined in Section 2.5. We remark that by Proposition 6,
formulating a problem as finding a triangulation minimizing a cost function of one of these
types implies that the problem can be solved by considering only minimal triangulations.

3.1 Treewidth

The treewidth of a graph is the smallest width of a tree decomposition of the graph [15].
Computing treewidth is NP-hard [4]. The definition of treewidth is motivated by the
fact that many graph problems can be solved with dynamic programming over a tree
decomposition by computing for each bag a set of partial solutions, the number of which
depends only on the number of vertices in the bag [5]. Such algorithms typically require
(super-)exponential time in the sizes of the bags but polynomial time in the size of the
input, therefore making the size of the largest bag the main contributor in the complexity
of the algorithm [5, 27, 91].
Linear-time algorithms on graphs of bounded treewidth exist for many classical NP-hard
problems, such as maximum independent set, minimum dominating set, chromatic num-
ber, and Hamiltonicity [5]. Their existence for a broad class of problems has been for-
malized by the Courcelle’s Theorem, stating that any decision problem on graphs defined
in monadic second-order logic can be solved in O(f(tw(G))n) time in a graph G, where
f(tw(G)) depends only on the treewidth of the input graph G [27]. In practice, algorithms
using tree decompositions with small width are used in many areas of computer science,
including constraint satisfaction [49, 73], probabilistic inference [31], propositional model
counting [39] and register allocation in compilers [74].
We already formulated treewidth with optimal minimal triangulations in Section 2.5. Let
us re-state the formulation here for completeness.

Proposition 7 ([15]). The treewidth of a graph G is

min
H∈Tr(G)

max
W∈MC(H)

|W | − 1.

Therefore, treewidth can be formulated as finding an optimal triangulation with respect
to a clique-max-type cost function with a clique function f(W ) = |W | − 1.
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3.2 Minimum Fill-In

The minimum fill-in of a graph is the smallest number of fill-edges of a triangulation of
the graph [102], relating more directly with triangulations rather than with tree decom-
positions. Computing minimum fill-in is NP-hard [102].
The concept of minimum fill-in is motivated by sparse matrix computations [87, 92, 102].
In this context, the edges of a graph represent non-zero elements in a system of equations,
and a triangulation of the graph corresponds to an order to eliminate variables from the
system. The number of fill-edges measures the number of additional non-zero entries
required in the variable elimination process [92]. Minimum fill-in has received significant
attention in algorithmics, motivated also by various other potential applications [17, 42].
Proposition 8 ([102]). The minimum fill-in of a graph G is

min
H∈Tr(G)

|E(H) \ E(G)|.

Therefore, minimum fill-in can be formulated as finding an optimal triangulation with
respect to a fill-in-type cost function with a fill-edge function f(e) = 1.

3.3 Generalized and Fractional Hypertreewidth

Generalized hypertreewidth and fractional hypertreewidth extend the notion of treewidth
to hypergraphs, enabling efficient solving of larger classes of constraint satisfaction prob-
lems [50]. A constraint satisfaction problem (CSP) consists of a set of variables, a domain
of values of the variables, and a set of constraints, each over a subset of the variables. The
goal is find an assignment of the variables that satisfies all of the constraints [49]. Many
problems can be expressed as CSP [40]. For example, the Boolean satisfiability problem
is a special case of CSP [52].
A hypergraph G consists of a set of vertices V (G) and a set of hyperedges E(G) that
are arbitrary subsets of the vertices [49]. The structure of a CSP can be expressed as a
hypergraph, with variables corresponding to the vertices and constraints corresponding to
the hyperedges [49]. Given a generalized hypertree decomposition with bounded width
or a fractional hypertree decomposition with bounded width, any CSP corresponding to
the hypergraph can be solved in polynomial time [50]. Applications of generalized and
fractional hypertreewidth also arise from databases [40], where multiple systems using
generalized/fractional hypertree decompositions have been implemented [1, 66]. The width
notions of hypergraphs have further applications in combinatorial optimization [40].
The primal graph P (G) of a hypergraph G is the graph with the same vertex set as the
hypergraph, i.e., V (P (G)) = V (G) and with edges corresponding to the pairs of vertices
included in a common hyperedge, i.e., E(P (G)) = ⋃

e∈E(G) e
2.

Definition 6. A tree decomposition of a hypergraph G is a tree decomposition of its primal
graph P (G).
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Figure 3.1: A hypergraph (left), its primal graph (middle), and one of its tree decompositions (right).

Definition 6 is equivalent to a natural generalization of tree decomposition of graphs (Def-
inition 1) to hypergraphs, with condition 2 changed to E(G) ⊆ ∪i∈V (T )P(Bi). The equiv-
alence follows from the fact that each hyperedge of G corresponds to a clique in P (G),
and by Proposition 1 each clique of a graph must be a subset of some bag in any tree
decomposition of the graph.

Example 11. Consider the hypergraph G in Figure 3.1 (left). Its vertex set is V (G) =
{a, b, c, d, e, f, g} and its hyperedge set is E(G) = {{a, b, c}, {b, d, e}, {e, f}, {c, g, f}}. Its
primal graph P (G) is shown in Figure 3.1 (middle). The primal graph of G has edges
between all pairs of vertices that share a hyperedge in G. A tree decomposition of P (G) is
shown in Figure 3.1 (right). It is also a tree decomposition of G. For each hyperedge of G,
there is a bag in the tree decomposition that contains the hyperedge.

3.3.1 Generalized Hypertreewidth

Generalized hypertreewidth is a generalization of the notion of treewidth to hypergraphs.

Definition 7 ([50]). A generalized hypertree decomposition of a hypergraph G is a triple
(T,B, λ), where (T,B) is a tree decomposition of G and λ = {λi | i ∈ V (T )} is a set of
edge covers of bags, with λi ⊆ E(G) satisfying Bi ⊆ ∪e∈λi

e. The width of a generalized
hypertree decomposition is maxi∈V (T ) |λi|.

In other words, a generalized hypertree decomposition is a tree decomposition that as-
sociates an edge cover to each bag, covering all vertices of the bag. The width of a
generalized hypertree decomposition is the size of its largest edge cover. The general-
ized hypertreewidth of a hypergraph is the smallest width of its generalized hypertree
decomposition [50].

Example 12. Consider the hypergraph G in Figure 3.1 (left) and one of its tree decom-
positions (T,B) in Figure 3.1 (right). A generalized hypertree decomposition of G can be
obtained by associating each bag Bi ∈ B with an edge cover. Each of the bags {a, b, c},
{b, d, e} and {c, f, g} can be covered with a single edge, the bag {b, c, e} can be covered
with {{a, b, c}, {b, d, e}}, and the bag {c, e, f} can be covered with {{c, f, g}, {e, f}}, re-
sulting in a generalized hypertree decomposition with width 2. Therefore, the generalized
hypertreewidth of G is at most 2.
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Let G be a hypergraph and COV(W ) denote the size of smallest edge cover of a set
W ⊆ V (G), i.e., the size of smallest set λ ⊆ E(G) with W ⊆ ∪e∈λe.

Proposition 9 ([86]). The generalized hypertreewidth of a hypergraph G is

min
H∈Tr(P (G))

max
W∈MC(H)

COV(W ).

The function COV(W ) is monotone with respect to set inclusion because an edge cover
of a set is also an edge cover of any of its subsets. Therefore, generalized hypertreewidth
can be formulated as finding an optimal triangulation with respect to a clique-max-type
cost function with a clique function f(W ) = COV(W ).

3.3.2 Fractional Hypertreewidth

Fractional hypertreewidth is a further generalization of the notion of generalized hyper-
treewidth.

Definition 8 ([52]). A fractional hypertree decomposition of a hypergraph G is a triple
(T,B, λ), where (T,B) is a tree decomposition of G and λ = {λi | i ∈ V (T )} is a set
of fractional edge covers of the bags, with λi : E(G) → [0, 1] satisfying for each vertex
v ∈ Bi of each bag Bi ∈ B that ∑v∈e∈E(G) λi(e) ≥ 1. The width of a fractional hypertree
decomposition is maxi∈V (T )

∑
e∈E(G) λi(e).

In other words, a fractional hypertree decomposition is a generalized hypertree decomposi-
tion, where the definition of edge cover is relaxed in the sense that edges can participate in
the edge cover “fractionally”. The fractional hypertreewidth of a hypergraph is the smallest
width of its fractional hypertree decomposition [52]. Note that any generalized hypertree
decomposition is also a fractional hypertree decomposition with the same width, and
therefore fractional hypertreewidth is bounded from above by generalized hypertreewidth.

Example 13. Consider the hypergraph G in Figure 3.2 (left) and one of its tree decom-
positions (T,B) in Figure 3.2 (right). A fractional hypertree decomposition of G can be
obtained by associating each bag Bi ∈ B with a fractional edge cover. Each of the bags
{a, b, c}, {b, d, e}, and {c, e, f} can be covered with a (fractional) edge cover of size one,
but more interestingly the bag {b, c, e} cannot be covered with a fractional edge cover of
size one but can be covered with a fractional edge cover of size 1.5 by associating each
hyperedge of G with the value 0.5. Therefore, the fractional hypertreewidth of G is at most
1.5. The fractional hypertreewidth of G is exactly 1.5 because {b, c, e} is a bag or a subset
of a bag in every tree decomposition of G but cannot be covered with a fractional edge cover
of smaller size than 1.5.

Let G be a hypergraph and FCOV(W ) denote the size of smallest fractional edge cover
of a set W ⊆ V (G), i.e., the smallest sum of values of a function λ : E(G) → [0, 1] with∑
v∈e∈E(G) λ(e) ≥ 1 for all v ∈ W .
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Figure 3.2: A hypergraph (left), its primal graph (middle), and one of its tree decompositions (right).

Proposition 10 ([86]). The fractional hypertreewidth of a hypergraph G is

min
H∈Tr(G)

max
W∈MC(H)

FCOV(W ).

The function FCOV(W ) is monotone with respect to set inclusion because a fractional edge
cover of a set is also a fractional edge cover of any of its subsets. Therefore, fractional
hypertreewidth can be formulated as finding an optimal triangulation with respect to a
clique-max-type cost function with a clique function f(W ) = FCOV(W ).

3.3.3 On the Notion of Hypertreewidth

In addition to treewidth, generalized hypertreewidth and fractional hypertreewidth, hy-
pertreewidth is another well-known width notion of hypergraphs [49]. We review the
definitions of hypertree decomposition and hypertreewidth and discuss why minimal tri-
angulations cannot be directly applied to find optimal hypertree decompositions.
A hypertree decomposition of a hypergraph G is a generalized hypertree decomposition
(T,B, λ) of G with one node r ∈ V (T ) chosen as a root and with one additional condition.
Let B(Ti) denote the vertices of G that are in bags in the subtree of the node i with
respect to the root, i.e., nodes j such that all paths from j to r go through i. The
additional condition requires that the edge cover λi of the bag Bi should not cover any
vertices that are in B(Ti) but not in Bi, i.e., ∪e∈λi

e ∩ B(Ti) = Bi [49]. The width of a
hypertree decomposition is the size of the largest edge cover and the hypertreewidth of a
hypergraph is the smallest width of its hypertree decomposition [49].
All hypertree decompositions are generalized hypertree decompositions. Furthermore, it
holds that ghw(G) ≤ hw(G) ≤ 3ghw(G) + 1 [3], where ghw(G) denotes the generalized
hypertreewidth of a hypergraph G and hw(G) the hypertreewidth of a hypergraph G. The
motivation for the additional condition in the definition of hypertreewidth is that there
is an O(n2k+2)-time algorithm for deciding if the hypertreewidth of a hypergraph is at
most k [51]. Deciding if generalized hypertreewidth is at most k is NP-complete even for
k = 2 [41]. However, hypertreewidth does not behave particularly well in the context of
minimal triangulations.

Proposition 11. There is a hypergraph G such that no tree decomposition (T,B) that
corresponds to a minimal triangulation of its primal graph can be extended to a hypertree
decomposition (T,B, λ) of G.
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Proof. Consider the hypergraph G in Figure 3.2 (left). Its primal graph P (G) shown in
Figure 3.2 (middle) is chordal, thus having P (G) itself as its only minimal triangulation.
The primal graph P (G) defines a tree decomposition td(P (G)) shown in Figure 3.2 (right).
With any choice of the root, the bag {b, c, e} of td(P (G)) has at least two children. By
symmetry, assume that the children are {b, d, e} and {c, e, f}. In order to cover the
vertex e of {b, c, e}, one of the hyperedges {b, d, e} and {c, e, f} must be included in
the cover. However, including either would violate the additional condition of hypertree
decompositions.

By Proposition 11, tree decompositions corresponding to non-minimal triangulations must
be considered in order to compute the hypertreewidth, which limits the applicability of the
BT algorithm. Therefore we will not consider computing hypertreewidth in this thesis.
However, in Chapter 6 we will compare our implementations of the BT algorithm for
computing generalized and fractional hypertreewidth to an implementation that computes
hypertreewidth. To the best of our knowledge, the notions of hypertree decomposition and
generalized hypertree decomposition are interchangeable in all known applications that
require such decompositions as a part of the input.

3.4 Total Table Size

Many algorithms that use tree decompositions consider for each bag of the tree decompo-
sition a number of configurations that is exponential in the size of the bag [5, 62, 63]. If we
know how the number of configurations depends on the tree decomposition, we may find a
tree decomposition that explicitly minimizes this quantity instead of using the treewidth
as a proxy for the quality of the tree decomposition. We consider this idea specifically in
the context of Bayesian networks, where the total table size is a well-known measure of
the quality of a tree decomposition [67, 77, 83].
A Bayesian network is a directed acyclic graph D, in which each vertex v ∈ V (D) corre-
sponds to a random variable Xv with a discrete state space and an associated conditional
probability table P (Xv | Xp1 , . . . , Xpk

) over the set of its parents {pi | (pi, v) ∈ E(D)} [63].
In Bayesian networks, tree decompositions are used for probabilistic inference via the junc-
tion tree algorithm [62, 63]. A junction tree of a Bayesian network is essentially a tree
decomposition of the moral graph of the Bayesian network [63].
Definition 9 ([63]). The moral graph mor(D) of a Bayesian network D is an undirected
graph with V (mor(D)) = V (D) and E(mor(D)) = {{v, u} | (v, u) ∈ E(D)} ∪ {{u,w} |
(u, v), (w, v) ∈ E(D)}.

In words, the moral graph has the same vertex set as the Bayesian network, and its edge
set includes the edges of the Bayesian network and additional edges between all pairs of
parents of each vertex [63].
Example 14. An example of a Bayesian network is shown in Figure 3.3 (left). This
Bayesian network is from [76], where it was used to illustrate how the probability of a
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Figure 3.3: A Bayesian network from [76] (left) and its moral graph (right).

patient having tuberculosis (T), lung cancer (L), or bronchitis (B) could be inferred for
example from the probabilities of the patient having visited Asia (A) and having a positive
X-ray result (X). The arrows denote the directions of the edges of the Bayesian network.
The moral graph of the Bayesian network is shown in Figure 3.3 (right). The moral graph
is undirected and has the same vertex set as the Bayesian network. The edge set of the
moral graph consist of the undirected versions of the edges of the Bayesian network and
the additional edges {T, L} and {E,B} between the parents of E and D, respectively.

The complexity of the junction tree algorithm depends on the sizes of probability tables
computed for each bag of the tree decomposition [62, 83]. For a tree decomposition (T,B),
this corresponds to total table size ∑Bi∈B

∏
v∈Bi

s(v), where s(v) ≥ 2 denotes the number
of states of the random variable Xv [67, 77, 83]. It is NP-hard to find a tree decomposition
of a moral graph minimizing total table size [79].

Proposition 12 ([67, 77, 83]). Let D be a Bayesian network and s(v) ≥ 2 denote the
number of states of the random variable associated with vertex v ∈ V (D). The total table
size of D is

min
H∈Tr(mor(D))

∑
W∈MC(H)

∏
v∈W

s(v).

The function ∏v∈W s(v) is fast because s(v) ≥ 2. Therefore total table size can be formu-
lated as finding an optimal triangulation with respect to a clique-sum-type cost function
with a clique function f(W ) = ∏

v∈W s(v) [16].

Remark 1. In general there may be vertices v ∈ V (D) with s(v) = 1. However, such
vertices can be removed from the moral graph and later added to any tree decomposition
without affecting its total table size.

3.5 Phylogenetic Character Compatibility

In phylogenetics, a central problem is to find a phylogenetic tree that describes the evo-
lution of a set of taxa1 (species) given data about the taxa. Given a set of taxa and a set

1Singular: taxon.
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of characters (attributes) which map the taxa to character states, the perfect phylogeny
problem is to find a phylogenetic tree describing the taxa so that each character state
evolves only once (or to report that no such tree exists) [96]. The maximum compatibility
problem is to find the largest subset of the characters that admits a perfect phylogeny.
These problems can be formulated via triangulations of graphs [21, 25].
We first define the perfect phylogeny problem and the maximum compatibility problem
directly via phylogenetic trees and then show how they can be formulated via triangula-
tions of partition intersection graphs of phylogenetic characters. The perfect phylogeny
problem and the maximum compatibility problem restricted to binary characters can be
formulated with cost functions of fill-in-type [55]. However, as we discussed in [72], the BT
algorithm is not directly applicable for solving the maximum compatibility problem with
characters of higher arity than two (multi-state characters). For solving the maximum
compatibility problem in the general case of multi-state characters, we will introduce in
Section 4.4 a hybrid algorithm that makes use of maximum satisfiability in conjunction
with the BT algorithm.

3.5.1 Phylogenetic Trees

A character X on a set of taxa X is a function X : X ′X → CX , where X ′X is a subset
of X and CX is the set of states of X . A character X is an r-ary character if |CX | = r.
In particular, |CX | = 2 for binary characters and |CX | ≥ 3 for multi-state characters.
A character is full if it maps all taxa to states, i.e., X ′X = X and partial otherwise.
Note that an r-ary character X partitions X ′X into r parts. We denote this partition by
π(X ) = {X−1{α} | α ∈ CX}.
A phylogenetic tree on a set of taxa X is a pair (T, φ), where T is a tree and φ : X → V (T )
maps the taxa to the nodes of the tree. We require that for each node v ∈ V (T ) with
degree at most two there is a taxon that is mapped to v. For a set of nodes S ⊆ V (T ),
let TS be the minimal connected induced subgraph of T that contains all nodes in S. A
phylogenetic tree displays a character X if no two of the trees in {Tφ(A) | A ∈ π(X )}
intersect each other. In other words, the tree displays a character if the nodes of the tree
can be partitioned into connected subtrees, each corresponding to exactly one state of the
character.

Definition 10 ([96]). A set of characters C on taxa X is compatible if there is a phyloge-
netic tree on X that displays all characters in C.

The perfect phylogeny problem is to decide if a set of characters is compatible and the
maximum compatibility problem is to find a maximum size compatible subset of a given
set of characters [96].

Example 15. Consider the characters X1, . . . ,X4 on taxa X1, . . . , X5 in Figure 3.4 (left).
The characters are (at most) quaternary, with state set {A,C,G, T}. The character X3
is a partial character and the other characters are full. The tree in Figure 3.4 (right) is
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X1 X2 X3 X4
X1 A C A A
X2 C T G
X3 G C G G
X4 T A G A
X5 A T T C

A T G G

A T T CA C G G

A C A A G C G G

C T G G

T A G A
X5

X2

X4X3X1

Figure 3.4: A table describing characters X1, . . . ,X4 on taxa X1, . . . , X5 (left) and a phylogenetic tree
on X1, . . . , X5 displaying characters X1,X2 and X3 (right).

a phylogenetic tree on the taxa X1, . . . , X5. It has five nodes corresponding to the taxa
and two additional internal nodes. The internal nodes are labeled with the corresponding
character-states. The tree displays the characters X1,X2 and X3 but not the character X4
because the subtrees Tφ({X1,X4}) and Tφ({X2,X3}), corresponding to the states A and G of X4,
intersect. Therefore the set of characters {X1,X2,X3} is compatible.

3.5.2 Formulation by Triangulations

The perfect phylogeny problem and the maximum compatibility problem can be formu-
lated in terms of triangulations of colored graphs. The graph whose triangulations we are
interested in is the partition intersection graph (PI-graph) of a set of characters.

Definition 11 ([21, 25]). Let C be a set of characters. The partition intersection graph
(PI-graph) int(C) of C has

V (int(C)) =
⋃
X∈C
{(X , A) | A ∈ π(X )} and

E(int(C)) = {{(X , A), (X ′, B)} | A ∩B 6= ∅}.

In words, the PI-graph of C contains a vertex for each pair (X , A), where X is a character
and A ⊆ X is a part of the partition π(X ) induced by X . The PI-graph has edges between
the pairs of vertices whose corresponding parts of taxa have a non-empty intersection,
hence the name “partition intersection graph”. Note that there are no edges between two
vertices corresponding to a same character because parts of a partition are disjoint. Note
also that if all characters are r-ary, then the PI-graph has |C|r vertices. The PI-graph can
be thought of as being colored with |C| colors, each vertex having a color corresponding to
the character of the vertex. Initially, this is a valid coloring in the sense that there are no
edges between vertices of the same color. The goal in finding triangulations of PI-graphs
is to preserve as many colors as possible.

Proposition 13 ([21]). Let C be a set of characters. A subset C′ ⊆ C is compati-
ble if and only if there exists a triangulation H of int(C) that has no fill-edge of form
{(X , A), (X , B)} ∈ E(H) \ E(int(C)) for any X ∈ C′.
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X1 X2 X3
X1 1 0 1
X2 1 1
X3 0 0
X4 0 1 0 (X2, {X1, X3}) (X1, {X3, X4})

(X1, {X1, X2}) (X2, {X2, X4})

(X3, {X1}) (X3, {X4})

Figure 3.5: A table describing binary characters X1, . . . ,X3 on taxa X1, . . . , X4 (left) and the PI-graph
of them (right).

The intuition on how triangulations of PI-graphs relate to phylogenetic trees is that each
maximal clique of a triangulation corresponds to a node of the phylogenetic tree.

Example 16. Consider the characters X1,X2,X3 on taxa X1, . . . , X4 in Figure 3.5 (left).
The PI-graph int({X1,X2,X3}) is shown in Figure 3.5 (right). It has a vertex corresponding
to each character-state pair of {X1,X2,X3}. The PI-graph has exactly two minimal tri-
angulations, one adding the fill-edge {(X1, {X1, X2}), (X1, {X3, X4})} and another adding
the fill-edge {(X2, {X1, X3}), (X2, {X2, X4})}. Therefore the characters do not admit a
perfect phylogeny. The subsets {X2,X3} and {X1,X3} are maximum size subsets that are
compatible.

Proposition 13 allows to formulate the perfect phylogeny problem and the maximum com-
patibility problem of binary characters as fill-in-type. Let the fill-edge function f(e) on
potential fill-edges e of a PI-graph be

f({(X1, A), (X2, B)}) =
{

1 if X1 = X2
0 otherwise .

The function f(e) takes value 1 if the edge e is between two vertices corresponding to
the same character X and value 0 otherwise. By Proposition 13, the fill-edges e for
which f(e) = 1 are exactly the fill-edges whose addition causes some characters to not be
compatible.

Corollary 1 ([55]). A set of characters C admits a perfect phylogeny if and only if there
exists a triangulation H ∈ Tr(int(C)) with∑

e∈E(H)\E(int(C))
f(e) = 0.

By Corollary 1 perfect phylogeny can be formulated as finding an optimal triangulation
with respect to a fill-in-type cost function with a fill-edge function f(e). We note that
perfect phylogeny can also be expressed as finding an optimal triangulation with respect
to a clique-max-type cost function with a clique function f(W ) = maxe∈W 2 f(e).
For any binary character X , there are exactly 2 vertices corresponding to X in int(C).
Therefore, if all characters are binary, there is a one-to-one correspondence between char-
acters and potential fill edges e with f(e) = 1.
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Corollary 2 ([55]). Let C be a set of binary characters. There exists a compatible subset
C′ ⊆ C of size |C′| if and only if there exists a triangulation H ∈ Tr(int(C)) with∑

e∈E(H)\E(int(C))
f(e) = |C \ C′|.

By Corollary 2 the maximum compatibility problem of binary characters can be formulated
as finding an optimal triangulation with respect to a fill-in-type cost function with a fill-
edge function f(e).
The formulation of binary maximum compatibility does not work for multi-state charac-
ters. Intuitively, this is because there can be more than one possible fill-edge that causes
a character to not be compatible, resulting in the fact that the number of incompatible
characters cannot be counted locally. However, it is clear that also in the multi-state
case there is a minimal triangulation of the PI-graph that corresponds to a maximum size
compatible subset of characters. We will use this fact in Section 4.4 to design a hybrid
BT-MaxSAT algorithm for the maximum compatibility problem of multi-state characters.

3.6 Treelength

The length of a tree decomposition is the longest distance between two vertices in a same
bag of the decomposition [34]. The treelength of a graph is the minimum length of a
tree decomposition of the graph. Treelength was introduced by Dourisboure and Gavoille
in 2007, motivated by applications in distance labeling and compact routing [2, 34]. In
graph-theoretical context, bounded treelength graphs generalize chordal graphs in the
sense that chordal graphs are exactly the graphs with treelength 1, and prior generaliza-
tions of the class of chordal graphs are known to have bounded treelength [34].
While deciding if a graph has treelength 1 is simply checking if the graph is chordal and
thus linear-time, deciding if a graph has treelength ≤ k is NP-complete for every constant
k at least 2 [80]. To the best of our knowledge, the only exact algorithm for computing
treelength is an application of the BT algorithm presented by Lokshtanov [80].

Proposition 14 ([34]). The treelength of a graph G is

min
H∈Tr(G)

max
W∈MC(H)

max
u,v∈W

distG(u, v),

where distG(u, v) is the distance between vertices u and v in the graph G.

The function maxu,v∈W distG(u, v) is monotone with respect to set inclusion because adding
a vertex to W does not remove any existing pair u, v ∈ W . Therefore treelength can be
formulated as finding an optimal triangulation with respect to a clique-max-type cost
function with a clique function f(W ) = maxu,v∈W distG(u, v).

Remark 2. A graph parameter called treebreadth, which is closely related to treelength,
has also been investigated in the literature [2, 35]. The definition of treebreadth is sim-
ilar to treelength except that the clique function is the radius of the bag, i.e., f(W ) =
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minv∈V (G) maxu∈W distG(u, v) [35]. The radius of the bag is monotone with respect to set
inclusion, and therefore treebreadth can be formulated as finding an optimal triangulation
with respect to a clique-max-type cost function. While not done in this thesis, we note
that the BT algorithm could similarly be evaluated on computing treebreadth. We focus
on treelength because treebreadth and treelength are algorithmically similar in the context
of the BT algorithm, and an optimal treelength decomposition is a 2-approximation of an
optimal treebreadth decomposition [35].



4 The Bouchitté–Todinca Algorithm

In 2001 Bouchitté and Todinca proposed an algorithm for computing treewidth and mini-
mum fill-in in polynomial time in both the number of vertices and the number of minimal
separators of the input graph [22, 23]. While the BT algorithm has been generalized and
modified in multiple directions [16, 43, 44, 45, 86], all variants of the algorithm first enu-
merate special objects called potential maximal cliques (PMCs) of the input graph, and
then use dynamic programming on top of them to find an optimal minimal triangulation
of the graph. We refer to this two-phase approach as the BT algorithm.
In this chapter we overview the BT algorithm. We first review the central to BT definitions
of minimal separators and potential maximal cliques and their properties connecting them
to minimal triangulations. Then we present the PMC enumeration phase, which we refer to
as PMC-ENUM, and the dynamic programming phase, which we refer to as BT-DP. Lastly,
we present our MaxSAT adaptation of the BT-DP phase for the maximum compatibility
problem of multi-state phylogenetic characters.
The PMC-ENUM algorithm that we use in this thesis is a novel modification of the original
PMC-ENUM algorithm of Bouchitté and Todinca [22]. The modification is designed with
the goal to allow an efficient practical implementation. As a subroutine, PMC-ENUM
enumerates all minimal separators of the graph, for which we use Berry’s algorithm [12].
The version of the BT-DP algorithm that we use in this thesis was introduced for treewidth
and minimum fill-in by Fomin et al. [42], and later generalized to other cost functions by
multiple authors [43, 45, 55, 80, 86]. The MaxSAT adaptation of BT-DP for the maximum
compatibility problem of multi-state phylogenetic characters was introduced by us in [72].

4.1 Combinatorial Objects

Minimal separators and potential maximal cliques are the two central combinatorial ob-
jects considered in the BT algorithm, both closely connected to minimal triangulations.

4.1.1 Minimal Separators

A set of vertices S ⊆ V (G) is an a,b-separator of a graph G if the vertices a and b are
in different connected components of G \ S. In other words, all paths between a and b

go through S. The set S is a minimal a,b-separator of G if no subset of S is also an
a,b-separator [23].
Definition 12 ([23]). Let G be a graph. A set of vertices S ⊆ V (G) is a minimal separator
of G if it is a minimal a,b-separator for some pair a, b ∈ V (G).

The set of minimal separators of a graph G is denoted by ∆(G).
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Figure 4.1: A graph (left), one of its minimal triangulations (middle), and a tree decomposition corre-
sponding to the minimal triangulation (right).

Example 17. Consider the graph G in Figure 4.1 (left). The set {a, e} is a b,d-separator
in G. It is a minimal b,d-separator because neither {a} or {e} is a b,d-separator, and
therefore {a, e} ∈ ∆(G). Other minimal separators of G are {b, c} and {c}. Note that a
minimal separator can be a subset of another minimal separator.

The concept of full component is used in multiple parts of the BT algorithm.

Definition 13 ([23]). Let G be a graph and X ⊆ V (G). A component C ∈ C(G \X) is a
full component of X in G if N(C) = X.

Full components provide an alternative characterization of minimal separators.

Lemma 1 ([23]). Let G be a graph and a, b ∈ V (G). A set of vertices S ⊆ V (G) is a
minimal a,b-separator if and only if a and b are in different full components of S.

Proof. A vertex v ∈ S can be removed from an a,b-separator S while maintaining that S
is an a,b-separator if and only if v /∈ N(Ca) or v /∈ N(Cb), where Ca is the component of
G \ S containing a and Cb is the component of G \ S containing b.

By Lemma 1, a vertex set is a minimal separator if and only if it has at least 2 full
components.

Example 18. Consider the graph G in Figure 4.1 (left). The vertex set {b, c} is a minimal
separator of G. Of the components C(G \ {b, c}) = {{a}, {d}, {e}}, the components {a}
and {e} are full components of {b, c}.

Minimal separators of chordal graphs have a special structure that is related to their
maximal cliques. Let (T,B) be a tree decomposition of a chordal graph H such that
B = MC(H). The minimal separators of H are exactly the intersections of adjacent bags
of (T,B), i.e., S ∈ ∆(H) if and only if S = Bi ∩Bj for some (i, j) ∈ E(T ) [23]. Therefore,
every minimal separator of a chordal graph is a clique, and a chordal graph has at most
n− 1 minimal separators.
The connection between minimal triangulations and minimal separators is even stronger.

Proposition 15 ([23]). If G is a graph and H is a minimal triangulation of G, then
∆(H) ⊆ ∆(G). Moreover, if S ∈ ∆(H), then C(H \ S) = C(G \ S).
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By Proposition 15, if (T,B) is a tree decomposition corresponding to a minimal triangu-
lation H of a graph G, then all of the intersections of adjacent bags of (T,B) are minimal
separators of G. Moreover, any minimal separator of H separates the same pairs of vertices
in H and G.

Example 19. Consider the graph G, one of its minimal triangulations H, and a tree
decomposition (T,B) corresponding to H in Figure 4.1 (left, middle, and right, respec-
tively). The minimal separators of H are {a, e} and {c}, both of which are also minimal
separators of G. The minimal separator {a, e} is the intersection of the bags {a, b, e}
and {a, c, e} of (T,B), while the minimal separator {c} is the intersection of the bags
{a, c, e} and {c, d}. Note also that C(H \ {a, e}) = C(G \ {a, e}) = {{b}, {c, d}} and
C(H \ {c}) = C(G \ {c}) = {{a, b, e}, {d}}.

In addition to Proposition 15, it holds that for each minimal separator S ∈ ∆(G), there
exists a minimal triangulation H ∈ MT(G) with S ∈ ∆(H) [23]. In other words, mini-
mal separators of a graph are exactly the vertex sets that have potential to be minimal
separators of a minimal triangulation of the graph.

4.1.2 Potential Maximal Cliques

Potential maximal cliques of a graph are the vertex sets that have potential to be maximal
cliques of a minimal triangulation of the graph.

Definition 14 ([23]). Let G be a graph. A vertex set Ω ⊆ V (G) is a potential maximal
clique of G if there is a minimal triangulation H ∈ MT(G) with Ω ∈ MC(H).

The set of the PMCs of a graph G is denoted by Π(G).

Example 20. Consider the graph G in Figure 4.2 (left). The vertex set {b, c, e} is a
PMC of G because it is a maximal clique in the minimal triangulation H of G shown in
Figure 4.2 (right). Other examples of PMCs of G include {a, b, c}, {b, d, e}, {c, e, f} and
{d, e, f}.

Next we consider two crucial properties connecting the structure of PMCs and minimal
separators. The following lemma formalizes how a PMC of a graph interacts with the rest
of the graph only via the minimal separators it contains.

a

b c

d e f

a

b c

d e f

Figure 4.2: A graph with one of its potential maximal cliques colored gray (left) and one of the graph’s
minimal triangulations (right).
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Lemma 2 ([23]). If Ω is a potential maximal clique of a graph G, then for each component
C ∈ C(G \ Ω), the neighborhood N(C) = S is a minimal separator of G. There are no
other minimal separators S ⊆ Ω.

Note that such a component C is a full component of S. By Lemma 2, a PMC Ω of a
graph G contains exactly |C(G\Ω)| minimal separators. We note that a minimal separator
is never a PMC nor a superset of a PMC [23].

Example 21. Consider the graph G in Figure 4.2 (left) and the PMC Ω = {b, c, e} of G.
The minimal separators of G that are contained in Ω are {b, c}, {b, e} and {c, e}. Each of
them is a neighborhood of one of the components C(G \ Ω) = {{a}, {d}, {f}}. Note that
these minimal separators are also minimal separators of the minimal triangulation H of
G shown in Figure 4.2 (right) whose maximal clique Ω is.

Lemma 3 ([23]). Let G be a graph, S a minimal separator of G, and Ω a potential maximal
clique of G with S ⊆ Ω. There is a full component C of S with Ω ⊆ S ∪ C.

Note that by disjointness of components, such a component C is unique. By combining
Lemmas 2 and 3, we can deduce that each minimal separator S contained in a PMC Ω is
a minimal a,b-separator for a pair a, b of vertices a ∈ Ca and b ∈ Ω, where Ca ∈ C(G \Ω).

Example 22. Consider the graph G in Figure 4.2 (left) and the PMC Ω = {b, c, e} of
G. The minimal separator {b, c} of G is contained in Ω. Its full components are {a} and
{d, e, f}, with Ω ⊆ ({b, c} ∪ {d, e, f}).

4.2 Enumeration Phase

The first phase of the BT algorithm is to enumerate all potential maximal cliques of the
input graph [23]. Concurrently with the BT-DP algorithm, Bouchitté and Todinca in-
troduced a minimal separator based PMC enumeration algorithm having time complexity
O(|∆(G)|2n2m), where ∆(G) is the set of minimal separators of the input graph G [22].
In this section we describe PMC-ENUM, which is a modification of the original algorithm
of Bouchitté and Todinca for enumerating all PMCs of a graph [22]. Our modification
reduces the time complexity slightly to O(|∆(G)|2nm + |∆(G)|n2m). More importantly,
the modification introduces additional insights that allow practical optimizations that are
effective on typical inputs. PMC-ENUM first enumerates minimal separators with Berry’s
algorithm [12] and then generates potential maximal cliques from the minimal separators.

4.2.1 Enumerating Minimal Separators

We start by describing Berry’s algorithm [12] for enumerating all minimal separators of a
graph G in O(|∆(G)|n3) time. The algorithm first enumerates the minimal separators that
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are contained in the neighborhood of some vertex and then generates all other minimal
separators from this basis.
A minimal separator S is close to a vertex v if S ⊆ N(v). Recall that the notation N [v]
denotes the closed neighborhood N(v) ∪ {v} of a vertex v.

Proposition 16 ([12]). Let S be a minimal separator of a graph G and v ∈ V (G). We
have that S ⊆ N(v) if and only if there is a component C ∈ C(G \N [v]) with S = N(C).

By Proposition 16, there are at most n2 minimal separators that are close to a vertex, and
they can be listed in O(n3) time. The other minimal separators can be generated from
this basis via a production rule.

Definition 15 ([12]). Let S be a minimal separator of a graph G. The set of minimal
separators close to S in G is R(S) = {N(C) | C ∈ C(G \ (S ∪N(v))) | v ∈ S}.

Definition 15 provides a production rule R to generate minimal separators R(S) that
are close to a given minimal separator S. The rule considers each vertex v ∈ S and
computes the connected components of the graph G \ (S ∪N(v)). The neighborhoods of
the components are the resulting minimal separators. In this process, at most |S|n minimal
separators are generated from a minimal separator S. The rule can be implemented to
compute the set R(S) in O(|S|n2) time.

Proposition 17 ([12]). If S is a minimal separator of a graph G, then every S ′ ∈ R(S) is
also a minimal separator of G. All minimal separators of G can be generated by successively
applying the production rule R(S), starting from the minimal separators that are close to
a vertex.

Algorithm 1: MS-ENUM
Input : A graph G.
Output: The minimal separators of G.
1 Let ∆ be an empty set of minimal separators.
2 for v ∈ V (G) do
3 for C ∈ C(G \N [v]) do
4 ∆.insert(N(C))
5 Let Q be an empty queue of minimal separators.
6 Q.push(∆1, . . . ,∆|∆|)
7 while Q not empty do
8 S ← Q.pop()
9 for S ′ ∈ R(S) do

10 if S ′ /∈ ∆ then
11 ∆.insert(S ′)
12 Q.push(S ′)
13 return ∆
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Algorithm 1 presents Berry’s algorithm for enumerating minimal separators [12] as pseu-
docode, which we will refer to as MS-ENUM. On lines 2 to 4 MS-ENUM enumerates the
basis, the minimal separators that are close to a vertex. Then on lines 7 to 12 MS-ENUM
considers each enumerated minimal separator and applies the production rule to it to
generate more minimal separators.

Theorem 1 ([12]). MS-ENUM enumerates ∆(G) in O(|∆(G)|n3) time for any graph G.

Theorem 1 follows from Proposition 17 and from the fact that MS-ENUM computes the
basis in O(n3) time and applies the production rule in O(n3) time per minimal separator.

4.2.2 Enumerating Potential Maximal Cliques

We describe PMC-ENUM, our modification of the algorithm of Bouchitté and Todinca [22]
for enumerating all potential maximal cliques of a graph.
PMC-ENUM first enumerates minimal separators with MS-ENUM, and then generates
the set of PMCs Π(G) of the input graph G in three steps. The first step works via
induction using Π(G\{a}), where a ∈ V (G). The second step enumerates the PMCs that
are not enumerated by the first step and contain the vertex a. The third step enumerates
the remaining PMCs. The second and the third step make use of the minimal separators
of G, generating candidates of PMCs from minimal separators. All of the candidates have
to be checked for being actual PMCs, for which we make use of the following proposition.

Proposition 18 ([22]). Let G be a graph. A vertex set Ω ⊆ V (G) is a potential maximal
clique of G if and only if

1. for any pair of distinct vertices u, v ∈ Ω, either {u, v} ∈ E(G) or there is a compo-
nent C ∈ C(G \ Ω) with {u, v} ⊆ N(C), and

2. no component of Ω is full, i.e., N(C) ⊂ Ω for all C ∈ C(G \ Ω).

We will refer to condition 1 of Proposition 18 as the cliquish condition, following [99], and
to condition 2 of Proposition 18 as the no full component condition. The cliquish condition
can be equivalently stated as follows: for each pair of distinct vertices u, v ∈ Ω, there is
a path u,w1, . . . , wp, v in G whose intermediate vertices w1, . . . , wp are in V (G) \ Ω. We
call this kind of path a path outside of Ω.
The cliquish condition can be checked by a graph search from each of the vertices of Ω
and the no full component condition with a single graph search finding the neighborhoods
of all components of G \ Ω. The time complexities of these checks are O(n + |Ω|m) and
O(n+m), respectively.

Corollary 3 ([22]). Given a graph G and a vertex set Ω ⊆ V (G), it can be decided in
O(nm) time if Ω is a potential maximal clique of G.
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Induction on Induced Subgraphs. The first step of PMC-ENUM works by induction,
enumerating PMCs of G based on PMCs of an induced subgraph G\{a}, for an arbitrary
selected vertex a ∈ V (G). In order for this induction to make sense, minimal separators
and PMCs need to behave well with respect to induced subgraphs. The next two lemmas
formalize this.

Lemma 4 ([22]). Let G be a graph with a, x, y ∈ V (G). If S is a minimal x,y-separator
in G \ {a}, then either S or S ∪ {a} is a minimal x,y-separator in G.

Proof. If S is not x,y-separator in G, then S ∪ {a} is. The separator S ∪ {a} is minimal
because it has the same full components in G that S has in G \ {a}.

Lemma 4 implies important facts for PMC-ENUM. First, by Lemma 4 the number of
minimal separators of G \ {a} is at most the number of minimal separators of G. Second,
all minimal separators of G \ {a} can be computed from the minimal separators of G. In
particular, by testing if S \ {a} is a minimal separator of G \ {a} for each S ∈ ∆(G), the
set ∆(G \ {a}) can be enumerated in O(|∆(G)|(n+m)) time given ∆(G).

Lemma 5. Let G be a graph, a ∈ V (G), and Ω ∈ Π(G \ {a}). Exactly one of Ω and
Ω ∪ {a} is a potential maximal clique of G.1

Proof. First, note that Ω satisfies the cliquish condition in G and Ω ∪ {a} satisfies the
no full component condition in G. Now, if there is a path in G outside of Ω from the
vertex a to every vertex v ∈ Ω, then Ω ∪ {a} satisfies the cliquish condition, and Ω has a
full component containing a. If there is no such path, then Ω ∪ {a} does not satisfy the
cliquish condition, but Ω has no full components.

Lemma 5 implies that the number of PMCs of G \ {a} is at most the number of PMCs of
G. Following Lemma 5, the first step of PMC-ENUM is to call PMC-ENUM recursively
on G \ {a} to enumerate Π(G \ {a}) and to check for each Ω ∈ Π(G \ {a}) if Ω or Ω∪ {a}
is a PMC of G. Note that by the proof of Lemma 5, this check can be implemented in
linear time per PMC because it is sufficient to check if Ω has a full component in G.

The Second Step of PMC-ENUM. Next we characterize the PMCs that are not
enumerated by the first step and contain the vertex a. These PMCs are enumerated by
the second step of PMC-ENUM.

Lemma 6 ([22]). Let Ω be a potential maximal clique of a connected graph G with |V (G)| ≥
2. If a ∈ Ω and Ω \ {a} /∈ Π(G \ {a}), then Ω \ {a} ∈ ∆(G).

Proof. Note that the components of the graph G \ Ω are the same as the components of
the graph (G \ {a}) \ (Ω \ {a}). Therefore Ω \ {a} does not violate the cliquish condition
in G \ {a}, and so it has a full component C in G \ {a}. Because Ω has no full component

1A weaker version of the lemma is presented in [22].
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in G, it holds that N(C) = Ω \ {a} in G. Because C ∈ C(G \Ω), it follows from Lemma 2
that N(C) is a minimal separator of G.

By Lemma 6, the PMCs that are not enumerated by the first step and contain the vertex
a can be constructed from minimal separators. Based on Lemma 6, the second step of
PMC-ENUM is to check for each minimal separator S ∈ ∆(G) if S ∪ {a} is a PMC. This
together with the first step is sufficient to find all PMCs of G that contain the vertex a.
Note that Lemma 6 requires the graph G to be connected and have at least two vertices.
We assume that the input graph is connected and that in each recursion step we choose
a ∈ V (G) so that the graph G \ {a} is connected. The graph with only one vertex is the
base case, containing exactly one PMC and handled separately.

The Third Step of PMC-ENUM. The remaining case covers the PMCs that do not
contain the vertex a and cannot be constructed with Lemma 5 from the PMCs of G \ {a}.
Our characterization of these PMCs is a novel adaptation of the results of Bouchitté and
Todinca, based on the following lemma from [22], which reveals the structure of the PMCs
that contain so-called active separators.

Lemma 7 ([22]). Let G be a graph, Ω ∈ Π(G), S ∈ ∆(G), and S ⊆ Ω. Let CΩ denote
the full component of S with Ω ⊆ S ∪ CΩ. If there is a pair of vertices x, y ∈ S such that
{x, y} /∈ E(G) and S is the only minimal separator contained in Ω that contains x and y,
then Ω \ S is a minimal x,y-separator in G[CΩ ∪ {x, y}].

A minimal separator S containing x and y as in Lemma 7 is called an active separator of
the PMC Ω [22]. We use Lemma 7 to prove the following theorem, which characterizes
the PMCs not characterized by Lemmas 5 and 6. Figure 4.3 illustrates the objects used in
the proof, namely the active separator S, its full components Ca and CΩ, vertices a, x, y,
and the minimal x,y-separator T .

Theorem 2. Let G be a graph and a ∈ V (G). If Ω ∈ Π(G) \Π(G \ {a}) and a /∈ Ω, then
Ω = S ∪ T \ {a} for some S, T ∈ ∆(G). Moreover, a /∈ S, S /∈ ∆(G \ {a}), and a ∈ T .

Ca S CΩ

T \ {a}

x

y

a

Figure 4.3: Illustration of the proof of Theorem 2. The vertex sets S and T \ {a} whose union forms
the potential maximal clique Ω are colored gray.
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Proof. If Ω has no full components in G, then it also does not have full components in
G \ {a}. Thus the reason why Ω is not a PMC of G \ {a} is that it violates the cliquish
condition, i.e., there is a pair of vertices x, y ∈ Ω so that a is on all paths between x and y
that are outside of Ω. Let Ca be the component of G \ Ω that contains a. It follows from
Lemma 2 that S = N(Ca) is a minimal separator of G. Furthermore, x, y ∈ S because
the path between x and y in G goes through a.
Let CΩ be the full component of S that contains Ω \ S. By Lemma 3, the component CΩ
exists and is unique. The only components C ∈ C(G\S) with x, y ∈ N(C) are Ca and CΩ,
since otherwise there would be a path between x and y outside of Ω in G \ {a}. Therefore
Ca and CΩ are the only full components of S. Since the vertex a separates x from y in
G[Ca ∪ {x, y}], the only component of G \ {a} \ S that has {x, y} in its neighborhood is
CΩ, and therefore S /∈ ∆(G \ {a}).
Note that the minimal separator S is an active separator of Ω whose properties are sum-
marized in Lemma 7. In particular, it follows that the set Ω\S is a minimal x,y-separator
in G[CΩ ∪ {x, y}]. Next we gradually add vertices to the minimal x,y-separator Ω \ S and
to the induced subgraph G[CΩ ∪ {x, y}] to finally yield a minimal x,y-separator T in the
graph G.
First, the set Ω\S∪{a} is a minimal x,y-separator in G[CΩ∪{x, y}∪Ca]. This is because
there are no edges between Ca and CΩ and all paths between x and y in G[{x, y}∪Ca] go
through a. Adding the other components of G\S to the induced subgraph, we deduce that
Ω\S∪{a} is also a minimal x,y-separator in the graph G[(V (G)\S)∪{x, y}] because the
other components do not neighbor any other vertices of G[CΩ ∪ {x, y} ∪Ca] than at most
one of x or y. Finally, by applying Lemma 4 to add the vertices S \ {x, y} to the induced
subgraph and some of them to the minimal x,y-separator, it follows that there is a minimal
x,y-separator T ∈ ∆(G) such that T \S = Ω∪{a} \S, and therefore T ∪S \ {a} = Ω.

By Theorem 2, the PMCs of G that cannot be constructed from the PMCs of G\{a} and do
not contain a can be constructed by considering pairs of minimal separators S, T ∈ ∆(G).
Furthermore, there are additional conditions to limit the number of pairs S, T to consider.
Corollary 4 summarizes the steps of PMC-ENUM to characterize all PMCs of a graph.

Corollary 4. Let Ω be a potential maximal clique of a connected graph G and a a vertex
of G. If |V (G)| ≥ 2, one of the following holds.

1. Ω \ {a} ∈ Π(G \ {a}).

2. Ω \ {a} ∈ ∆(G).

3. Ω = S ∪ T \ {a}, where S, T ∈ ∆(G), a /∈ S, S /∈ ∆(G \ {a}), and a ∈ T .

Proof. By Lemma 6, if a ∈ Ω and (1) does not hold, then (2) holds. By Theorem 2, if
a /∈ Ω and (1) does not hold, then (3) holds.
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Algorithm 2: PMC-ENUM
Input : A connected graph G.
Output: The potential maximal cliques of G.
1 Let Π be an empty set of potential maximal cliques.
2 ∆←MS-ENUM(G)
3 O[1 . . . n]← Vertex-Order(G)
4 G1 ← G
5 for i← 1 to n− 1 do
6 Πi ← ∅
7 a← O[i]
8 ∆T ← {S \ {a} | a ∈ S ∈ ∆}
9 ∆N ← {S ∈ ∆ \∆T | IsMinsep(S,Gi \ {a})}

10 ∆S ← ∆ \∆T \∆N

11 for S ∈ ∆N ∪∆S do
12 if IsPmc(S ∪ {a}, Gi) then
13 Πi ← Πi ∪ {S ∪ {a}}
14 Πi ← Πi ∪Combine(∆S,∆T , Gi)
15 Π← Π ∪Extend(Πi, O[i− 1 . . . 1], G)
16 ∆← ∆T ∪∆N

17 Gi+1 ← Gi \ {a}
18 Π← Π ∪Extend({{O[n]}}, O[n− 1 . . . 1], G)
19 return Π

PMC-ENUM is an implementation of the recursive procedure suggested by Corollary 4.
PMC-ENUM is presented in pseudocode as Algorithm 2. Even though the principle under-
lying PMC-ENUM is induction over induced subgraphs, the pseudocode is not recursive
in order to better illustrate the running time of the algorithm and to describe our actual
implementation of it.
PMC-ENUM takes as input a graph G. It first computes the set ∆ of minimal separators of
G with Berry’s algorithm and uses a subroutine Vertex-Order to find an order O[1 . . . n]
to remove vertices from G so that the resulting graph is always connected. The successive
induced subgraphs resulting from removing vertices from G are G1 = G, G2 = G \ {O[1]},
G3 = G \ {O[1], O[2]}, . . . , Gn = G[{O[n]}].
The graphs G1, . . . , Gn−1 are considered in the loop consisting of lines 5 to 17. First,
on lines 6 to 14 the subset Πi of the PMCs of Gi is computed, containing the PMCs
that correspond to cases 2 and 3 of Corollary 4. On line 15 each PMC Ω′ ∈ Πi is used
to construct a PMC Ω of G with Ω′ ⊆ Ω by successively applying Lemma 5 with the
Extend subroutine. On lines 16 and 17 the next graph Gi+1 and its minimal separators
are computed. Line 18 handles the base case of a graph with a single vertex.
In more detail, the PMCs corresponding to cases 2 and 3 of Corollary 4 are computed
by first partitioning the set of minimal separators of Gi into three parts, ∆S,∆T , and
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∆N . The sets ∆S and ∆T correspond to the minimal separators S and T of case 3 of
Corollary 4 and ∆N to the rest of the minimal separators of Gi. In particular, ∆T is the
set of minimal separators of Gi that contain the vertex a, with the vertex a removed from
each minimal separator in ∆T , and ∆S is the set of minimal separators of Gi that do not
contain a and are not minimal separators of Gi+1. The PMCs that correspond to case 2
are computed on lines 11 to 13, and the PMCs that correspond to case 3 are computed
with the Combine(∆S,∆T , Gi) subroutine which tries all pairs S ∈ ∆S and T ∈ ∆T to
form a PMC S ∪ T of Gi.

Theorem 3. Any graph G has at most |∆(G)|2 + n|∆(G)| + 1 potential maximal cliques
and PMC-ENUM enumerates them in O(|∆(G)|2nm+ |∆(G)|n2m) time.

Proof. The correctness of PMC-ENUM follows from Corollary 4. To bound the number
of PMCs, note that there are at most |∆(G)|n PMC candidates corresponding to case 2
of Corollary 4. For case 3 of Corollary 4, note that the sum of the cardinalities of ∆S

across all iterations is |∆(G)|, so in total at most |∆(G)|2 candidates are considered. For
the time complexity, recall that by Corollary 3, each PMC candidate can be checked in
O(nm) time. Extend can be implemented in a total of O(nm) time per PMC because
only the no full component condition of a PMC needs to be checked when determining
whether Ω or Ω ∪ {a} is a PMC.

Theorem 3 improves the results of Bouchitté and Todinca [22] by a factor of n in the
leading term in both the number of PMCs and the running time to enumerate them. The
more important property of our modification that differs from the original algorithm [22]
is that the Combine(∆S,∆T , Gi) subroutine produces PMCs of Gi that are supersets of
the minimal separators given in the sets ∆S and ∆T . As we will explain in more detail in
Section 5.3, this allows to prune the sets ∆S and ∆T based on problem-specific insights
that restrict the set of PMCs that need to be enumerated.

4.3 Dynamic Programming Phase

In this section we describe BT-DP, the dynamic programming phase of the BT algorithm.
BT-DP takes as an input a graph, the set of potential maximal cliques of the graph, and a
description of a cost function on triangulations of the graph. BT-DP outputs the cost of an
optimal minimal triangulation with respect to the cost function as well as a corresponding
triangulation. Our presentation of BT-DP is based on [23, 42, 43, 45].

4.3.1 Characterization of Minimal Triangulations

In BT-DP, the subproblems of the dynamic programming correspond to blocks of the input
graph.
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Definition 16 ([23]). Let G be a graph. A pair (S,C) is a block of G if S is a minimal
separator of G and C is a full component of S in G.

More accurately, BT-DP computes an optimal minimal triangulation for each realization
of a block of the input graph.

Definition 17 ([23]). Let G be a graph and (S,C) a block of G. The realization of (S,C),
denoted by R(S,C), is the graph with the vertex set V (R(S,C)) = S ∪C and the edge set
E(R(S,C)) = S2 ∪ E(G[S ∪ C]).

In words, the realization of (S,C) is the induced subgraph G[S ∪ C] with the minimal
separator S completed into a clique. To simplify presentation, following [43], we let the
pair (∅, V (G)) also be a block of any graph G. Now the realization R(∅, V (G)) = G
corresponds to the root state of the dynamic programming. All properties of blocks
presented in this section also hold for the special block (∅, V (G)).

Example 23. Consider the graph G in Figure 4.4 (left). The pair of sets (S,C) =
({b, c}, {d, e, f, g, h}) is a block of G because S is a minimal separator of G and C is a
full component of S in G. The realization R(S,C) is shown in Figure 4.4 (middle left).
It consists of the induced subgraph G[S ∪ C] with the added edge {b, c}.

BT-DP computes an optimal triangulation of a realization R(S,C) based on optimal
triangulations of realizations R(Si, Ci) with (Si∪Ci) ⊂ (S∪C). The transition to assemble
minimal triangulations of smaller realizations into a minimal triangulation of a larger
realization makes use of potential maximal cliques. To present the transition, we need to
review properties connecting the structure of PMCs and blocks.
Recall that by Lemma 2, for a PMC Ω of a graph G, each component C ∈ C(G \ Ω) is a
full component of a minimal separator N(C) = S. Furthermore, the pair (S,C) is a block.

Definition 18 ([23]). Let G be a graph and Ω a potential maximal clique of G. The
associated blocks of Ω in G are AG(Ω) = {(N(C), C) | C ∈ C(G \ Ω)}.

Example 24. Consider the graph G in Figure 4.4 (left). The set Ω = {b, c, e, h} is a PMC
of G. The associated blocks of Ω in G are ({b, c}, {a}), ({b, h}, {d, g}) and ({c, h}, {f}).
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Figure 4.4: A graph with one of its potential maximal cliques colored gray (left) and three realizations
R(S, C) of blocks (S, C) of the graph with the minimal separators S colored gray.
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The intuition of the BT algorithm is that if we choose a PMC Ω to be a maximal clique
of a minimal triangulation of a graph G, then we can build the rest of the minimal tri-
angulation by choosing an arbitrary minimal triangulation for each realization of a block
(Si, Ci) ∈ AG(Ω). In order for this kind of a recursive characterization to be computation-
ally feasible, it should be easy to handle PMCs and blocks of realizations R(S,C).

Lemma 8 ([23]). Let (S,C) be a block of a graph G. If Ω is a potential maximal clique
of R(S,C) and S ⊆ Ω, then Ω ∈ Π(G) and AR(S,C)(Ω) ⊆ AG(Ω).

By Lemma 8, if we consider only the PMCs that contain the minimal separator S of a
realization R(S,C), then handling the recursion is simple: all resulting blocks are also
blocks of G and all of the PMCs of R(S,C) are also PMCs of G. The restriction to PMCs
containing S makes sense because S is a clique in R(S,C), and therefore any triangulation
of R(S,C) has a maximal clique that contains S.
The PMCs Ω of the graph R(S,C) with S ⊆ Ω are denoted by Π(S,C). Recall that by
Lemma 3, for any minimal separator S and PMC Ω with S ⊆ Ω there is exactly one full
component C of S such that Ω ⊆ S ∪ C. Combining this with Lemma 8, it follows that
Π(S,C) = {Ω ∈ Π(G) | S ⊆ Ω ⊆ S ∪ C} [23].

Example 25. Consider the graph G in Figure 4.4 (left) and the block (S,C) = ({b, c},
{d, e, f, g, h}) of G. The realization R(S,C) is shown in Figure 4.4 (middle left). The set
Ω = {b, c, e, h} is a PMC of G. It is also a PMC of R(S,C) with S ⊆ Ω, and therefore
Ω ∈ Π(S,C). The associated blocks of Ω in R(S,C) are AR(S,C)(Ω) = {({b, h}, {d, g}),
({c, h}, {f})}. Note that AR(S,C)(Ω) ⊆ AG(Ω).

Now we can give the main theorem for characterizing the minimal triangulations of a
graph.

Theorem 4 ([23, 42]). Let G be a graph and (S,C) a block of G. The graph H is a
minimal triangulation of R(S,C) if and only if (i) V (H) = S ∪ C and (ii) there is a
potential maximal clique Ω ∈ Π(S,C) such that

E(H) = Ω2 ∪
⋃

(Si,Ci)∈AR(S,C)(Ω)
E(Hi),

where Hi is any minimal triangulation of R(Si, Ci).

The root of the recursion of Theorem 4 is given by the special block R(∅, V (G)) = G.
When a minimal triangulation is constructed with the recursion, each maximal clique of
the minimal triangulation is considered exactly once as the PMC Ω. This allows adapting
Theorem 4 to also compute the cost of the resulting minimal triangulation on the types
of cost functions that we consider and to simultaneously optimize the choice of the PMC
Ω to minimize the cost.
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4.3.2 Finding Optimal Minimal Triangulations

Next we formulate the use of Theorem 4 to compute optimal triangulations with respect
to the cost function types presented in Definitions 3–5 of Section 2.5, namely, clique-
max-type, fill-in-type, and clique-sum-type. Note that even though we defined these cost
functions as functions C : Tr(G) → R≥0 from the set Tr(G) of triangulations of an input
graph G, they can be extended into functions that are defined for all triangulations of
realizations of blocks of G.
Recall that computing treewidth is equivalent to finding a triangulation H that minimizes
the cost function C(H) = maxW∈MC(H) |W |−1 and therefore can be formulated as finding
an optimal triangulation with respect to a clique-max-type cost function with a clique
function f(W ) = |W | − 1.

Corollary 5 (Clique-max-type [23, 42, 45]). Let G be a graph, (S,C) a block of G, and
C(H) a clique-max-type cost function with a clique function f . The cost of an optimal
triangulation of R(S,C) with respect to C(H) is

Copt(R(S,C)) = min
Ω∈Π(S,C)

max
(
f(Ω), max

(Si,Ci)∈AR(S,C)(Ω)
Copt(R(Si, Ci))

)
.

The cost of an optimal triangulation of G is Copt(R(∅, V (G))). Corollary 5 can be easily
extended to also compute a corresponding optimal triangulation, as we will do in Algo-
rithm 3.
Recall that computing the minimum fill-in is equivalent to finding a triangulation H of a
graph G that minimizes the cost function C(H) = |E(H) \ E(G)| and therefore can be
formulated as finding an optimal triangulation with respect to a fill-in-type cost function
with a fill-edge function f(e) = 1.

Corollary 6 (Fill-in-type [23, 42, 45]). Let G be a graph, (S,C) a block of G, and C(H)
a fill-in-type cost function with a fill-edge function f . The cost of an optimal triangulation
of R(S,C) with respect to C(H) is

Copt(R(S,C)) = min
Ω∈Π(S,C)

 ∑
e∈Ω2\E(R(S,C))

f(e) +
∑

(Si,Ci)∈AR(S,C)(Ω)
Copt(R(Si, Ci))

 .
Recall that in clique-sum-type cost functions the cost of a triangulation is defined as a
sum over its maximal cliques.

Corollary 7 (Clique-sum-type [16, 23]). Let G be a graph, (S,C) a block of G, and
C(H) a clique-sum-type cost function with a clique function f . The cost of an optimal
triangulation of R(S,C) with respect to C(H) is

Copt(R(S,C)) = min
Ω∈Π(S,C)

f(Ω) +
∑

(Si,Ci)∈AR(S,C)(Ω)
Copt(R(Si, Ci))

 .
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4.3.3 The BT-DP Algorithm

Next we represent the BT-DP algorithm to compute optimal triangulations as formulated
in Corollaries 5–7. We parameterize BT-DP with a binary operation ⊕ and a function g
to represent the three types of cost functions in a unified manner.

Definition 19. Let G be a graph and (S,C) a block of G. Furthermore, let ⊕ be either
the maximum or the sum and g : Π(G)× (∆(G)∪ {∅})→ R≥0 a function. The cost of an
optimal minimal triangulation of R(S,C) with respect to ⊕ and g is

Copt(R(S,C)) = min
Ω∈Π(S,C)

g(Ω, S)⊕
⊕

(Si,Ci)∈AR(S,C)(Ω)
Copt(R(Si, Ci))

 .
The formulas of Corollaries 5–7 are special cases of the formula of Definition 19. In
particular, clique-max-type can be formulated as ⊕ = max and g(Ω, S) = f(Ω), fill-in-
type as ⊕ = + and g(Ω, S) = ∑

e∈(Ω2\S2)\E(G) f(e), and clique-sum-type as ⊕ = + and
g(Ω, S) = f(Ω). Note that we do not claim that the formula of Definition 19 would
compute anything sensible for arbitrary ⊕ and g.
Algorithm 3 presents BT-DP as pseudocode. BT-DP takes as an input a graph G, the set
Π(G) of its PMCs, and the functions ⊕ and g defining the cost function as formulated in
Definition 19. BT-DP returns an optimal minimal triangulation of G with respect to ⊕
and g and the cost of the triangulation.
We divide BT-DP into three phases. The precomputation phase computes the blocks of G
and the relations AG(Ω) and Π(S,C) that link PMCs to blocks and blocks to PMCs. The
dynamic programming phase computes the cost of an optimal minimal triangulation for
each realization of a block by dynamic programming as suggested in Definition 19. The
construction phase constructs an optimal triangulation of G based on tables computed by
the dynamic programming phase.

The precomputation phase. BT-DP first iterates over all PMCs of G on lines 4 to 8,
applying Lemma 2 to compute the blocks of G and the relation A mapping each PMC
Ω to the set of its associated blocks A(Ω). For each PMC Ω, the components of G \ Ω
and their neighborhoods are computed and stored. There are at most |Π(G)|n blocks and
association relations and they are computed in O(|Π(G)|n2) time. On lines 9 to 14 BT-DP
applies Lemma 3 to compute the relation Π(S,C) mapping each block (S,C) to PMCs Ω
with S ⊆ Ω ⊆ S ∪ C. This relation is computed similarly as A expect for the fact that
a different full component of the minimal separator is considered. By similar arguments,
the sets Π(S,C) over all blocks (S,C) contain at most a total of |Π(G)|n pointers and can
be computed in O(|Π(G)|nm) time.

The dynamic programming phase. On line 16 the blocks are sorted in a non-decreas-
ing order of the number of vertices, so that the costs of all smaller blocks are computed
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Algorithm 3: BT-DP
Input : A graph G, the set Π(G) of its PMCs, and functions ⊕ and g.
Output: An optimal minimal triangulation of G with respect to ⊕ and g and the

cost of the triangulation.
1 Precomputation Phase:
2 Let B be an empty set of blocks.
3 B.insert((∅, V (G)))
4 for Ω ∈ Π(G) do
5 Let A(Ω) be a set of pointers to blocks.
6 for C ∈ C(G \ Ω) do
7 B.insert((N(C), C))
8 A(Ω).insert((N(C), C))
9 For each (S,C) ∈ B, let Π(S,C) be a set of pointers to PMCs.

10 for Ω ∈ Π(G) do
11 Π(∅, V (G)).insert(Ω)
12 for D ∈ C(G \ Ω) do
13 Let C be the component of G \N(D) that intersects with Ω.
14 Π(N(C), C).insert(Ω)

15 Dynamic Programming Phase:
16 Sort B in non-decreasing order of |S|+ |C|.
17 Let dp and optChoice be tables on blocks B.
18 for (S,C) ∈ B do
19 dp[(S,C)] =∞
20 for Ω ∈ Π(S,C) do
21 cost← g(Ω, S)
22 for (Si, Ci) ∈ A(Ω) do
23 if Ci ⊆ C then
24 cost← cost⊕ dp[(Si, Ci)]
25 if cost < dp[(S,C)] then
26 dp[(S,C)]← cost
27 optChoice[(S,C)]← Ω

28 Construction Phase:
29 H ← G

30 Let Q be a queue.
31 Q.push((∅, V (G)))
32 while Q not empty do
33 (S,C)← Q.pop()
34 Ω← optChoice[(S,C)]
35 E(H)← E(H) ∪ Ω2

36 for (Si, Ci) ∈ A(Ω) do
37 if Ci ⊆ C then
38 Q.push((Si, Ci))
39 return H, dp[(∅, V (G))]
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before a larger block. Then, on lines 17 to 27 the cost of an optimal triangulation of
the realization of each block (S,C) is computed. The computation first initializes the
cost to be infinite, and then considers each PMC Ω ∈ Π(S,C) to find the optimal cost
as suggested by Theorem 4. The cost of an optimal minimal triangulation of R(S,C)
is stored in dp[(S,C)], and the corresponding PMC to choose to construct an optimal
triangulation is stored in optChoice[(S,C)]. Finally, after dp[(S,C)] has been computed
for all blocks, the cost of an optimal triangulation of G is dp[(∅, V (G))].

The construction phase. On lines 29 to 38 BT-DP constructs an optimal minimal
triangulation H of G. The construction is done in a breadth-first-search manner, making
use of the optChoice table computed in the dynamic programming phase.

Proposition 19. Given a graph G, the set Π(G) of its potential maximal cliques, and
functions ⊕ and g, where ⊕ is either the maximum or the sum and g is computable in
O(gt) time, BT-DP finds an optimal minimal triangulation of G with respect to ⊕ and g
in O(|Π(G)|n(m+ gt)) time.

Proof. The blocks and their relations to PMCs can be computed in O(|Π(G)|nm) time
as discussed earlier. Because the total size of Π(S,C) over all blocks (S,C) is at most
|Π(G)|n, the inner loop of dynamic programming on lines 20 to 27 iterates O(|Π(G)|n)
times. As the total size of components Ci with (Si, Ci) ∈ A(Ω) is O(n), the inner loop can
be implemented to run in O(n) time. The construction phase runs in O(min(n, |Π(G)|)n2)
time.

For cost functions of clique-max-type and clique-sum-type, we can precompute the value
f(Ω) of the clique function f for all PMCs Ω. Hence the total time complexity for those
types is O(|Π(G)|nm+ |Π(G)|gt), where gt is the time complexity for computing f(Ω). For
fill-in-type, the total time complexity is O(|Π(G)|n3), assuming that f(e) can be computed
in constant time, which is the case in all applications that we are aware of.
We present one additional remark in order to optimize the BT algorithm in practice

Proposition 20 ([42, 44]). The potential maximal cliques in the input of BT-DP may be
a subset Π′ ⊆ Π(G) of the actual potential maximal cliques of the input graph G. In this
case, BT-DP considers exactly those minimal triangulations whose maximal cliques are in
Π′ and will return∞ if no such minimal triangulation exists. The running time of BT-DP
in this case is also O(|Π′|n(m+ gt)).

When computing an optimal triangulation with respect to a cost function of clique-max-
type or clique-sum-type, Proposition 20 allows to discard all potential maximal cliques Ω
with f(Ω) > ub, where ub is a known upper bound for the cost of an optimal triangulation.
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4.4 Adaptation to Maximum Compatibility

In Section 3.5 we defined the maximum compatibility problem of phylogenetic characters
and formulated the restricted binary characters version of the problem as finding an opti-
mal triangulation with respect to a fill-in-type cost function. In [72] we showed that the
general maximum compatibility problem remains NP-hard even in the case in which the
partition intersection graph has a linear number of minimal separators and potential max-
imal cliques. Therefore, assuming P 6= NP, the maximum compatibility problem cannot
be solved with the BT algorithm without superpolynomial overhead. In this section we
present a hybrid algorithm for the general maximum compatibility problem of phylogenetic
characters, making use of Theorem 4 and maximum satisfiability (MaxSAT).
MaxSAT solvers are typically used for solving problems via MaxSAT encodings. A problem
can be solved with a MaxSAT solver by first encoding it as MaxSAT, i.e., reducing it
to an instance of the MaxSAT problem, and then using the solver to find an optimal
solution to the MaxSAT instance [78]. In order to solve the maximum compatibility
problem, we replace the BT-DP phase of the BT algorithm with a MaxSAT encoding
of the characterization of minimal triangulations of Theorem 4. The encoding allows to
find an optimal triangulation with a “global” point of view, avoiding the issue of double
counting bad fill-edges corresponding to the same character.

Definition 20. (MaxSAT) [78] A literal is a Boolean variable or a negation of a Boolean
variable. A clause is a disjunction of literals. A clause is satisfied if at least one of its
literals is true. A MaxSAT instance is a pair (FS, FH), where FS is a set of soft clauses
and FH is a set of hard clauses. A solution of a MaxSAT instance is an assignment of
the Boolean variables so that all hard clauses FH are satisfied. An optimal solution is a
solution that satisfies the greatest number of clauses in FS over all solutions.

We model maximum compatibility in MaxSAT so that each character Xi ∈ C has a
corresponding Boolean variable Yi with the interpretation that assigning Yi = 1 corre-
sponds to including Xi in the subset of compatible characters. The set of soft clauses is
{(Yi) | Xi ∈ C}, and thus optimizing a solution of the encoding maximizes the number of
compatible characters. Next we describe the hard clauses (and additional variables) that
ensure that the subset of characters selected by Yi is actually a compatible subset.
The hard clauses encode that there exists a minimal triangulation of int(C) that has no
fill-edge of form {(Xi, A), (Xi, B)} for any Xi with Yi = 1. For the encoding, we assume
that we have computed the set of potential maximal cliques Π(int(C)) with PMC-ENUM
and the blocks of int(C) and relations A(Ω) and Π(S,C) with BT-DP. For each PMC
Ω ∈ Π(int(C)) we introduce an additional Boolean variable PΩ with the interpretation
that PΩ is true if Ω is selected as a maximal clique of the triangulation. We ensure that
the selected PMCs do not make the selected characters non-compatible with hard clauses

(¬PΩ ∨ ¬Yi) for all Ω ∈ Π(int(C)),Xi ∈ C with {(Xi, A), (Xi, B)} ∈ Ω2.

What remains is to encode that the selected PMCs actually form a minimal triangulation
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of int(C). For this, we make use of Theorem 4. We introduce an additional variable BS,C

for each block (S,C) of int(C) with the interpretation that BS,C is true if (S,C) is used in
the recursion forming the minimal triangulation. We also introduce an additional variable
BS,C,Ω for all blocks and PMCs with Ω ∈ Π(S,C) with the interpretation that BS,C,Ω is
true if the minimal triangulation of (S,C) is achieved by recursing from Ω. We ensure
that a PMC is chosen for each block by creating the hard clause¬BS,C ∨

∨
Ω∈Π(S,C)

BS,C,Ω

 for all blocks (S,C) of int(C).

The variables BS,C,Ω are propagated to variables PΩ with the hard clauses

(¬BS,C,Ω ∨ PΩ).

The actual recursion to smaller blocks is enforced with the hard clauses

(¬BS,C,Ω ∨BSi,Ci
) for all (Si, Ci) ∈ AR(S,C)(Ω).

Finally, the special block (∅, V (int(C))) denoting the root case is forced to be used in the
recursion with a hard clause (B∅,V (int(C))).
If follows from Proposition 13 and Theorem 4 that this encoding has a solution satisfying
|C′| soft clauses if and only if there exists a compatible subset C′ ⊆ C of the characters
C. A maximum size compatible subset of characters can be constructed directly from
the assignment of the Yi variables of an optimal solution of the encoding. A correspond-
ing triangulation can be constructed in polynomial time in a similar manner as in the
construction phase of Algorithm 3.

Remark 3. The encoding is a special case of MaxSAT known as Horn-MaxSAT [81].
While Horn-MaxSAT remains NP-hard, this fact indicates that the encoding is efficient in
the sense that after guessing which soft clauses will be satisfied, the rest of the encoding
can be solved in linear time [81].



5 Implementation

In this chapter we describe our implementation of the BT algorithm, called Triangulator
and available as open source under the MIT license in a GitHub repository [69]. The
version of Triangulator that we introduce in this thesis is the fourth iteration of the imple-
mentation. It is significantly updated compared to the earlier versions submitted to PACE
2017 [33] and reported in [70, 71, 72]. The implementation consists of implementations
of multiple preprocessing techniques for the problems, an optimized implementation of
PMC-ENUM, and a relatively straightforward implementation of BT-DP.
We start by giving an overview of the implementation in order to give understanding on
the organization of its various subroutines. In particular, the goal of the overview is to
aid understanding of the experimental analysis of Triangulator in Chapter 7. After the
overview, we describe the preprocessing techniques used in Triangulator, the optimizations
used in PMC-ENUM, and other implementation choices that may have a significant impact
on the performance of Triangulator.

5.1 Overview

We describe Triangulator in pseudocode as Algorithm 4. The goal of this description is
to give a general problem-independent view of Triangulator that is sufficiently accurate
on all of the problems. In particular, there is a notable difference between cost functions
of clique-max-type and cost functions of other types because in clique-max-type, global
lower bounds on the cost can be effectively made use of in a local context. Triangulator
works in two phases, the preprocessing phase and the solving phase.

The preprocessing phase. Triangulator applies preprocessing techniques to make the
input graph smaller and to compute lower bounds. The preprocessing loop on lines 7 to 22
considers graphs Gi from the preprocessing queue Q, which initially contains the input
graph. First on lines 9 and 10 Triangulator computes a lower bound for the cost of a mini-
mal triangulation of Gi with problem-specific lower bound algorithms. Then Triangulator
computes a minimal triangulation Hi of Gi with the MCS-M algorithm (detailed in the
next section) on line 11. The minimal triangulation Hi is used on line 12 to discard Gi if
Hi is already an optimal triangulation, witnessed by the known lower bounds or by the
chordality of Gi. Otherwise Hi is used to compute the atoms of the graph Gi on line 15.
Atoms are components of the graph for which minimal triangulations can be considered
independently of each other (detailed in the next section). If the graph Gi can be broken
into multiple atoms, each is re-inserted into the preprocessing queue. Finally, Triangulator
attempts to reduce the graph Gi by applying problem-specific preprocessing techniques.
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Algorithm 4: Triangulator
Input : A graph G with possibly additional problem-specific data.
Output: An optimal triangulation of G.
1 Preprocessing Phase:
2 Let lb be lower bound for the cost of a triangulation, initialized to 0.
3 Let Q be a queue of graphs to be preprocessed.
4 Let S be a list of preprocessed graphs.
5 Let Hans be a graph to store the optimal triangulation, initialized to G.
6 Q.push(G)
7 while Q not empty do
8 Gi ← Q.pop()
9 loc lb← ComputeLB(Gi)

10 lb← max(lb, loc lb)
11 Hi ← MCS-M(Gi)
12 if Hi = Gi or C(Hi) ≤ loc lb or (clique-max-type and C(Hi) ≤ lb) then
13 E(Hans)← E(Hans) ∪ E(Hi)
14 continue
15 A← Atoms(Gi, Hi)
16 if |A| ≥ 2 then
17 Q.push(A1, . . . , A|A|)
18 continue
19 if Ri ← Problem-specific-preprocessing(Gi) then
20 Q.push(Ri)
21 continue
22 S.insert(Gi)

23 Solving Phase:
24 Sort S in non-decreasing order of the number of vertices.
25 for Gi ∈ S do
26 Hi ← LB-Triang(Gi)
27 ubi ← C(Hi)
28 if clique-max-type and ubi ≤ lb then
29 E(Hans)← E(Hans) ∪ E(Hi)
30 continue
31 ∆← MS-ENUM(Gi)
32 Π′ ← PMC-ENUM(Gi, ∆, ubi)
33 Hb, ans← BT-DP(Gi, Π′)
34 if ans < ubi then
35 E(Hans)← E(Hans) ∪ E(Hb)
36 lb← max(lb, ans)
37 else
38 E(Hans)← E(Hans) ∪ E(Hi)
39 lb← max(lb, ubi)
40 return Hans, lb
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The solving phase. The solving loop on lines 25 to 39 considers the preprocessed
graphs Gi in non-decreasing order of the number of vertices, in order to compute as good
lower bounds as possible before solving the largest components. The solving loop starts
by computing a minimal triangulation Hi of Gi with the LB-Triang algorithm (detailed in
the next section) on line 26 to obtain an upper bound ubi on the cost of the triangulation.
This upper bound is used on line 28 to skip Gi if Hi is already optimal and in the PMC-
ENUM algorithm to ignore the potential maximal cliques that cannot be used to obtain a
triangulation with lower cost than ubi. Lines 31 to 33 implement the actual BT algorithm
as presented in Chapter 4, first enumerating all minimal separators, then enumerating the
potential maximal cliques whose costs are less than ubi, and finally computing an optimal
triangulation with BT-DP. Note that if Hi is already optimal, BT-DP might return ∞,
which is handled on lines 38 and 39.

5.2 Preprocessing

In this section we describe the preprocessing steps used by Triangulator in more detail. We
first describe the preprocessing techniques that are applicable to all problems formulated
as finding optimal minimal triangulations and then the problem-specific preprocessing
techniques.

5.2.1 General Techniques

We start by describing the MCS-M and LB-Triang algorithms for computing minimal
triangulations and the process of breaking a graph into atoms. Triangulator uses these
techniques for preprocessing on all of the problems considered in this thesis. The reason
for using two different algorithms for computing minimal triangulations is that in our
preliminary experiments, we observed MCS-M to be faster than LB-Triang, but LB-Triang
often produced triangulations with lower cost. Therefore we use LB-Triang in the solving
phase to obtain good upper bounds immediately before applying the BT algorithm and
MCS-M in the preprocessing phase where the graph still could potentially be decomposed
to smaller atoms.
MCS-M is an algorithm that computes a minimal triangulation of a graph in O(nm)
time [11]. It works by finding a reverse elimination ordering of the graph by successively
labeling its vertices with integers. In the beginning of its execution, all vertices have label
0. In each iteration, MSC-M chooses a vertex v with a greatest label to be the last one
in the elimination ordering, and increments the labels of vertices u that can be reached
from v via vertices that have not yet been added to the ordering and have smaller labels
than v. This produces an elimination order from which a minimal triangulation can be
constructed.
LB-Triang is also an algorithm that computes a minimal triangulation of a graph in
O(nm) time [13]. It works by considering vertices v ∈ V (G) in any order and filling the
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sets {N(C) | C ∈ C(G \ N [v])} into cliques [13]. We augment the LB-Triang algorithm
with the fill-in heuristic. With the fill-in heuristic, in each step the vertex v that minimizes
the number of added edges is chosen. In preliminary experiments we compared LB-Triang
with the fill-in heuristic to LB-Triang with the minimum-degree heuristic [19] and to
MCS-M. Of these three approaches, LB-Triang with the fill-in heuristic often produced
triangulations with the smallest cost. The fill-in heuristic has been observed to be effective
with triangulation minimalization as a post-processing step [19], but to the best of our
knowledge it has not been applied together with LB-Triang before. The addition of the
fill-in heuristic increases the time complexity of LB-Triang to O(n3).
The atoms of a graph generalize the concept of connected components in the context of
minimal triangulations in the sense that no minimal triangulation has a fill-edge between
two different atoms [100]. The atoms of a graph are computed by successively decomposing
the graph by its clique minimal separators.

Proposition 21 ([100]). Let G be a graph and S ⊆ V (G) a vertex set that is both a
minimal separator and a clique in G. The graph H is a minimal triangulation of G if and
only if V (H) = V (G) and

E(H) =
⋃

Ci∈C(G\S)
E(Hi),

where Hi is a minimal triangulation of the induced subgraph G[N(Ci)∪Ci]. Furthermore,
MC(Hi) ∩MC(Hj) = ∅ for i 6= j and MC(H) = ∪Ci∈C(G\S)MC(Hi).

A vertex set S as in Proposition 21 is called a clique minimal separator. By Proposition 21,
if a graph contains a clique minimal separator S, all of its minimal triangulations can be
formed by combining minimal triangulations of induced subgraphs G[N(Ci) ∪ Ci], where
Ci ∈ C(G\S) [100]. An atom of a graph is an induced subgraph resulting from successively
decomposing the graph by its clique minimal separators. The set of atoms can be computed
in O(nm) time given a minimal triangulation of the graph [100]. Note that computation of
the cost functions that we consider also decomposes in the manner of Proposition 21. The
process of decomposing a graph into atoms generalizes multiple other techniques that could
be considered independently, including decomposing a graph into connected components,
eliminating vertices whose neighborhood is a clique (simplicial vertices), and decomposing
a graph into biconnected components.

5.2.2 Treewidth

Next we describe the treewidth-specific preprocessing techniques used in Triangulator.
The techniques for treewidth are based on computing lower bounds based on so-called
degeneracy of the graph and on decomposing the graph with almost clique minimal sepa-
rators.
The degeneracy of a graph G is the least number k such that all induced subgraphs of G
have a vertex with at most k neighbors, and it can be computed in linear time [82]. The
treewidth of G is at least the degeneracy of G [15]. We note that degeneracy generalizes
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other lower bounds that could be considered independently, for example, the size of a
maximum clique and the minimum degree [15].
On computing treewidth, a graph can be decomposed by almost clique minimal separators.

Proposition 22 ([18]). If S is a minimal separator of a graph G and S \ {v} is a clique
for some vertex v ∈ S, then the treewidth of G is equal to the treewidth of the graph G′

with V (G′) = V (G) and E(G′) = E(G) ∪ S2.

A vertex set S as in Proposition 22 is called an almost clique minimal separator. By
Proposition 22, an almost clique minimal separator can be filled into a clique without
affecting the treewidth of the graph. After filling an almost clique minimal separator into
a clique, it becomes a clique minimal separator and thus allows decomposing the graph
into atoms by Proposition 21. Note that all minimal separators of size two are almost
clique minimal separators.
In Triangulator, we first employ an algorithm that searches for almost clique minimal
separators contained in the neighborhoods of vertices. Such separators can be found in
the neighborhood of a vertex v by considering the sets {N(C) | C ∈ C(G\N [v])}. Then we
use an O(n2m) algorithm [18] to find all almost clique minimal separators. The algorithm
guesses the non-clique vertex, removes it from the graph, and finds clique separators of
the resulting graph in O(nm) time.
We note that applying these rules in conjunction with decomposing the graph into atoms
results in each atom being a clique or having a minimum degree of at least three. Therefore,
the preprocessing phase of Triangulator is able to find and prove the optimality of an
optimal tree decomposition of width ≤ 2 in polynomial time if such a tree decomposition
exists.

5.2.3 Minimum Fill-In

Triangulator uses two preprocessing techniques that are specific to minimum fill-in. First,
we note that if a graph is not chordal, the minimum fill-in is at least one. Second, we use
a reduction from [17] to remove near clique minimal separators whose definition is similar
but not the same as that of almost clique minimal separators.

Proposition 23 ([17]). If S is a minimal separator of a graph G such that S ⊆ N(v) for
a vertex v ∈ V (G) and |S2 \ E(G)| = 1, then the minimum fill-in of G is equal to the
minimum fill-in of the graph G′ with V (G′) = V (G) and E(G′) = E(G) ∪ S2.

A vertex set S as in Proposition 23 is called a near clique minimal separator. Near clique
minimal separators are used in the same manner as almost clique minimal separators,
allowing the decomposition of the graph into atoms by Proposition 21 after filling them
into cliques. Triangulator finds near clique minimal separators of a graph G by considering
the sets {N(C) | C ∈ C(G \N [v])} for each vertex v ∈ V (G).
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We note that also in the case of minimum fill-in, applying the reduction of Proposition 23
in conjunction with decomposing a graph into atoms will result in all atoms being cliques
or having minimum degree of at least 3. Also, it is guaranteed that the preprocessing
phase of Triangulator is able to find and prove the optimality of an optimal triangulation
if it has at most one fill-edge. This is due to the fact that if the graph has no simplicial
vertices, then the single fill-edge must be contained in a near clique minimal separator.

5.2.4 Phylogenetic Character Compatibility

On the perfect phylogeny and maximum compatibility problems we simplify the character-
state matrix before computing the PI-graph. We remove the character states that corre-
spond to only one taxon and the unary characters. Removing character states correspond-
ing to only one taxon is correct due to the equivalence of missing data and states that
correspond to only one taxon [96], and removing unary characters is the so-called trivial
character technique from [97].
On perfect phylogeny, we compute the degeneracy of the PI-graph. If the degeneracy
is at least |C|, then the treewidth of the PI-graph is at least |C| [15], and therefore any
triangulation of the PI-graph has a clique with at least |C| + 1 vertices. In this case, the
characters do not admit perfect phylogeny because a clique with |C|+1 vertices necessarily
contains two vertices corresponding to the same character.
We remark that even in the case of multi-state maximum compatibility a graph whose
heuristically computed triangulation does not add any fill-edges between vertices corre-
sponding to a same character can be removed on line 12 of Algorithm 4.

5.2.5 Other Problems

We use two simple observations for lower bounds on generalized hypertreewidth and tree-
length.
Generalized hypertreewidth lower bounds are obtained using the fact that if a pri-
mal graph of a hypergraph is not chordal, then the hypergraph has a generalized hyper-
treewidth at least 2 [41].
Treelength lower bounds are obtained using the fact that if a graph is not chordal, then
its treelength is at least 2 [34].

5.3 Optimizing PMC-ENUM

The implementations of MS-ENUM and BT-DP in Triangulator are very similar to their
representations as pseudocode in Algorithms 1 and 3, respectively. On the other hand, for
PMC-ENUM we use non-trivial techniques to speed up the implementation in practice.
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In particular, Triangulator always enumerates all minimal separators in MS-ENUM but
aims to restrict the set of enumerated PMCs in PMC-ENUM.
By Proposition 20, BT-DP does not need to be given all PMCs in the input, as long as
all PMCs that might be maximal cliques of an optimal triangulation are included in the
input. Due to this we will not enumerate the PMCs that cannot be used to improve the
current known upper bound. In clique-max-type and clique-sum-type this means that if
we already have a triangulation with a cost ub, then we will not enumerate any PMCs Ω
with f(Ω) ≥ ub. For fill-in-type cost functions we can use the same filtering with a slight
extension of the notation by letting f(Ω) = ∑

e∈Ω2\E(G) f(e) for a vertex set Ω.
Recall that in PMC-ENUM we gradually remove vertices a ∈ V (Gi) from the graph Gi to
use induction over induced subgraphs G1, . . . , Gn. For the order of removing vertices we
use an ordering computed by the MCS algorithm [11]. This ensures the required property
that Gi \ {a} is connected and an interesting property, which we will make use of, that a
is a so-called OCF-vertex of Gi, or equivalently that N [a] is a PMC of Gi [11].
The bottleneck of PMC-ENUM is the Combine(∆S,∆T ) subroutine corresponding to
case 3 of Corollary 4, where PMCs of Gi are formed by unions of pairs S ∈ ∆S, T ∈ ∆T ,
where S ∈ ∆(Gi), a /∈ S, S /∈ ∆(Gi \ {a}), (T ∪ {a}) ∈ ∆(Gi), and a /∈ T . We refer to
the elements of ∆S as S-separators and to the elements of ∆T as T-separators. Note that
T-separators are not necessarily minimal separators of Gi, but they are minimal separators
of Gi \ {a}. By the proof of Theorem 2, each S-separator has two full components Ca and
CΩ, and in the Combine subroutine we are interested in finding PMCs Ω = S ∪ T , where
S is a S-separator, T is a T-separator, and T ⊆ S ∪ CΩ.
Let CΩ(S) denote the full component of an S-separator S that does not contain a. To speed
up Combine, we arrange the S-separators into a directed acyclic graph (DAG) so that if S ′
is a descendant of S in the DAG, then CΩ(S ′) ⊂ CΩ(S). In particular, for an S-separator
S, we let the minimal separators {N(C) | C ∈ C(Gi \ (S ∪ N(v))), C ⊂ CΩ(S) | v ∈ S}
that are also S-separators be its children in the DAG. Note that this is a slightly modified
version of the rule to generate minimal separators in MS-ENUM. In particular, it only
generates minimal a,b-separators for all b ∈ CΩ(S) [12]. Next we show that this DAG has
an unique root N(a).

Lemma 9. Let a be an OCF-vertex of a graph G. If there is a minimal separator
S ∈ ∆(G) \∆(G \ {a}) with a /∈ S, then N(a) ∈ ∆(G) \∆(G \ {a}) and S 6⊂ N(a).

Proof. Let b ∈ V (G) be a vertex such that S ∈ ∆(G) \ ∆(G \ {a}) is a minimal a,b-
separator. To prove that N(a) is a minimal a,b-separator, suppose the contrary that there
is a vertex v ∈ N(a) such that there is no path from v to b outside of N [a]. Clearly v /∈ S,
so v is in the same full component Ca of S as a. Because a is an OCF-vertex, there is a path
from v to every vertex of N(a) outside of N [a]. If all intermediate vertices of such paths
are in Ca, then S would have a full component containing N(v)\S in G\{a}, which would
imply S ∈ ∆(G \ {a}). Thus there is a path from v to a vertex in S outside of N [a], and
therefore there is a path from v to b outside of N [a], which is a contradiction. Therefore
N(a) is a minimal a,b-separator. Since also S is a minimal a,b-separator, it cannot be a
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subset of N(a). To prove that N(a) /∈ ∆(G \ {a}), let Cb be the full component of N(a)
containing b. Note that S ⊆ N(a)∪Cb, so if there would be another full component Co of
N(a) in G \ {a}, then it could be extended into a full component of S, distinct of the full
component of S containing b, and therefore S ∈ ∆(G \ {a}) would hold.

By Lemma 9, the minimal separator N(a) is the unique root of the DAG, i.e., all other
S-separators in the DAG are its descendants. The connectedness of the DAG follows from
the fact that for an S-separator S, all minimal a,b-separators S ′ for arbitrary b that have
a full component C with CΩ(S) ⊂ C and a /∈ C are also S-separators. Note that the
non-triviality of this DAG is that it has a unique root and each S-separator in it has at
most n2 direct descendants (and in practice much less).
Next we find a spanning tree of the DAG, excluding the S-separators with f(S) ≥ ub. Then
we have constructed in O(|∆S|n3) time a tree of S-separators, where the full components
CΩ strictly decrease by inclusion on paths from the root to the leaves. To find the PMCs
Ω = S ∪ T , we traverse this tree for each T ∈ ∆T with f(T ) < ub. We use the inclusion
property of CΩ to return early in this traversal. We also use it to speed up the checking of
the cliquish condition by using the observation that the connectivity provided by Gi[CΩ\T ]
decreases when going down the tree. We remark that even though we do not provide
extensive proofs of these techniques, we have tested the equivalence of the optimized
Combine with a naive Combine with millions of random graphs with 20-30 vertices.

5.4 Computing Edge Covers

Generalized hypertreewidth and fractional hypertreewidth have non-trivial clique func-
tions. Computing the minimum edge cover in generalized hypertreewidth corresponds
to the NP-hard set cover problem [86]. Computing the minimum fractional edge cover in
fractional hypertreewidth corresponds to the fractional relaxation of the set cover problem,
which can be solved in polynomial time by linear programming [86].
In Triangulator, we use the CPLEX solver [61] to compute minimum edge covers on gener-
alized hypertreewidth and minimum fractional edge covers on fractional hypertreewidth.
The (fractional) edge covers are computed for all PMCs between the PMC-ENUM and the
BT-DP phases. We aim to reduce the overhead of CPLEX by reusing the instance object
with the same variables (corresponding to edges), only changing the constraints (corre-
sponding to the vertices of the PMC) between each instance. We also provide known lower
and upper bounds to CPLEX.
As mentioned in the previous section, PMC-ENUM uses the clique function to discard the
PMCs whose cost is at least the known upper bound. Due to the computational hardness
of computing edge covers, we do not do this when computing fractional hypertreewidth,
and for generalized hypertreewidth we instead use a lower bound given by the size of a
maximal independent set contained in the PMC.
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5.5 Low-level Implementation Details

Triangulator consists of more than 5000 lines of C++11 code. The only external libraries
that Triangulator uses are CPLEX 12.7.1 [61] for computing (fractional) edge covers and
MaxHS 3.0 [28]1 for MaxSAT solving for multi-state maximum compatibility.
Triangulator makes an extensive use of a handwritten bitset class for representing sets of
vertices in a graph. Graphs are represented with adjacency matrices that are bitsets, and
many graph search subroutines are implemented in an O(n + n2/w)-time manner, where
w = 64 is the word size. We believe that this implementation can be more efficient than
adjacency list based implementations in graphs with less than ≈ 256 vertices. For large
sparse graphs, an adjacency list based implementation is likely more efficient.
For basic data structures such as vector, queue, and map, Triangulator makes use of the
C++ standard library. In general, the use of binary search tree based data structures
is avoided in performance intensive parts, replacing them with sorting and binary search
as far as possible. In the MS-ENUM algorithm, a custom open addressing hashtable is
implemented for storing the set of enumerated minimal separators.

1From https://github.com/fbacchus/MaxHS.

https://github.com/fbacchus/MaxHS


6 Empirical Comparison

We empirically compare Triangulator to other exact implementations for solving treewidth,
minimum fill-in, generalized hypertreewidth, fractional hypertreewidth, total table size
of Bayesian networks, perfect phylogeny, and maximum compatibility of phylogenetic
characters. We also experiment on computing treelengths of graphs, although to the
best of our knowledge no other implementations of exact algorithms for treelength are
available. At the time of writing, complete data of all experiments is available in the
GitHub repository [69], allowing for reconstructing all tables and plots reported here. Ap-
pendix A contains a table summarizing the numbers of solved instances, timeouts, and
memouts/runtime errors for all implementations tested in the experiments.
We first describe the experimental setup and the used datasets, and then present the
results of experiments for each problem. In this chapter we focus on comparing the overall
performance of Triangulator to other implementations, and in Chapter 7 we specifically
analyze Triangulator.

6.1 Empirical Setup

All experiments were ran single-threaded on computers with 2.4-GHz Intel Xeon E5-
2680-v4 processors, with a 1-hour per-instance time limit and 64-GB memory limit.
The implementations were compiled using GCC 7.3.0 with optimization flags -O2 and
-march=native. For all problems and all solved instances, the tested implementations
agreed on the cost of an optimal solution.

6.2 Benchmarks

Next we describe the datasets that we use in the evaluation of the implementations.
PACE 2017 [33] was an algorithm implementation competition that included tracks
for exact computing of treewidth and minimum fill-in. We use the 200 instances of the
exact treewidth track2 to evaluate performance on treewidth and the 100 instances of
the exact minimum fill-in track3 to evaluate performance on minimum fill-in. We also
use 100 “bonus” treewidth instances4 published by the PACE 2017 organizers after the
competition to evaluate performance on treewidth. All of the PACE 2017 instances are
either graphs directly from real-world applications or subgraphs of them [33].

2From https://github.com/PACE-challenge/Treewidth-PACE-2017-instances.
3From https://pacechallenge.org/2017/minimum-fill-in/.
4From https://github.com/PACE-challenge/Treewidth-PACE-2017-bonus-instances.

https://github.com/PACE-challenge/Treewidth-PACE-2017-instances
https://pacechallenge.org/2017/minimum-fill-in/
https://github.com/PACE-challenge/Treewidth-PACE-2017-bonus-instances
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A dataset of 150 “named graphs”1 has been used for example in PACE 2016 [32]. The
named graphs have been extracted from the Sage graph package and they include various
graphs of general interest, e.g., constructions from the graph theory literature and the
adjacency graph of the countries of the world [32]. We use the named graphs to evaluate
performance on treewidth, minimum fill-in, and treelength.
Tree decompositions of control flow graphs have applications in compilers [74, 75]. We
use 1817 control flow graphs of C functions2 to evaluate performance on treewidth. Some
of these graphs were used in PACE 2016 [32].
The DIMACS graph coloring instances [64]3 are a well-known dataset in empirical eval-
uation of graph algorithms. We use the DIMACS graphs for evaluating performance on
treewidth, minimum fill-in, and treelength.
We use 24 discrete Bayesian networks from the BNlearn repository [95]4 to evaluate
performance on treewidth and total table size. These instances have sources in specific
applications of Bayesian networks [95], and they are a well-known dataset in evaluating
algorithms for Bayesian networks.
Hyperbench is a repository of 3070 hypergraphs for which computing generalized hy-
pertreewidth and fractional hypertreewidth are well-motivated [40]5. Out of the 3070
hypergraphs, 1035 arise from conjunctive queries in databases and 2035 from constraint
satisfaction problem instances [40]. We use the hypergraphs to evaluate performance
on generalized hypertreewidth and fractional hypertreewidth and their primal graphs to
evaluate performance on treewidth.
For phylogenetic character compatibility, we use phylogenetic data generated by a well-
known tool ms [60]6 and 5 real-world instances7, used for example in [24, 85].

6.3 Treewidth

On computing treewidth, we compare Triangulator to Positive Instance Driven Dynamic
programming for Treewidth (PIDDT) [33, 99]8, p17 [33]9 and QuickBB [48]10. PIDDT is
a “positive instance driven” implementation of the BT algorithm [33, 99]. Differentiating
it from Triangulator, PIDDT does not list all minimal separators and potential maximal
cliques. In particular, it lists only the blocks whose realization has treewidth at most
the treewidth of the graph [99]. PIDDT achieves this by listing so-called O-blocks whose

1From https://github.com/freetdi/named-graphs.
2From https://github.com/freetdi/CFGs.
3From https://mat.tepper.cmu.edu/COLOR/instances.html.
4From https://www.bnlearn.com/bnrepository/.
5From http://hyperbench.dbai.tuwien.ac.at/.
6From http://home.uchicago.edu/˜rhudson1/source/mksamples.html.
7From http://sat.inesc-id.pt/˜miguel/phylo/.
8From https://github.com/TCS-Meiji/PACE2017-TrackA.
9From https://github.com/freetdi/p17.

10From http://www.hlt.utdallas.edu/˜vgogate/quickbb.html.

https://github.com/freetdi/named-graphs
https://github.com/freetdi/CFGs
https://mat.tepper.cmu.edu/COLOR/instances.html
https://www.bnlearn.com/bnrepository/
http://hyperbench.dbai.tuwien.ac.at/
http://home.uchicago.edu/~rhudson1/source/mksamples.html
http://sat.inesc-id.pt/~miguel/phylo/
https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/freetdi/p17
http://www.hlt.utdallas.edu/~vgogate/quickbb.html
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Figure 6.1: Comparison of the empirical performance of Triangulator, PIDDT, p17, and QuickBB in
computing treewidth.

number is not known to be bounded by the number of minimal separators or potential
maximal cliques [99]. PIDDT took the second place in PACE 2017 [33]. The p17 imple-
mentation took the first place in PACE 2017 [33]. It is an updated version of the first
place implementation of PACE 2016 [32], which is an optimized implementation of the
algorithm of Arnborg et al. that works in O(nk+2) time, where k is the treewidth [4]. The
p17 implementation has been analyzed theoretically and empirically in [6]. QuickBB is
a branch-and-bound algorithm for computing treewidth published in 2004 [48]. QuickBB
searches the space of the elimination orderings of the graph, with several pruning heuris-
tics [48]. We note that in [71] we also compared to a MaxSAT approach for treewidth [9],
which was clearly outperformed by Triangulator, which is why we do not include MaxSAT
in our comparison.
We use control flow graphs, DIMACS graphs, primal graphs of hypergraphs from Hy-
perbench, named graphs, moral graphs of Bayesian networks from BNlearn, PACE 2017
treewidth instances, and PACE 2017 bonus treewidth instances to compare the perfor-
mance of the implementations on computing treewidth. Figure 6.1 shows an overview
of the performance of the implementations on the instances. The figure shows for each
of the implementations number of instances solved (x-axis) within a time limit (y-axis).
Table 6.1 reports the dataset specific numbers of solved instances by the implementations,
including also VBS denoting the virtual best solver, i.e., the number of instances solved
by at least one of the implementations. PIDDT and p17 solve the most instances, with
Triangulator 290 instances behind p17 and QuickBB 625 instances behind Triangulator.
The largest difference between Triangulator and the top implementations is in instances
from PACE 2017. The reason for this may be that the PACE 2017 instances were carefully
selected to be solvable by the best solvers but still very hard [33].
Triangulator solves 6 instances that PIDDT does not solve, 5 of them in the DIMACS
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Table 6.1: Number of solved instances for each dataset on treewidth.

Instance set #Instances Approach
Triangulator PIDDT p17 QuickBB VBS

CFG 1817 1817 1817 1817 1816 1817
DIMACS 80 36 35 25 29 41
HyperBench 3070 2740 2886 2879 2236 2886
Named graphs 150 112 122 116 82 122
Moral graphs 24 21 24 24 16 24
PACE 2017 200 92 200 196 21 200
PACE 2017 bonus 100 8 51 59 1 63
Total 5441 4826 5135 5116 4201 5153

dataset and 1 in the PACE 2017 bonus dataset. Triangulator solves 20 instances that p17
does not solve, 12 of them in DIMACS, 1 in named graphs, 1 in Hyperbench, 3 in PACE
2017, and 3 in PACE 2017 bonus.

6.4 Minimum Fill-In

On computing minimum fill-in, we compare Triangulator to Minimum Chordal Completion
Polytope (MCCP) [10]1 and to Positive Instance Driven Dynamic programming for Mini-
mum fill-in (PIDDM) [33, 99]2. MCCP is an integer programming approach for minimum
fill-in published in 2019 [10]. MCCP is based on an exponential number of inequalities on
the cycles of the graph, encoded in a lazy-constraint generation manner [10]. PIDDM is
a “positive instance driven” implementation of the BT algorithm by the same authors as
PIDDT for treewidth [33, 99]. PIDDM took the first place in the minimum fill-in track of
PACE 2017 [33].
We use the PACE 2017 minimum fill-in instances, DIMACS instances and the named
graphs to compare performance on minimum fill-in. The results of the experiments are
summarized in Figure 6.2, comparing the overall scalability of the implementations and in
Table 6.2 in which we report dataset-specific numbers of solved instances, including VBS

1Obtained directly from the authors.
2From https://github.com/TCS-Meiji/PACE2017-TrackB.

Table 6.2: Number of solved instances for each dataset on minimum fill-in.

Instance set #Instances Approach
Triangulator MCCP PIDDM VBS

DIMACS 80 36 15 34 36
Named graphs 150 106 78 100 109
PACE 2017 100 61 29 61 63
Total 330 203 122 195 208

https://github.com/TCS-Meiji/PACE2017-TrackB
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Figure 6.2: Comparison of the empirical performance of Triangulator, MCCP, and PIDDM on minimum
fill-in.

denoting the virtual best solver, i.e., the number of instances solved by at least one of the
implementations.
Triangulator solved the most instances overall, with PIDDM solving 8 instances less. Both
Triangulator and PIDDM solved significantly more instances that MCCP. Triangulator
slightly outperforms PIDDM on the DIMACS and named graphs datasets. On PACE
2017 instances, both of them solve 61 instances, each solving one instance that another did
not solve. In PACE 2017, the winning implementation (PIDDM) solved 54 instances [33].
The “positive instance driven” paradigm is relatively less efficient in minimum fill-in than
in treewidth. We suspect that the reason for this is that in minimum fill-in the cost of a
triangulation is accumulated “more globally” than in treewidth, which is why a smaller
portion of the blocks can be pruned via the positive instance driven approach.
MCCP solved two instances that neither Triangulator nor PIDDM solved, both in the
Named graphs set. These graphs were the Kneser Graph KG8,3 [68] and the Sims–Gewirtz
Graph [47]. We suspect that BT-based approaches are relatively worse on these graphs
because the graphs have a high number of minimal separators compared to the number of
vertices: both of the graphs have 56 vertices and more than 16,000,000 minimal separators.

6.5 Generalized and Fractional Hypertreewidth

On generalized hypertreewidth (GHTW) and fractional hypertreewidth (FHTW), we eval-
uated the performance of Triangulator and multiple other algorithms on the Hyperbench
instance set [40]. We first discuss this setup and the results in general and then specifically
on GHTW and FHTW.
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Figure 6.3: Comparison of empirical performance of Triangulator and FraSMT on generalized and
fractional hypertreewidth and of det-k-decomp on hypertreewidth.

We compare to FraSMT [38]1, GlobalBIP, LocalBIP, BalSep [40]2, and det-k-decomp [51]3.
FraSMT is an elimination ordering based satisfiability modulo theory (SMT) [7] encoding
for generalized and fractional hypertreewidth published in 2018 [38]. FraSMT uses Z3 [30]
as the underlying SMT solver. FraSMT was developed originally for computing frac-
tional hypertreewidth, but the same encoding supports also generalized hypertreewidth
by enforcing integrality of the variables [38]. We note that the generalized hypertreewidth
encoding of FraSMT is used as a basis for the implementation that took the first place
in the PACE 2019 challenge for computing hypertreewidth [36, 94]. GlobalBIP and Lo-
calBIP are algorithms for computing generalized hypertreewidth based on exploiting the
so-called bounded intersection property (BIP) of hypergraphs, which is observed to be
small in many instances of Hyperbench [40]. BalSep is a “balanced separator” based
algorithm for generalized hypertreewidth [40]. GlobalBIP, LocalBIP, and BalSep were
published in 2019 [40]. Det-k-decomp is a backtracking algorithm for computing hyper-
treewidth published in 2008 [51]. Det-k-decomp works in O(n2k+2) time, where k is the
hypertreewidth [51]. GlobalBIP, LocalBIP, BalSep, and det-k-decomp have only decision
version implementations, i.e., they take the value k as a parameter and decide if the width
is at most k. For the comparison, we run them starting with k = 1 and increasing k until
the algorithm reports a positive answer.
Figure 6.3 summarizes the overall scalability of the implementations on the Hyperbench
dataset, excluding GlobalBIP, LocalBIP, and BalSep because they solved less than 1050
instances. Triangulator solved 2544 instances on generalized hypertreewidth and 2425
instances on fractional hypertreewidth. All other approaches solved significantly less in-
stances than Triangulator, FraSMT being the second solving 1494 instances on generalized

1From https://github.com/daajoe/frasmt.
2From https://github.com/TUfischl/newdetkdecomp.
3From https://github.com/TUfischl/newdetkdecomp.

https://github.com/daajoe/frasmt
https://github.com/TUfischl/newdetkdecomp
https://github.com/TUfischl/newdetkdecomp
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hypertreewidth and 2010 instances on fractional hypertreewidth. Det-k-decomp solved
1455 instances on hypertreewidth. The inequalities fhw(G) ≤ ghw(G) ≤ hw(G) hold in all
of the results.

6.5.1 Generalized Hypertreewidth

Table 6.3 reports the number of solved instances on generalized hypertreewidth grouped
by the Hyperbench category of the instance, including VBS denoting the virtual best
solver, i.e., the number of instances solved by at least one of the implementations. SQL-
Share and SPARKQL are conjunctive query instances arising from applications in specific
databases, CQ-other is conjunctive queries from other applications and CQ-rand are ran-
dom conjunctive queries [40]. CSP-app are hypergraphs arising from CSPs representing
real combinatorial optimization instances and CSP-rand are hypergraphs arising from
random CSPs [40].
Triangulator solved the most instances in all of the categories. Triangulator matched the
virtual best solver in all categories except CSP-app. The three instances that Triangulator
did not solve but VBS solved were instances arising from the Kakuro game, all of which
had 148 vertices, GHTW = 3, and were solved by LocalBIP. In these three instances,
Triangulator was terminated due to time limit in MS-ENUM after enumerating more than
200,000,000 minimal separators.
Table 6.4 reports the number of solved instances grouped by the generalized hyper-
treewidth of the instance. Triangulator outperforms other implementations especially on
instances with generalized hypertreewidth at least 6. The other implementations solved
a total of nine instances with generalized hypertreewidth at least 6, while Triangulator
solved 772 such instances.

Table 6.3: Number of solved instances on generalized hypertreewidth grouped by Hyperbench category.

Category #Instances Approach
Triangulator FraSMT BalSep G-BIP L-BIP VBS

SQLShare 290 290 289 284 290 290 290
SPARKQL 70 70 70 70 70 70 70
CQ-other 175 175 175 103 175 175 175
CQ-rand 500 439 279 225 139 155 439
CSP-app 1090 732 388 129 113 124 735
CSP-other 82 35 20 18 23 21 35
CSP-rand 863 803 273 183 48 66 803
Total 3070 2544 1494 1012 858 901 2547
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Table 6.4: Number of solved instances on generalized hypertreewidth grouped by generalized hyper-
treewidth.

GHTW #Instances Approach
Triangulator FraSMT BalSep G-BIP L-BIP

1 490 490 489 407 490 490
2 236 236 228 228 233 236
3 310 307 281 248 120 167
4 358 358 330 102 15 8
5 381 381 160 24 0 0
6 443 443 6 2 0 0
7 258 258 0 0 0 0
8 62 62 0 1 0 0
9 9 9 0 0 0 0
Unknown 523 0 0 0 0 0
Total 3070 2544 1494 1012 858 901

6.5.2 Fractional Hypertreewidth

Table 6.5 reports the number of solved instances on fractional hypertreewidth grouped
by the Hyperbench category of the instance. Triangulator solved the most instances in
all categories, solving 415 instances more than FraSMT. However, FraSMT was closer to
Triangulator than on generalized hypertreewidth, solving 94 instances that Triangulator
did not solve. Of these instances, 79 are in the CSP-rand category, have 130 vertices,
FHTW between 7 and 9, and more than 15,000,000 minimal separators. In those instances,
Triangulator was terminated due to time limit in PMC-ENUM.

Table 6.5: Number of solved instances on fractional hypertreewidth grouped by Hyperbench category.

Instance set #Instances Approach
Triangulator FraSMT VBS

SQLShare 290 290 290 290
SPARKQL 70 70 70 70
CQ-other 175 175 175 175
CQ-rand 500 461 302 461
CSP-rand 863 763 598 842
CSP-app 1090 637 550 650
CSP-other 82 29 25 31
Total 3070 2425 2010 2519
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Table 6.6: The number of nodes, optimal total table size, and runtimes of the implementations on
computing total table size of Bayesian networks.

Instance n TTS Approach
Triangulator EDFS

alarm 37 996 0.01 0.88
barley 48 17,140,796 0.12 2678.13
child 20 642 0.03 0.99
hailfinder 56 9,406 0.03 5.21
hepar2 70 2,617 0.05 0.36
insurance 27 23,880 0.02 1.93
mildew 35 3,400,464 0.14 7.04
pathfinder 109 182,641 0.06 4.85
sachs 11 216 0.02 0.83
water 32 3,028,305 0.05 4.60
win95pts 76 2,684 0.04 9.10

6.6 Total Table Size

On computing total table size of Bayesian networks, we compare Triangulator to extended
depth first search (EDFS) algorithm [77]1. EDFS is a branch-and-bound algorithm for
total table size published in 2017 [77]. EDFS is based on a search over elimination order-
ings [77]. EDFS extends earlier work [88] by a new maximal clique maintenance algorithm
and new pruning rules for the search [77].
We compare Triangulator to EDFS on the dataset of 24 discrete Bayesian networks from
BNlearn. Table 6.6 reports the running times of the implementations on solved instances
with at least 10 nodes. Both of the implementations solved 15 of the instances, though
Triangulator solved all of them in less than a second and EDFS used over 2000 seconds
on the “barley” instance.
We note that on computing treewidth, Triangulator solved 21 of the Bayesian network
instances and PIDDT solved all 24 of them. To motivate the exact computation of total
table size instead of treewidth, we remark that the tree decomposition resulting from
optimizing for treewidth in the “barley” instance had total table size of 60,457,895, which
is roughly 3.5 times the optimal total table size.

6.7 Phylogenetic Character Compatibility

We consider three variants of the phylogenetic character compatibility problem: perfect
phylogeny, maximum compatibility of binary characters, and maximum compatibility of
multi-state characters. We note that multi-state maximum compatibility, which is the

1From https://bitbucket.org/chaoli/optimaltriangulation/src/master/

https://bitbucket.org/chaoli/optimaltriangulation/src/master/
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only variant we considered in [72], is the most general of the three variants, subsuming
perfect phylogeny and binary maximum compatibility.
We compare to “Minsep IP” triangulation–integer programming hybrid approach [53, 56],
“Bin IP” integer programming approach [54, 97], and to PerftPhy [26]1. Minsep IP is an in-
teger programming encoding for the multi-state maximum compatibility problem [53, 56].
Minsep IP makes use of the PI-graph approach for character compatibility, but instead
of using potential maximal cliques it uses a characterization of minimal triangulations
that is based on maximal independent sets in a graph whose vertices correspond to the
minimal separators of the PI-graph [53]. Bin IP is an integer programming encoding for
the binary maximum compatibility problem [54]. The encoding operates on the character-
state matrix level, making use of the so-called four-gamete condition [54]. The Bin IP
encoding has been extended for multi-state characters, reducing the multi-state case to
the binary case with additional constraints [97]. For both of the integer programming
approaches CPLEX 12.7.1 [61] is used as the integer programming solver. We were unable
to obtain the original implementations for Bin IP and Minsep IP so we re-implemented
the algorithms ourselves.2 We paid attention to implement all of the optimizations and
preprocessing techniques of these algorithms as presented in [56, 97]. PerftPhy is an im-
plementation of the algorithm of Kannan and Warnow [65] for perfect phylogeny [26]. We
note that in [72], we also compared to a pseudo-Boolean optimization (PBO) approach
for multi-state maximum compatibility [85]. We do not report the results for PBO here
because the encoding did not scale to instances with more than 40 taxa [72].
For experiments on each of the three variants we use the data generator ms [60]. Used in
the fashion of Gusfield et al. [53, 56, 97], the data generator has 5 parameters: n, m, k, r,
and p. The parameters n, m, and k are the number of taxa, the number of characters, and
the maximum arity of the characters. The recombination parameter r intuitively controls
how close the data is to perfect phylogeny, i.e., the generated data admits perfect phylogeny
if r = 0, and in general increasing r makes the probability of perfect phylogeny smaller
and the size of a maximum compatible subset of characters smaller. The parameter p is
the probability of an entry in the character-state matrix being missing, i.e., the expected
number of missing entries is pnm. To reduce the parameter space, we will use n = m,
following [53, 97], and in all cases except binary maximum compatibility we use p = 0.

6.7.1 Perfect Phylogeny

On perfect phylogeny, we compare the scalability of the implementations on parameters
n = m, k, and r. We chose the values n = m = 400, k = 20, and r = 0.25 as the
baseline and generated three instance sets with ms. In the first set, the values of n = m
vary from 40 to 800. In the second, the value of k varies from 2 to 40. In the third,
the value of r varies from 0 to 0.5. For each considered combination of parameters, we
generated 20 instances. These combinations of parameters turned out to be reasonable

1From https://csiflabs.cs.ucdavis.edu/˜gusfield/perfectphy.tar.gz.
2The re-implementations are available at https://github.com/laakeri/phylogeny-aaai.

https://csiflabs.cs.ucdavis.edu/~gusfield/perfectphy.tar.gz
https://github.com/laakeri/phylogeny-aaai
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Figure 6.4: Number of solved instances out of the 20 generated for each combination of parameters on
perfect phylogeny.

for producing non-trivial instances: in the three sets, 49%, 41%, and 47% of the solved
instances admitted perfect phylogeny, respectively.
Figure 6.4 shows the results of the three experiments. PerftPhy is the best-performing
algorithm overall, solving 939 instances out of the 1020 generated, with Triangulator
second, solving 882 instances. The performance of Triangulator decreases with increasing
n and k but stays fairly constant with increasing r. PerftPhy dominates other approaches
in all cases except when k is high. This is likely explained by the fact that PerftPhy is
based on an algorithm whose time complexity is exponential in k but polynomial in other
parameters (assuming no missing data) [26, 65].

6.7.2 Binary Maximum Compatibility

For binary maximum compatibility, we do a similar scalability experiment with generated
instances as for perfect phylogeny. In binary maximum compatibility, the arity k = 2 of
the characters is fixed. We consider an additional parameter p, the probability of missing
data. This is because if p = 0, then the binary maximum compatibility is equivalent to the
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Figure 6.5: Number of solved instances out of the 20 generated for each combination of parameters on
binary maximum compatibility.

maximum clique problem [29], so having p > 0 makes the problem phylogenetics-specific.
We chose the parameters n = m = 1000, r = 5, and p = 0.5 as the baseline and generated
three instance sets with ms. In the first set, the values of n = m vary from 100 to 2000. In
the second set, the value of r varies from 0 to 9. In the third set, the value of p varies from
0 to 0.9. For each considered combination of parameters we generated 20 instances. The
median percentages of compatible characters in maximum compatible subsets in solved
instances in these three sets are 77%, 89%, and 73%, respectively.
Figure 6.5 summarizes the results of the three experiments. Bin IP solves the most in-
stances, solving 576 of the total 800 instances, with Triangulator second, solving 376
instances. Bin IP outperforms Triangulator especially on instances with n ≥ 1000 and
r ≥ 5. On other instances, Bin IP has a comparable performance to Triangulator, both
outperforming Minsep IP by a large margin.
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6.7.3 Multi-state Maximum Compatibility

On multi-state maximum compatibility, we first compare the implementations on 5 real-
world instances. The sources of these instances are Chinese dialects [84], Indo-European
Languages [90], Mammal mitochondrial sequences [58] and Alcataenia [59]. Table 6.7 re-
ports the results of the experiment on these instances and some properties of the instances.
Triangulator and Bin IP solved all of the instances, and Minsep IP timed out on the “indo”
instance.
As the second experiment on multi-state maximum compatibility we compare the scal-
ability of the implementations on generated data similarly as on perfect phylogeny and
on binary maximum compatibility. For multi-state maximum compatibility, we chose the
values n = m = 200, k = 20, and r = 2 as the baseline and generated three instance sets
with ms. In the first set, the values of n = m vary from 20 to 400. In the second set, the
value of k varies from 2 to 40. In the third set, the value of r varies from 0 to 3.9. The
median percentages of compatible characters in maximum compatible subsets in solved
instances in these sets are 83%, 77%, and 89%.
Figure 6.6 summarizes the results of these experiments. Triangulator outperforms the
other approaches on scalability on all parameters, solving in total 682 of the 1200 instances.
Triangulator dominates the other implementations on all datapoints except on r = 3.6,
where Bin IP solves a couple of instances more.
As a third experiment on multi-state maximum compatibility, we compare Triangulator to
Minsep IP and Bin IP in additional generated instances, with all parameter combinations
from n = m = {50, 100, . . . , 400}, k = {4, 10, 20, 40} and r = {0, 1, 2, 4}. For each
combination, 5 instances were generated. The median percentage of compatible characters
in the solved instances is 90%.
Figure 6.7 summarizes the results of the third experiment, comparing directly the running
times of each instance between Triangulator and Bin IP and Triangulator and Minsep IP.
Figure 6.7 highlights the fact that Triangulator outperforms Bin IP especially on larger
values of k and Minsep IP on larger values of r.

Table 6.7: Number of taxa, number of characters, arity of characters, the size of the maximum compatible
subset of characters, and the runtimes of the implementations on real-world maximum compatibility
instances.

Instance n m k comp Approach
Triangulator Minsep IP Bin IP

alcataenia 9 14 3 9 0.06 0.11 0.28
chinese 7 15 5 9 0.08 0.07 0.28
indo 24 282 22 269 2033.05 TO 1.76
indo-pp 8 21 5 15 0.04 0.26 0.13
mammals 7 195 4 117 0.88 2.62 0.25
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Figure 6.6: Number of solved instances out of the 20 generated for each combination of parameters on
multi-state maximum compatibility.
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Table 6.8: Number of instances solved on treelength, treewidth, and minimum fill-in, and the number
of treelength instances solved in the preprocessing phase.

Instance set #Instances Approach
Triang TL Triang TW Triang MF Triang TL PP

DIMACS 80 59 36 36 56
Named graphs 150 125 112 106 68
Total 230 184 148 142 124

6.8 Treelength

We are not aware of any other implementations for exact computing of treelength. Despite
this, we experimented on computing treelength on the DIMACS graphs and the named
graphs. Table 6.8 reports the number of instances solved on treelength, including also the
numbers of instances solved on treewidth and minimum fill-in and the number of instances
solved on treelength solely by the preprocessing phase.
Triangulator is able to solve more instances on treelength than on treewidth or minimum
fill-in, especially in the DIMACS dataset. The explanation for this, offered by Table 6.8, is
that most of the instances are solved for treelength in the preprocessing phase. Recall that
in treelength preprocessing, the greatest lower bound that Triangulator is able to obtain
is 2. Therefore, all instances that are solved by the preprocessing have treelength at most
2. Triangulator solves all instances with treelength 1 by recognizing if the graph is chordal
and many of the instances with treelength 2 by first recognizing that the graph is not
chordal and then finding a triangulation with treelength 2 with LB-Triang. Triangulator
solves 110 of the 114 solved instances with treelength 2 solely by preprocessing.
Figure 6.8 shows the distribution of treelengths in solved instances, except for one instance
with treelength 34. Of the 184 solved instances, 170 have treelength at most 4. The
instance with treelength 34 is the cycle of 100 vertices.
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Figure 6.8: Number of solved treelength instances by treelength.



7 Analysis of the Implementation

Triangulator is a complex algorithm implementation whose performance depends on many
factors, such as effectiveness of preprocessing, numbers of minimal separators and poten-
tial maximal cliques, and the performance of external libraries. In this chapter we further
analyze data from the experiments reported in the previous chapter. We focus on under-
standing what kind of instances Triangulator is able to solve, why Triangulator is able to
solve those instances, and how Triangulator could be improved to solve more instances. To
make this chapter more concise we omit the analysis for total table size, binary maximum
compatibility, and treelength. We remind the reader that the data on also those problems
is available in the GitHub repository [69].

7.1 Treewidth

Triangulator solved 4826 of the 5441 treewidth instances. The flowchart of Triangulator
on the treewidth instances in Figure 7.1 displays in which phases of Triangulator the
instances were solved and in which phases Triangulator ran out of time or memory. For
understanding the flowchart, recall Algorithm 4 of Chapter 5 representing Triangulator
as pseudocode. In the flowchart we assume a model of Triangulator where the phases
MS-ENUM, PMC-ENUM and BT-DP each happen exactly once, even though in reality
there can be multiple sub-instances produced by the preprocessing phase, processed one
by one in the solving phase. We assume that Triangulator only reached the phase in which
it was terminated. For example, if Triangulator timed out in MS-ENUM, it is assumed
to have never reached BT-DP even if another sub-instance was solved with BT-DP. We
believe that this model is reasonably accurate for the purpose of identifying bottlenecks
because the sub-instances are solved in non-decreasing order of the number of vertices.
Most of the instances were solved solely by the preprocessing phase. In 569 of the unsolved
cases Triangulator was terminated in MS-ENUM, in 45 cases in PMC-ENUM, and in one
case in the BT-DP phase. The fact that only one timeout occurred in BT-DP is not
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Memout Timeout Timeout Timeout

5441
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1900
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Figure 7.1: Number of treewidth instances solved in each phase of Triangulator and numbers of treewidth
instances on which Triangulator ran out of time or memory.
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surprising, since the runtime of BT-DP has only a small overhead on top of the size of
the output of PMC-ENUM, while PMC-ENUM in general can have a large overhead over
the size of its output. The fact that only 45 timeouts occurred in PMC-ENUM could
be interpreted to indicate that the optimizations for PMC-ENUM are effective, enabling
PMC-ENUM to be almost as fast as MS-ENUM. Another interpretation could be that
there are not many instances with an intermediate number of minimal separators, i.e.,
most of the instances either have a very large number of minimal separators, causing a
timeout or memout in MS-ENUM, or a relatively small number of minimal separators,
enabling successful enumeration of PMCs.
To quantify the effect of preprocessing beyond the 2972 instances solved solely by prepro-
cessing, we investigate the kernel size of the instances. The kernel size is the number of
vertices in the largest sub-instance after preprocessing. Considering the 1854 instances
that were solved after the preprocessing phase, 248 had at least 100 vertices but only 29
had kernel size at least 100. Figure 7.2 shows the percentage of solved instances among
instances with each kernel size between 0 and 150, rounded to the nearest multiple of 10.
Triangulator clearly performs better on instances with small kernel size than on instances
with large kernel size. Most of the instances with kernel size at most 80 are solved, while
most of the instances with kernel size at least 100 are not solved. The solved instance
with the largest kernel has kernel size 1724, and the unsolved instance with the smallest
kernel has kernel size 50. Considering all instances, the largest solved instance had 3,282
vertices before preprocessing and the smallest unsolved instance 50 vertices.
To analyze the effect of the number of minimal separators, Figure 7.3 shows treewidth
instances as points determined by the kernel size and the number of enumerated minimal
separators. The instances on which Triangulator was terminated in MS-ENUM appear to
form a boundary in the figure, ranging from the unsolved instance with the largest number
of enumerated minimal separators, having 913,767,685 enumerated minimal separators and
kernel size 64, to an instance with 4,655,007 enumerated minimal separators and kernel
size 2,809. The cases on which Triangulator was terminated in MS-ENUM are generally
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Figure 7.2: Percentage of solved treewidth instances among instances with each kernel size from 0 to
150. The kernel size of each instance is rounded to the nearest multiple of 10. Each datapoint is a ratio
over at least 30 instances.
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Figure 7.3: Kernel sizes and numbers of enumerated minimal separators in treewidth instances. Both
axis are log scale. The instances are grouped by whether Triangulator solved them or ran out of time
(TO) or memory (MO) in some phase.

quite close to this boundary, and the cases on which Triangulator was terminated in PMC-
ENUM are closer to the origin. The solved instance with the largest number of minimal
separators has 133,539,546 minimal separators and kernel size 54.
Figure 7.3 indicates that the performance of Triangulator depends on both the kernel
size and the number of minimal separators. However, one may note that there are not
many instances that have a large kernel and a small number of minimal separators, even
though this is possible in principle. This might indicate that the preprocessing techniques
for treewidth are effective in reducing the sizes of instances that have a small number of

101

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109

N
u
m

b
e
r 

o
f 

p
o
te

n
ti

a
l m

a
xi

m
a
l c

liq
u
e
s

Number of minimal separators

Figure 7.4: Numbers of enumerated minimal separators and potential maximal cliques in solved
treewidth instances. Both axis are log scale.
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minimal separators.
Figure 7.4 shows the numbers of enumerated minimal separators and PMCs in solved
treewidth instances. The greatest number of potential maximal cliques in a solved instance
is 36,536,076. Recall that on treewidth, Triangulator enumerates all minimal separators
but only the PMCs Ω with |Ω| − 1 < ub, where ub is an upper bound for treewidth. This
seems to result in the number of enumerated PMCs being usually significantly smaller than
the number of enumerated minimal separators. This fact could explain why Triangulator
was terminated more often in MS-ENUM than in PMC-ENUM, suggesting that most of
the enumerated minimal separators were larger than ub in size, and thus skipped in many
parts of PMC-ENUM.

7.2 Minimum Fill-In

Triangulator solved 203 of the 330 minimum fill-in instances. The flowchart in Figure 7.5
displays in which phases of Triangulator the instances were solved and in which phases
Triangulator ran out of time or memory. Triangulator solved 50 instances already in the
preprocessing phase, but ran out of time on one instance in preprocessing, showing that
the efficiency of the preprocessing techniques could be improved. The single instances
on which Triangulator timed out in preprocessing has 35,588 vertices and 572,914 edges.
Similarly as on treewidth, on minimum fill-in most of the timeouts and memouts occurred
in MS-ENUM, with only one timeout in BT-DP. However, in minimum fill-in the difference
between MS-ENUM and PMC-ENUM is not as large as in treewidth, suggesting that in
minimum fill-in less minimal separators can be pruned via upper bounds in PMC-ENUM.
Triangulator solved 33 instances with kernel size at least 100 and 51 instances with at
least 100 vertices. Figure 7.6 shows the percentage of solved instances among instances
with each kernel size from 0 to 130, rounded to the nearest multiple of 10. The largest
kernel size of a solved instance is 559, and the smallest kernel size of an unsolved instance
is 50. Most instances with kernel size at most 50 are solved, but in general on minimum
fill-in the kernel size does not appear to correlate as well with which instances Triangulator
solves as on treewidth. We believe that this is because the preprocessing techniques for
minimum fill-in are not as effective as for treewidth.
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Figure 7.5: Number of minimum fill-in instances solved in each phase of Triangulator and numbers of
minimum fill-in instances on which Triangulator ran out of time (TO) or memory (MO).
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Figure 7.6: Percentage of solved minimum fill-in instances among instances with each kernel size from
0 to 130. The kernel size of each instance is rounded to the nearest multiple of 10. Each datapoint is a
ratio over at least 6 instances.
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Figure 7.7: Kernel sizes and numbers of enumerated minimal separators in minimum fill-in instances.
Both axis are log scale. The instances are grouped by whether Triangulator solved them or ran out of
time (TO) or memory (MO) in some phase.

Figure 7.7 shows the kernel sizes and the numbers of enumerated minimal separators on
minimum fill-in instances grouped by the status of Triangulator on them. The figure shows
a similar boundary of instances on which Triangulator was terminated in MS-ENUM as
the corresponding figure for treewidth. The numbers of enumerated minimal separators
in instances on which Triangulator was terminated in MS-ENUM range from 474,748 to
650,670,407. Compared to treewidth, on minimum fill-in the figure shows a larger region
consisting of instances on which Triangulator ran out of time or memory in PMC-ENUM.
The largest solved instance in terms of the number of minimal separators has 3,701,564
minimal separators and kernel size 64. This indicates that on minimum fill-in a significant
bottleneck of Triangulator is the PMC-ENUM phase, in contrast to treewidth on which
Triangulator is able to solve instances with over 100 million minimal separators.
Figure 7.8 shows the numbers of enumerated minimal separators and PMCs on solved
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Figure 7.8: Numbers of enumerated minimal separators and potential maximal cliques on solved mini-
mum fill-in instances. The polynomials x and x2 are also shown. Both axis are log scale.

minimum fill-in instances. The number of enumerated PMCs is consistently higher than
the number of enumerated minimal separators, appearing to almost form a line in the
figure.1 The slope of the line seems to be much smaller than what would result from the
known quadratic bound between the numbers of PMCs and minimal separators.

7.3 Generalized Hypertreewidth

On generalized hypertreewidth, Triangulator solved 2544 of the 3070 instances. The
flowchart in Figure 7.9 displays in which phases of Triangulator the instances were solved
and in which phases Triangulator ran out of time or memory. The edge cover computa-
tion phase is included in the flowchart between the PMC-ENUM and BT-DP phases. The

1Note that log-log scale transforms a polynomial bxa to linear function ax + b.
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Figure 7.9: Number of generalized hypertreewidth instances solved in each phase of Triangulator and
numbers of generalized hypertreewidth instances on which Triangulator ran out of time (TO) or memory
(MO).
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Figure 7.10: Percentage of solved generalized hypertreewidth instances among instances with each
kernel size from 0 to 120. The kernel size of each instance is rounded to the nearest multiple of 10. Each
datapoint is a ratio over at least 7 instances.

preprocessing phase solved 875 of the 2544 solved instances. Because the greatest lower
bound for GHTW that the preprocessing is able to obtain is 2, these instances had either
GHTW at most 2 or their primal graphs were chordal. Most of the timeouts and memouts
occurred in the MS-ENUM phase, with also a significant number of timeouts in the edge
cover phase. Similarly as on treewidth and minimum fill-in, only one timeout occurred in
the BT-DP phase.
Figure 7.10 shows the percentage of solved instances among instances with each kernel
size between 0 and 120, rounded to the nearest multiple of 10. Triangulator solved 60
instances with kernel size at least 100 and 140 instances with at least 100 vertices. The
solved instance with the largest kernel had kernel size 887 and the solved instance with the
largest number of vertices had 893 vertices. The unsolved instance with the smallest kernel
had kernel size 50. The kernel size seems to not correlate as well with the percentage of
solved instances as on treewidth and minimum fill-in. This may be due to the fact that the
preprocessing techniques for GHTW are more limited than the preprocessing techniques
for treewidth and minimum fill-in.
Figure 7.11 shows the kernel sizes and the numbers of enumerated minimal separators
on GHTW instances grouped by the status of Triangulator on them. The figure shows
a boundary consisting of instances on which Triangulator was terminated either due to
timeout or memout in MS-ENUM, ranging from an instance with 650,678,091 enumerated
minimal separators and kernel size 72 to an instance with 6,894,338 enumerated minimal
separators and kernel size 2813. Towards the origin from this boundary, the figure shows
a mixture of instances on which Triangulator timed out in PMC-ENUM, edge cover com-
putation and in BT-DP. The fact on whether Triangulator timed out in the edge cover
phase seems fairly independent on the number of minimal separators. The solved instance
with the largest number of minimal separators has 58,306,891 minimal separators. The
instances with the least number of minimal separators on which Triangulator timed out
in the edge cover phase and the BT-DP phase have 32,940 and 14,956 minimal separa-
tors, respectively. This suggests that the number of PMCs in these instances could be
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Figure 7.11: Kernel sizes and numbers of enumerated minimal separators in generalized hypertreewidth
instances. Both axis are log scale. The instances are grouped by whether Triangulator solved them or
ran out of time (TO) or memory (MO) in some phase.
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Figure 7.12: Numbers of enumerated minimal separators and potential maximal cliques on generalized
hypertreewidth instances. The polynomials x and x2 are also shown. Both axis are log scale.

significantly higher than the number of minimal separators.
Figure 7.12 shows the numbers of enumerated minimal separators and PMCs on GHTW
instances grouped by whether Triangulator solved the instance. The unsolved cases cor-
respond to timeouts in the edge cover and BT-DP phases. Recall that on GHTW, even
if Triangulator does not prune all PMCs Ω with f(Ω) ≥ ub in the PMC-ENUM phase, it
uses heuristics to prune some of the PMCs before edge cover computation. The number of
PMCs seems to explain the timeouts in edge cover computation better than the number of
minimal separators, although there are a few outliers. The solved instance with the largest
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number of enumerated PMCs has 4,095,897 PMCs. The unsolved instance on which Tri-
angulator was terminated after PMC-ENUM with the least number of enumerated PMCs
has 75,029 PMCs. Since the total number of PMCs in a graph G is at least |∆(G)|/n [22],
we can infer from Figure 7.12 that the pruning heuristic used in PMC-ENUM for GHTW
is effective in reducing the number of enumerated PMCs.

7.4 Fractional Hypertreewidth

On fractional hypertreewidth Triangulator solved 2425 of the 3070 instances. The flow-
chart in Figure 7.13 displays in which phases of Triangulator the instances were solved and
in which phases Triangulator ran out of time or memory. The preprocessing phase solved
753 instances. Triangulator does not include problem-specific preprocessing techniques for
FHTW, so the instances solved in preprocessing are exactly the instances whose primal
graphs are chordal. Note that this implies that on GHTW, 122 non-chordal instances
were solved in preprocessing. Similarly as on GHTW, most of the timeouts and memouts
occurred in MS-ENUM. However, on FHTW there are 118 more timeouts and 4 more
memouts in PMC-ENUM, making PMC-ENUM a much more significant bottleneck than
on GHTW. The number of timeouts in the edge cover phase is only two less compared
to GHTW, even though in theory solving linear programs is more efficient than solving
integer programs.
Figure 7.14 shows the percentage of solved instances among instances with each kernel
size from 0 to 120, rounded to the nearest multiple of 10. Triangulator solved 16 instances
with kernel size at least 100 and 46 instances with at least 100 vertices. The unsolved
instance with the smallest kernel has kernel size 50 and the solved instance with the largest
kernel has kernel size 221. The kernel size seems more significant factor in FHTW than
in GHTW. There are 141 instances that Triangulator is able to solve for GHTW but not
for FHTW, and 94 of those have kernel size at least 90.
Figure 7.15 shows the kernel sizes and the numbers of enumerated minimal separators on
FHTW instances grouped by the status of Triangulator on them. The instances on which
Triangulator was terminated in MS-ENUM form a similar boundary as on GHTW, but the
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Figure 7.13: Number of fractional hypertreewidth instances solved in each phase of Triangulator and
numbers of fractional hypertreewidth instances on which Triangulator ran out of time (TO) or memory
(MO).
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Figure 7.14: Percentage of solved fractional hypertreewidth instances among instances with each kernel
size from 0 to 120. The kernel size of each instance is rounded to the nearest multiple of 10. Each
datapoint is a ratio over at least 8 instances.
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Figure 7.15: Kernel sizes and numbers of enumerated minimal separators in fractional hypertreewidth
instances. Both axis are log scale. The instances are grouped by whether Triangulator solved them or
ran out of time (TO) or memory (MO) in some phase.

interior of the figure is vastly different to the corresponding figure for GHTW. No instances
with more than 1,000,000 minimal separators were solved on FHTW. The solved instance
with the largest number of minimal separators has 898,258 minimal separators and kernel
size 56, and the unsolved instance with the least number of minimal separators has 59,341
minimal separators and kernel size 446. This is a significant difference to GHTW, on
which instances with more than 50 million minimal separators were solved.
Figure 7.16 shows the numbers of enumerated minimal separators and PMCs in FHTW
instances. The greatest number of PMCs in a solved instance is 23,079,748 and the smallest
number of PMCs in an unsolved instance past the PMC-ENUM phase is 3,326,577. The
numbers of minimal separators in these instances are 488,785 and 478,591, respectively.
On FHTW, Triangulator does not prune the PMCs in any way in PMC-ENUM, so the
figure shows the true relation between the number of minimal separators and the number of
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Figure 7.16: Numbers of enumerated minimal separators and potential maximal cliques on fractional
hypertreewidth instances. The polynomials x, x1.15, x1.4 and x2 are also shown. Both axis are log scale.

PMCs of the instances. All of the instances have more PMCs than minimal separators, and
92% of the 1787 instances satisfy |∆(G)|1.15 ≤ |Π(G)| ≤ |∆(G)|1.4. The subquadraticity of
the upper bound motivates asking whether there is an upper bound of form |∆(G)|cpoly(n)
where c < 2 for the number of PMCs of a graph G.

7.5 Perfect Phylogeny

Triangulator solved 882 of the 1020 perfect phylogeny instances. The flowchart in Fig-
ure 7.17 displays in which phases of Triangulator the instances were solved and in which
phases Triangulator ran out of time or memory. The preprocessing phase solved 263 in-
stances. Of the instances solved in preprocessing, 22 admit a perfect phylogeny and 241 do
not. The instances that do not admit a perfect phylogeny were solved with the degeneracy
heuristic. Triangulator did not run out of memory on any perfect phylogeny instance. The
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Figure 7.17: Number of perfect phylogeny instances solved in each phase of Triangulator and numbers
of perfect phylogeny instances on which Triangulator ran out of time.
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timeouts happened only in the MS-ENUM and PMC-ENUM phases, with 95 timeouts in
MS-ENUM and 43 timeouts in PMC-ENUM.
The graphs in phylogenetics are in general larger than in other problems. The median
kernel size among solved instances in perfect phylogeny is 1186. Figure 7.18 shows the
percentage of solved instances for each kernel size between 0 and 4600, rounded to the
nearest multiple of 100. The smallest kernel size of an unsolved instance is 2428 and the
largest kernel size of a solved instance is 5737. Overall, the largest solved instance in terms
of total number of vertices had 12,310 vertices.
Figure 7.19 shows the kernel sizes and the numbers of enumerated minimal separators in
perfect phylogeny instances grouped by the status of Triangulator on them. The figure is
vastly different to the corresponding figures for the already discussed problems. There is a
cluster of instances on which Triangulator timed on in MS-ENUM and which have less than
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Figure 7.18: Percentage of solved perfect phylogeny instances among instances with each kernel size
from 0 to 4600. The kernel size of each instance is rounded to the nearest multiple of 100. Each datapoint
is a ratio over at least 5 instances.
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Figure 7.19: Kernel sizes and numbers of enumerated minimal separators in perfect phylogeny instances.
Both axis are log scale. The instances are grouped by whether Triangulator solved them or ran out of
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Figure 7.20: Numbers of enumerated minimal separators and potential maximal cliques on perfect
phylogeny instances. Both axis are log scale.

1000 minimal separators. The instance with the smallest number of minimal separators
on which Triangulator timed out in MS-ENUM has 391 enumerated minimal separators
and 5315 vertices, though we have to remark that due to certain implementation details,
the reported numbers of enumerated minimal separators are not accurate for instances
on which Triangulator was terminated in MS-ENUM after enumerating less than 10,000
minimal separators.
Figure 7.20 shows the numbers of enumerated minimal separators and PMCs on perfect
phylogeny instances. Recall that on perfect phylogeny, Triangulator prunes a PMC if it
contains two vertices corresponding to a same character. By Figure 7.20, this pruning
appears to be effective, leaving the numbers of enumerated PMCs to be two magnitudes
smaller than the numbers of enumerated minimal separators. The instance with the largest
number of enumerated PMCs has 114 PMCs, 2677 minimal separators, and kernel size
2474.

7.6 Multi-State Maximum Compatibility

Triangulator solved 1152 of the 1845 multi-state maximum compatibility instances. The
previous implementation of Triangulator, used in the experiments of [72] solved 1012
instances on the same instance set, running on the same computers with a 2-hour time
limit. The previous implementation used the same MaxSAT solver, so we believe that the
improvement was mostly due to the new PMC-ENUM algorithm.
The flowchart in Figure 7.21 displays in which phases of Triangulator the instances were
solved and in which phases Triangulator ran out of time or memory. The final phase for
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Figure 7.21: Number of multi-state maximum compatibility instances solved in each phase of Trian-
gulator and numbers of multi-state maximum compatibility instances on which Triangulator ran out of
time.

multi-state maximum compatibility is BT-MaxSAT, including both building the MaxSAT
instance and solving it with the MaxHS [28] MaxSAT solver. The BT-MaxSAT phase is
a more significant bottleneck than the BT-DP phase of the already discussed problems.
Triangulator timed out in BT-MaxSAT on 104 instances. However, one may argue that
104 timeouts is not that much when taking into account that MaxSAT is an NP-hard
problem and that more timeouts occurred in both MS-ENUM and PMC-ENUM.
The sizes of instances in multi-state maximum compatibility are larger than in non-
phylogeny problems but not as large as in perfect phylogeny. The median kernel size
among solved instances is 725. Figure 7.22 shows the percentage of solved instances for
kernel sizes between 0 and 2500, rounded to the nearest multiple of 100. The unsolved in-
stance with the smallest kernel has kernel size 327 and the solved instance with the largest
kernel has kernel size 3123. The percentage of solved instances appears to correlate well
with the kernel size. Triangulator solves most of the instances with kernel size at most
1000 and does not solve most of the instances with kernel size at least 1200.
Figure 7.23 shows the kernel sizes and the numbers of enumerated minimal separators
in multi-state maximum compatibility instances grouped by the status of Triangulator
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Figure 7.22: Percentage of solved multi-state maximum compatibility instances among instances with
each kernel size from 0 to 2500. The kernel size of each instance is rounded to the nearest multiple of 100.
Each datapoint is a ratio over at least 10 instances.
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on them. The instance with the largest number of enumerated minimal separators has
3,088,150 minimal separators and kernel size 1717. The solved instance with the largest
number of minimal separators has 34,071 minimal separators and kernel size 1012. The
unsolved instance with the least number of enumerated minimal separators has 6007 enu-
merated minimal separators and kernel size 2913. The number of minimal separators
appears to correlate well with which instances Triangulator solves.
Figure 7.24 shows the numbers of enumerated minimal separators and PMCs in multi-state
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maximum compatibility instances. Similarly as in FHTW, no PMCs are pruned in the
PMC-ENUM phase, so the figure shows the true relation between the numbers of minimal
separators and PMCs of the graphs. The unsolved instances in the figure correspond to
instances on which Triangulator timed out in the BT-MaxSAT phase. The timeouts of
that phase seem to be consistently explained by the number of PMCs. The solved instance
with the largest number of PMCs has 609,002 PMCs and the unsolved instance past the
PMC-ENUM phase with the least number of PMCs has 96,086 PMCs. The relation of
the number of PMCs and the number of minimal separators appears to follow a line in
the figure, with most of the instance having the number of PMCs between |∆(G)|1.2 and
|∆(G)|1.3. We note that this phenomenon may not be a general phenomenon of graphs
but rather be explained by the properties of the ms instance generator for the phylogeny
instances.



8 Conclusions

In this thesis we focused on the Bouchitté–Todinca algorithm for finding optimal tree
decompositions of graphs, with multiple different notions of optimality. We improved
the potential maximal clique enumeration phase of the BT algorithm, reducing the time
complexity of the phase by a factor of n and resulting in a faster implementation. We
introduced an adaptation of the BT algorithm for the maximum compatibility problem of
multi-state phylogenetic characters. We implemented the BT algorithm for seven problems
arising from different areas of computer science. Our implementation, called Triangulator,
outperforms other implementations in exact computing of minimum fill-in, generalized
hypertreewidth, fractional hypertreewidth, total table size, maximum compatibility of
multi-state phylogenetic characters, and treelength.
While in theory the potential applications of the BT algorithm are well-known, our work is
one of the first to experimentally evaluate the BT algorithm, and to our knowledge the first
to extensively evaluate the BT algorithm on other optimization problems than treewidth
and minimum fill-in. One of the most common approaches for finding optimal tree decom-
positions in practice has been via elimination orderings, used for example by QuickBB,
FraSMT and EDFS [38, 48, 77]. Our implementation of the BT algorithm consistently
outperforms these implementations, suggesting that the BT algorithm is the superior of
these two generic approaches. In the problems on which alternative implementations out-
perform our implementation, they are either based on the BT algorithm themselves, as in
treewidth, or highly problem-specific, as in perfect phylogeny and maximum compatibility
of binary phylogenetic characters.

Future research. In this thesis we applied the BT algorithm in the context of finding
tree decompositions. Beyond tree decompositions, Fomin et al. have formulated a frame-
work showing that problems expressed as finding a maximum size induced subgraph with
treewidth t can be solved in O(|Π(G)|n4+t) time, given the set Π(G) of potential maximal
cliques of the input graph G [43]. This framework includes, for example, the maximum
independent set problem (with t = 0), the longest induced path problem (with t = 1), and
the minimum feedback vertex set problem (with t = 1) [43]. To the best of our knowledge,
there are no implementations of instances of this framework. Implementing the algorithm
suggested by this framework for some application and investigating its applicability in
practice is an interesting direction for future research.
In addition to applying the BT algorithm to more problems, another natural future re-
search direction is to improve the efficiency of the algorithm. For improving the PMC-
ENUM phase, we note that enumerating potential maximal cliques in O(|Π(G)|poly(n))
time has been explicitly stated as an open problem in 2006 [20] and to our knowledge
is still open. A practical algorithm with such time complexity could be used to improve
Triangulator, turning some of the timeouts in the PMC-ENUM phase into solved cases.
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Based on our experiments, a more significant bottleneck than PMC-ENUM for Triangu-
lator is the sheer number of minimal separators, often filling the 64 GB of memory before
reaching the 1-hour time limit in our experiments. Recall that the number of PMCs is at
least the number of minimal separators divided by the number of vertices [22], so these
instances also have a large number of PMCs. Therefore, a practically motivated direction
would be to reduce the number of objects that need to be enumerated. This direction
has been explored in the contexts of treewidth and generalized hypertreewidth by us [70]
and in the contexts of treewidth and minimum fill-in as the “positive instance driven” ap-
proach of Tamaki et al. [33, 98, 99]. In the experiments of this thesis, the positive instance
driven approach outperforms Triangulator in computing treewidth, but Triangulator out-
performs it in computing minimum fill-in. A practical algorithm that would enumerate
in a linear-output-sensitive manner the PMCs whose associated cost is less than a given
bound would likely be an improvement over all of these approaches [70, 99].
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Villanger. A wide-range algorithm for minimal triangulation from an arbitrary or-
dering. Journal of Algorithms, 58(1):33–66, 2006.
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Appendix A Summary of Empirical Comparison

The following table lists the number of test instances in each problem and the numbers of
solved instances, timeouts and memouts/runtime errors for each of the implementations.
For Triangulator the memouts/runtime errors are all memouts. For other implementations
we cannot reliably distinguish memouts from runtime errors.
Problem Implementation Solved Timeouts Memouts/RTEs Instances
Treewidth Triangulator 4826 358 257 5441

PIDDT 5135 306 0
p17 5116 291 34
QuickBB 4201 1240 0

Minimum fill-in Triangulator 203 53 74 330
MCCP 122 82 126
PIDDM 195 135 0

GHTW Triangulator 2544 405 121 3070
FraSMT 1494 1575 1
BalSep 1012 1856 202
G-BIP 858 2203 9
L-BIP 901 2159 10

FHTW Triangulator 2425 523 122 3070
FraSMT 2010 1044 16

HTW det-k-decomp 1455 1606 9 3070
TTS Triangulator 15 7 2 24

EDFS 15 8 1
Perf. Phyl. Triangulator 882 138 0 1020

Minsep IP 787 233 0
Bin IP 573 97 350
PerftPhy 939 79 2

Bin. Maxcomp Triangulator 376 416 8 800
Minsep IP 111 675 14
Bin IP 576 23 201

MS Maxcomp Triangulator 1152 693 0 1845
Minsep IP 804 1036 5
Bin IP 472 617 756

Treelength Triangulator 184 10 36 230


	Introduction
	Contributions
	Organization of the Thesis

	Preliminaries
	Graph Theory and Notations
	Tree Decompositions
	Triangulations
	From Tree Decompositions to Triangulations
	Cost Functions on Minimal Triangulations

	Optimal Tree Decompositions
	Treewidth
	Minimum Fill-In
	Generalized and Fractional Hypertreewidth
	Generalized Hypertreewidth
	Fractional Hypertreewidth
	On the Notion of Hypertreewidth

	Total Table Size
	Phylogenetic Character Compatibility
	Phylogenetic Trees
	Formulation by Triangulations

	Treelength

	The Bouchitté–Todinca Algorithm
	Combinatorial Objects
	Minimal Separators
	Potential Maximal Cliques

	Enumeration Phase
	Enumerating Minimal Separators
	Enumerating Potential Maximal Cliques

	Dynamic Programming Phase
	Characterization of Minimal Triangulations
	Finding Optimal Minimal Triangulations
	The BT-DP Algorithm

	Adaptation to Maximum Compatibility

	Implementation
	Overview
	Preprocessing
	General Techniques
	Treewidth
	Minimum Fill-In
	Phylogenetic Character Compatibility
	Other Problems

	Optimizing PMC-ENUM
	Computing Edge Covers
	Low-level Implementation Details

	Empirical Comparison
	Empirical Setup
	Benchmarks
	Treewidth
	Minimum Fill-In
	Generalized and Fractional Hypertreewidth
	Generalized Hypertreewidth
	Fractional Hypertreewidth

	Total Table Size
	Phylogenetic Character Compatibility
	Perfect Phylogeny
	Binary Maximum Compatibility
	Multi-state Maximum Compatibility

	Treelength

	Analysis of the Implementation
	Treewidth
	Minimum Fill-In
	Generalized Hypertreewidth
	Fractional Hypertreewidth
	Perfect Phylogeny
	Multi-State Maximum Compatibility

	Conclusions
	Bibliography
	Summary of Empirical Comparison

