
Algorithmica
https://doi.org/10.1007/s00453-022-00932-0

Finding Optimal Triangulations Parameterized by Edge
Clique Cover

Tuukka Korhonen1

Received: 28 December 2020 / Accepted: 8 January 2022
© The Author(s) 2022

Abstract
We consider problems that can be formulated as a task of finding an optimal triangula-
tion of a graph w.r.t. some notion of optimality. We present algorithms parameterized
by the size of a minimum edge clique cover (cc) to such problems. This parameteri-
zation occurs naturally in many problems in this setting, e.g., in the perfect phylogeny
problem cc is at most the number of taxa, in fractional hypertreewidth cc is at most
the number of hyperedges, and in treewidth of Bayesian networks cc is at most the
number of non-root nodes. We show that the number of minimal separators of graphs
is at most 2cc, the number of potential maximal cliques is at most 3cc, and these
objects can be listed in times O∗(2cc) and O∗(3cc), respectively, even when no edge
clique cover is given as input; the O∗(·) notation omits factors polynomial in the input
size. These enumeration algorithms imply O∗(3cc) time algorithms for problems such
as treewidth, weighted minimum fill-in, and feedback vertex set. For generalized and
fractional hypertreewidth we give O∗(4m) time and O∗(3m) time algorithms, respec-
tively, wherem is the number of hyperedges. When an edge clique cover of size cc′ is
given as a part of the input we give O∗(2cc′

) time algorithms for treewidth, minimum
fill-in, and chordal sandwich. This implies an O∗(2n) time algorithm for perfect phy-
logeny, where n is the number of taxa. We also give polynomial space algorithms with
time complexities O∗(9cc′

) and O∗(9cc+O(log2 cc)) for problems in this framework.

Keywords Parameterized algorithms · Potential maximal cliques · Edge clique
cover · Treewidth · Minimum fill-in · Fractional hypertreewidth

This work has been financially supported by Academy of Finland (Grant 322869).

B Tuukka Korhonen
tuukka.korhonen@uib.no

1 Department of Computer Science, University of Helsinki, Helsinki, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00932-0&domain=pdf
http://orcid.org/0000-0003-0861-6515

Algorithmica

1 Introduction

A graph is chordal if it has no induced cycle of length at least four. A triangulation of
a graph G is a chordal supergraph of G on the same vertex set. Many graph problems
can be formulated as a problem of finding an optimal triangulation of the graph with
respect to some notion of optimality. For example, computing the treewidth of a graph
corresponds to finding a triangulation with the smallest size of a maximum clique, and
computing the minimum fill-in corresponds to finding a triangulation with the least
number of edges.

An edge clique cover of a graph G is a set of cliques of G such that each edge of
G is contained in at least one of the cliques. In this article, we give fixed-parameter
algorithms for optimal triangulation problems parameterized by the size of aminimum
edge clique cover of the graph, denoted by cc, and by the size of an edge clique cover
given as an input, denoted by cc′. Our algorithms are based on the framework of
potential maximal cliques [5,15,17,21,35].

A minimal triangulation of a graph G is a triangulation of G that has no subgraph
that is a triangulation of G. A potential maximal clique (PMC) of a graph G is a
set of vertices Ω ⊆ V (G) such that there exists a minimal triangulation H of G
where Ω is a maximal clique. By the results of Bouchitté and Todinca [5] and Fomin,
Kratsch, Todinca, and Villanger [15], a large class of optimal triangulation problems
can be solved by first enumerating all PMCs of the graph and then performing dynamic
programming over them, with time complexity that is linear in the number of PMCs
and polynomial in the size of the graph. Therefore the main focus of this article is on
bounding the number of PMCs based on edge clique cover and giving a corresponding
enumeration algorithm.

1.1 Interpretations of cc

While in general the parameter cc could be considered non-standard, it has natural
interpretations in at least three settings inwhich algorithms for finding optimal triangu-
lations are applied: width parameters of hypergraphs, phylogenetics, and probabilistic
inference. The reason that cc is a natural choice in these settings is that the input graph
is constructed as a union of cliques, with the goal of each clique W representing a
constraint of type “the triangulation must contain a maximal clique Ω withW ⊆ Ω”.
Maximal cliques of a triangulation in turn correspond to bags of a tree decomposition.
Next we discuss these three settings in more detail. The discussion is summarized in
Table 1.

A hypergraph is a structure like a graph, but instead of edges that are sets of two
vertices, a hypergraph has hyperedges that are arbitrary subsets of the vertex set.Width
parameters of hypergraphs, including primal treewidth, generalized hypertreewidth,
and fractional hypertreewidth are central structural parameters of constraint satisfac-
tion problems (CSPs) [19,20]. In particular, theymeasure howwell a hypergraph can be
decomposed by cuts whose intersection with a solution has a simple characterization,
allowing dynamic programming. The computation of each of these parameters can be
formulated as an optimal triangulation problem on the primal graph of the hypergraph

123

Algorithmica

Table 1 Relationships between the parameter minimum edge clique cover (cc) and natural parameters in
optimal triangulation problems

Problem Parameter Relation

Computing width parameters of hypergraphs:
primal treewidth, generalized hypertreewidth,
and fractional hypertreewidth

Number of hyperedges m cc ≤ m

Perfect phylogeny problem and its optimization
variant

Number of taxa n cc ≤ n

Computing treewidth of a moral graph of
Bayesian network

Number of non-root nodes n′ cc ≤ n′

[35]. The primal graph of a hypergraph is a graph constructed by inducing a clique on
each hyperedge, and therefore the size of its minimum edge clique cover is at most
m, the number of hyperedges. For example, the primal treewidth of a hypergraph is
the treewidth of the primal graph. Generalized and fractional hypertreewidth are more
general parameters, but their definitions are technical and postponed to Sect. 2.3.

In phylogenetics a central problem is to construct an evolutionary tree of a set of
n taxa (i.e. species) based on k characters (i.e. attributes) describing them [39]. For
example, when the character data is drawn from molecular sequences, the number
of characters k can be much larger than the number of taxa n [27]. In the weighted
minimum fill-in problem the input is a graph G and a weight function on pairs of
vertices of G, and the task is to find a triangulation H of G so that the total weight of
edges in E(H)\E(G) isminimized.Deciding if the taxa admit a perfect phylogeny and
an optimization version of it can be reduced to the weighted minimum fill-in problem
on the partition intersection graph of the characters [4,21,39]. The partition intersection
graph has a vertex for each character-state pair, and its edges are constructed by
inducing a clique corresponding to each taxon [39]. Hence the size of its minimum
edge clique cover is at most n, the number of taxa.

A third setting in which parameterization by cc is motivated is probabilistic infer-
ence. Given a Bayesian network, the first step of efficient probabilistic inference
algorithms is to compute a tree decomposition of small width of the moral graph
of the Bayesian network [25,26]. The moral graph is constructed as a union of n′
cliques, where n′ is the number of non-root nodes of the Bayesian network [26], and
thus the size of its minimum edge clique cover is at most n′.

1.2 Connections to Practice

This article is also directly motivated by observations in practice. Starting from the
Second Parameterized Algorithms and Computational Experiments challenge (PACE
2017) [11], algorithm implementations based on potential maximal cliques have been
observed to outperform other exact algorithm implementations on problems formu-
lated as finding optimal triangulations [28,30,31,36,41,42]. In particular, this work is
motivated by experimental observations of the usefulness of potential maximal cliques
in computing hypergraph parameters [28,30] and in phylogenetics [28,31].

123

Algorithmica

Fig. 1 Number of vertices (n)
and minimum edge clique cover
(cc) of PACE 2017 treewidth
(TW) and minimum fill-in (MF)
instances. Both values are
truncated from above at 500 and
the lines n = cc and n/2 = cc
are shown

Our parameterization can be justified by real-world instanceswith small edge clique
covers. In the context of hypergraph parameters, 708 of the 3072 hypergraphs in the
standardHyperBench library [12] havem < n/2,where n is the number of vertices and
m is the number of hyperedges. In the context of phylogenetics, an instance describing
mammal mitochondrial sequences [22] has 7 taxa while its partition intersection graph
has 245 vertices and an instance describing Indo-European languages [37] has 24 taxa
while its partition intersection graph has 864 vertices. In the context of Bayesian
networks, the Bayesian network “Andes” [9], accessed from the standard BNlearn
repository [38], has 223 nodes of which 134 are non-root.

To study the exact values of cc on well-known treewidth and minimum fill-in
benchmarks, we computed minimum edge clique covers of graphs from PACE 2017
[11], which had tracks for both treewidth andminimum fill-in. The treewidth track had
200 available test instances and the minimum fill-in track 100. All of the instances are
based on real-world applications [11].We attempted to compute minimum edge clique
covers of all of the 300 instances using Bron–Kerbosch algorithm [7] for maximal
clique enumeration and CPLEX [24] for solving the resulting set cover problem. We
managed to compute the minimum edge clique cover of 294 of the instances. Figure 1
shows the relations of minimum edge clique cover and the number of vertices in these
instances. Most of the instances have minimum edge clique cover between n/2 and n,
where n is the number of vertices. In 75 of the instancescc < n/2,which is roughly the
asymptotic threshold where our bounds for minimal separators and potential maximal
cliques are better than known bounds by n [17].

1.3 Techniques

The algorithms that we design in this article are based on the framework of potential
maximal cliques (PMCs) [5,15]. Algorithms in this framework typically consist of two
phases. In the first phase the set Π(G) of PMCs of the input graph G is enumerated,

123

Algorithmica

and in the second phase dynamic programming over the PMCs is performed in time
O∗(|Π(G)|). The second phase of the PMC framework has already been formulated
for all of the problems that we consider [15,17,18,21,35], so our O∗(3cc) time algo-
rithms follow from an O∗(3cc) time PMC enumeration algorithm that we give. This
algorithm is based on the Bouchitté–Todinca algorithm [6]. We achieve the O∗(3cc)
bound by novel characterizations of minimal separators and PMCs with respect to an
edge clique cover. In particular, we show that minimal separators correspond to bipar-
titions of an edge clique cover and almost all potential maximal cliques correspond to
tripartitions of an edge clique cover.

On some of the problems we improve the time complexity to O∗(2cc′
), where cc′

is the size of an edge clique cover given as an input. The O∗(2cc′
) time algorithms use

the same dynamic programming states as the standard PMC framework, but instead of
using PMCs for transitions we use fast subset convolution [2]. The application of fast
subset convolution requires ad-hoc techniques for each problem to take into account
the cost caused by the PMC implicitly selected by the convolution.

We also give algorithms that work in polynomial space and in times O∗(9cc′
) and

O∗(9cc+O(log2 cc)). These algorithms are based on a polynomial space and O∗(9cc)
time algorithm for enumerating PMCs and on a lemma asserting that every minimal
triangulation of a graph G has a maximal clique that is in a sense a balanced separator
with respect to an edge clique cover of G.

1.4 Contributions

Combinatorial bounds and enumeration algorithms We start by giving bounds for
the numbers of minimal separators and PMCs. We use S(n, k) to denote the Stirling
numbers of the second kind, i.e., the number of ways to partition an n-element set into
k non-empty subsets.

Theorem 1 If G is a graph with an edge clique cover of size cc, then the number of
minimal separators of G is at most S(cc, 2) and the number of potential maximal
cliques of G is at most S(cc, 3) + cc.

We also show that these bounds are exactly tight for all values of cc. Note that
S(cc, 2) ≤ 2cc and S(cc, 3) + cc ≤ 3cc.

We use Δ(G) to denote the set of minimal separators of a graph G. There are
O∗(|Δ(G)|) time algorithms for enumerating the minimal separators of G [1,40], so
it follows that the minimal separators of a graph can be enumerated in O∗(2cc) time.
For enumerating the PMCs Π(G) of a graph G no algorithms that are linear in the
size of the output |Π(G)| and polynomial in the size of the input are known1. Despite
that, we are able to design an efficient algorithm for enumerating PMCs parameterized
by cc, even when no edge clique cover is given as input. The fact that the algorithm
works even when no edge clique cover is given as input is crucial because there is no
O∗(22o(cc)

) time parameterized algorithm for minimum edge clique cover assuming
the exponential time hypothesis [10].

1 Obtaining an output-linear input-polynomial time algorithm for enumerating PMCs has been explicitly
stated as an open problem in 2006 [3] and to the best of our knowledge is still open.

123

Algorithmica

Table 2 Parameterized algorithms obtained as corollaries of Theorem 2

Problem Parameter Time complexity

Computing treewidth [15] Minimum edge clique cover cc O∗(3cc)

Computing (weighted) minimum
fill-in [15]

Minimum edge clique cover cc O∗(3cc)

Finding an induced subgraph with
treewidth ≤ t satisfying a CMSO
formula φ [17]

Minimum edge clique cover cc O∗(3cc · f (t, φ))

Computing fractional hypertreewidth
of a hypergraph [35]

Number of hyperedges m O∗(3m)

Theorem 2 There is an algorithm that given a graph G whose minimum edge clique
cover has size cc enumerates the potential maximal cliques of G in O∗(3cc) time.

Corollaries of Theorem 2 From Theorem 2 it follows that all problems that admit
O∗(|Π(G)|) time algorithms when the set Π(G) of PMCs of the input graph G is
given can be solved in O∗(3cc) time, even when no edge clique cover is given as an
input. Next we briefly discuss these corollaries, summarized in Table 2.

Computing treewidth and minimum fill-in are classical triangulation problems [5].
The treewidth of a graph is the minimum possible maximum clique size in a triangula-
tion of the graph, minus one. The minimum fill-in of a graph is the minimum number
of edges to add to make a graph chordal. In weighted minimum fill-in, the input, in
addition to the graph, includes a weight function assigning non-negative weights to
the potential edges to add, and the task is to minimize the sum of the weights of the
edges added. Our O∗(3cc) time algorithms for treewidth and (weighted) minimum
fill-in follow from Theorem 2 and the dynamic programming of Fomin et al. [15].

Theorem 2 implies corollaries for all problems in a framework called maximum
induced subgraphof bounded treewidth, including for example the problemsmaximum
independent set, minimum feedback vertex set, and longest induced path [17]. In
particular, using the dynamic programming of [17] as a black box, we obtain O∗(3cc ·
f (t, φ)) time algorithms for problems that can be expressed in a following form,where
t is an integer and φ is a counting monadic second order logic formula: Given a graph
G, find a maximum size vertex subset X so that there exists a vertex subset F with
X ⊆ F ⊆ V (G), the treewidth of the induced subgraph G[F] is at most t , and it holds
that (G[F], X) |� φ.

Computing the fractional hypertreewidth of a hypergraph corresponds to finding
a triangulation of its primal graph, minimizing the maximum fractional edge cover
of a maximal clique in the triangulation (see Sect. 2.3 for a complete definition). By
combining the fact that a primal graph of a hypergraph has edge clique cover of sizem,
the number of hyperedges, with Theorem 2 and the dynamic programming algorithm
of [35], we obtain an O∗(3m) time algorithm for fractional hypertreewidth.
Optimizing the results in special cases For some triangulation problems we obtain
better results than would directly follow from Theorem 2.

123

Algorithmica

A straightforward application of Theorem 2 would result in an O∗(6m) time algo-
rithm for generalized hypertreewidth (see definition in Sect. 2.3). We optimize this a
bit.

Theorem 3 Given a hypergraph with m hyperedges, its generalized hypertreewidth
can be computed in O∗(4m) time.

When an edge clique cover of size cc′ is given as an input, some of the algorithms
can be optimized to O∗(2cc′

) time. Chordal sandwich is a special case of the weighted
minimum fill-in problem, where the task is to decide if there exists a fill-in with weight
zero.We pay attention to it because it has application to the perfect phylogeny problem
[4,21,39].

Theorem 4 Given a graph with an edge clique cover of size cc′, its treewidth and
minimum fill-in can be computed in O∗(2cc′

) time, and also the chordal sandwich
problem on it can be solved in O∗(2cc′

) time.

Corollary 1 (See [21]) The perfect phylogeny problem can be solved in O∗(2n) time,
where n is the number of taxa.

A previous parameterized algorithm for perfect phylogeny works in time O∗(4r),
where r ≤ n is the arity of characters [27]. Our O∗(2n) time algorithm improves
over it in the case when r > n/2. This case is motivated by the fact that the O∗(4r)
algorithm works for partial characters only via a reduction that sets r ≥ n f for a
fraction f of missing data [39].
Polynomial space algorithms We also give polynomial space algorithms for some of
the problems. The algorithms work in O∗(9cc′

) time when an edge clique cover of
size cc′ is given as an input and in O∗(9cc+O(log2 cc)) time when the parameter cc
is given as an input.

Theorem 5 There is a polynomial space O∗(9cc′
) time algorithm for treewidth and

weighted minimum fill-in, where cc′ is the size of an edge clique cover given as an
input. There are also polynomial space O∗(9m) time algorithms for both generalized
and fractional hypertreewidth, where m is the number of hyperedges.

Our polynomial space result for the parameter cc is weaker than Theorem 2 in the
sense that it requires the integer cc as an input.

Theorem 6 There is a polynomial space O∗(9cc+O(log2 cc)) time algorithm for
treewidth and minimum fill-in, where cc is an integer given as an input that is at
least the size of a minimum edge clique cover of the input graph.

Thepresent article extends the preliminarywork [29] in threeways. First, Theorem1
has been improved so that we have lower and upper bounds that match exactly on all
values of cc. Second, Theorem 3 which provides a non-trivial extension of our results
to generalized hypertreewidth has been added. Third, data on minimum edge clique
covers of PACE 2017 instances has been added to Sect. 1.2.

123

Algorithmica

1.5 RelatedWork

The prior fixed-parameter (FPT) algorithms for PMC enumeration include an O∗(4vc)
time algorithm, where vc is the size of a minimum vertex cover, and an O∗(1.7347mw)
time algorithm, where mw is the modular width [16], extending the O(1.7347n) time
algorithm, where n is the number of vertices [17]. One can see that edge clique cover
and vertex cover are orthogonal parameters by considering complete graphs and star
graphs. For modular width we show in Sect. 9 that the relation mw ≤ 2cc−2 holds, but
there are graphs with mw = 2cc − 2. In the conclusion of [16] the authors mentioned
that they are not aware of other FPT parameters than vc and mw for PMCs and asked
whether more parameterizations could be obtained.

Other parameterized approaches on the PMC framework include an FPTmodulator
parameter [32] and a slicewise polynomial (XP) bound for minimal separators in
H -graphs [14]. The modulator parameter is orthogonal to edge clique cover. On H -
graphs, the graphs with edge clique cover of size cc are Kcc-graphs, so the H -graph
parameterization implies an nO(cc2) time algorithm for enumerating PMCs.

In addition to the O∗(4r) time algorithm for perfect phylogeny [27] that we dis-
cussed in Sect. 1.4, we are not aware of prior single-exponential FPT algorithms
with the same parameters as our algorithms. For fractional hypertreewidth there are
parameterized algorithms whose parameters depend on the sizes of intersections of
hyperedges [13]. For treewidth and chordal sandwich, different techniques have been
used to obtain an O∗(3vc) time algorithm for treewidth [8] and an O∗(2vc′

) time
algorithm for chordal sandwich, where vc′ is the size of a minimum vertex cover of
the admissible edge set [23].

1.6 Organization of the Article

In Sect. 2 we give necessary definitions and background on minimal triangulations
and PMCs. In Sect. 3 we characterize minimal separators and PMCs based on edge
clique cover, proving Theorem 1. In Sect. 4 we give enumeration algorithms for PMCs,
proving Theorem 2. In Sect. 5 we give the algorithm for generalized hypertreewidth,
proving Theorem 3. In Sect. 6 we give faster algorithms for the case when an edge
clique cover is given as an input, proving Theorem 4. In Sect. 7 we give polynomial
space algorithms, proving Theorems 5 and 6. In Sect. 8 we show that our combinatorial
bounds are tight. In Sect. 9 we prove the relation of edge clique cover and modular
width claimed in Sect. 1.5. We conclude in Sect. 10.

2 Preliminaries

We recall the standard graph notation that we use and preliminaries on minimal tri-
angulations. We also give formal definitions of the problems that we consider and
introduce our notation related to edge clique cover.

123

Algorithmica

2.1 Notation on Graphs

We consider graphs that are finite, simple, and undirected. We assume that the graphs
given as input are connected. For graphs with multiple connected components, the
algorithms can be applied to each connected component independently. The sets of
vertices and edges of a graph G are denoted by V (G) and E(G), respectively. The set
of edges of a complete graph with vertex set X is denoted as X2. The subgraph G[X]
induced by X ⊆ V (G) has V (G[X]) = X and E(G[X]) = E(G) ∩ X2. We also
use the notation G\X = G[V (G)\X]. The vertex sets of connected components of a
graph G are C(G). The set of neighbors of a vertex v is denoted by N (v) and the set
of neighbors of a vertex set X by N (X) = ⋃

v∈X N (v)\X . The closed neighborhood
of a vertex v is N [v] = N (v) ∪ {v} and the closed neighborhood of a vertex set X
is N [X] = N (X) ∪ X . A clique of a graph G is a vertex set X such that G[X] is
complete. The set of inclusion maximal cliques of G is denoted by MC(G).

2.2 Minimal Triangulations

Agraph is chordal if it has no induced cycle of four ormore vertices.A chordal graph H
is a triangulation of a graph G if V (G) = V (H) and E(G) ⊆ E(H). A triangulation
H of G is a minimal triangulation of G if there is no other triangulation H ′ of G with
E(H ′) � E(H). The edges in E(H)\E(G) are fill-edges. A vertex set Ω ⊆ V (G)

is a potential maximal clique (PMC) of G if there is a minimal triangulation H of G
such that Ω ∈ MC(H). The set of PMCs of G is denoted by Π(G).

A vertex set S is a minimal a, b-separator of graph G if the vertices a and b are
in different components of G\S, and S is inclusion minimal in this regard. A full
component of a vertex set X is a component C ∈ C(G\X) with N (C) = X . We
note that S is a minimal a, b-separator if and only if S has distinct full components
containing a and b. A vertex set S is a minimal separator if it is a minimal a, b-
separator for some pair a, b, i.e., it has at least two full components. We denote the
set of minimal separators of G with Δ(G).

A block of a graph G is a vertex set C ⊆ V (G) such that G[C] is connected and
N (C) ∈ Δ(G), i.e.,C is a full component of someminimal separator.We remark that a
common notation is to call a pair (N (C),C) a full block [5]. Inmodern formulations of
the PMC framework the concept of non-full blocks is not needed [17], so we simplify
the notation by identifying the block with only the vertex set C .

Next we recall a couple of required propositions on the structure of PMCs. Figure 2
provides examples giving intuition about the propositions.

Proposition 1 [5] A vertex set Ω ⊆ V (G) is a PMC of a graph G if and only if

1. N (C) � Ω for all C ∈ C(G\Ω), i.e., no component of Ω is full, and
2. for all pairs of distinct vertices u, v ∈ Ω , either {u, v} ∈ E(G) or there is a

component C ∈ C(G\Ω) with {u, v} ⊆ N (C).

We will refer to condition 1 of Proposition 1 as the no full component condition
and to condition 2 as the cliquish condition. Note that Proposition 1 implies an O(nm)

time algorithm for testing if a given vertex set is a PMC [5].

123

Algorithmica

Fig. 2 An example graph G with vertex set V (G) = {a, b, c, d, e, f }. It holds that Ω = {b, c, e} is a PMC
of G, and therefore by Proposition 2, {a}, {d}, and { f } are blocks of Ω . As an example of Proposition 3,
consider Ω and the block C = {a}. Now N (C) = {b, c} is a minimal separator contained in Ω , and
C ′ = {d, e, f } is a full component of {b, c}. It holds that Ω ⊆ N [C ′] = {b, c, d, e, f }

Proposition 2 [5] If Ω is a PMC of a graph G then all components C ∈ C(G\Ω) are
blocks of G.

We call the components C ∈ C(G\Ω) the blocks of Ω . Note that N (C) � Ω , i.e.,
the minimal separators of the blocks C ∈ C(G\Ω) are strict subsets of the PMC. We
also need the following proposition connecting PMCs and blocks.

Proposition 3 [5] If Ω is a PMC of a graph G and C is a block of Ω , then there is a
full component C ′ of N (C) such that Ω ⊆ N [C ′].

2.3 Formal Definitions of Problems

Let G be a graph and Tr(G) the set of triangulations of G. The treewidth of G is
minH∈Tr(G) maxΩ∈MC(H) |Ω| − 1. Given a weight function w : V (G)2 → R≥0, the
weighted minimum fill-in ofG with respect tow is minH∈Tr(G)

∑
e∈(E(H)\E(G)) w(e).

In unweightedminimumfill-inw(e) = 1.When a set F ⊆ V (G)2\E(G)of admissible
edges is given, the chordal sandwich problem is to determine if there is a triangulation
H ∈ Tr(G) with E(H) ⊆ E(G) ∪ F . Note that chordal sandwich can be reduced to
weighted minimum fill-in on the same graph G by using a weight function w with
w(e) = 0 if e ∈ F and w(e) = 1 otherwise.

A hypergraph G has a set of vertices V (G) and a set of hyperedges E(G) that are
arbitrary non-empty subsets of V (G), i.e., for e ∈ E(G) it holds that e ⊆ V (G).
The primal graph P(G) of G is a graph with vertices V (P(G)) = V (G) and edges
E(P(G)) = ⋃

e∈E(G) e
2. An edge cover of a vertex set X ⊆ V (G) is an assignment

c : E(G) → {0, 1} so that for each v ∈ X it holds that
∑

v∈e∈E(G) c(e) ≥ 1. The size
of an edge cover c is

∑
e∈E(G) c(e). Fractional edge cover is defined analogously to

edge cover, but the function c is allowed to take any non-negative real values instead
of only integers. The minimum size of an edge cover of a set X ⊆ V (G) is denoted
by COV(X) and fractional edge cover by FCOV(X). The generalized hypertreewidth
of a hypergraph G is minH∈Tr(P(G)) maxΩ∈MC(H) COV(Ω) and the fractional hyper-
treewidth is minH∈Tr(P(G)) maxΩ∈MC(H) FCOV(Ω) [19,20,35]. Note that FCOV(X)

can be computed in polynomial time by linear programming, but computing COV(X)

corresponds to the NP-complete set cover problem [20].
For all of the aforementioned problems there is an optimal solution correspond-

ing to a minimal triangulation. Furthermore, all of the problems except generalized

123

Algorithmica

Fig. 3 An example graph G with vertex set V (G) = {x, y, z, xy, xz, yz, xyz} and edge clique cover
W = {X , Y , Z}, where X = {x, xy, xz, xyz}, Y = {y, xy, yz, xyz}, and Z = {z, xz, yz, xyz}. Here, for
example W[xy] = {X , Y }, W[{xy, xz}] = {X , Y , Z}, V (G, {X , Y }) = {x, y, xy}, V (G, {X , Y }, {Z}) =
{x, y, xy, z}. Also, C({X , Y }) = {{x, y, xy}}, and because {x, y, xy} is a block, the part {X , Y } is good.
The parts {X} and {Y } are not compatible because V (G, {X}, {Y }) = {x, y} is not equal to V (G, {X , Y }) =
{x, y, xy}

hypertreewidth can be solved in O∗(|Π(G)|) time when Π(G) is given as an input
[15,18,21,33,35]. Generalized hypertreewidth can be solved in O∗(|Π(P(G))|) time
if COV(Ω) for each Ω ∈ Π(P(G)) is also given as input [35]. For reductions from
perfect phylogeny to chordal sandwich and from maximum compatibility of binary
phylogenetic characters to weighted minimum fill-in see [4,21].

2.4 Notation on Edge Clique Cover

We introduce notation for manipulating objects in a graph based on edge clique cover,
with examples of the notation presented in Figure 3. An edge clique cover W of a
graph G is a collection of subsets of V (G) so that

⋃
W∈W W 2 = E(G). We often

manipulate vertex sets based on an edge clique cover W . For a vertex v ∈ V (G),
we denote by W[v] = {W ∈ W | v ∈ W } the set of cliques in W that contain v.
Similarly, for a vertex set X we denote by W[X] = ⋃

v∈X W[v] the set of cliques in
W that intersect X .

A non-empty subset W ′ ⊆ W of an edge clique cover W is called a part of the
edge clique cover. The vertices in V (G,W ′) = {v ∈ V (G) | W[v] ⊆ W ′} are called
the vertices of the part W ′. We denote the union of vertices of multiple parts with a
shorthand V (G,W1, . . . ,Wp) = V (G,W1) ∪ . . . ∪ V (G,Wp). The components of
a part are C(W ′) = C(G[V (G,W ′)]). A part is called good if all of its components
are blocks, in which case the components of the part may be called the blocks of the
part. Note that a part W ′ with V (G,W ′) = ∅ has C(W ′) = ∅ and thus is good. Two
disjoint parts W1,W2 are called compatible if V (G,W1,W2) = V (G,W1 ∪ W2).

3 Characterization of the Central Combinatorial Objects

In this section we show that if a graph has an edge clique cover of size cc, then
the number of blocks of the graph is at most S(cc, 2) · 2, the number of minimal
separators is at most S(cc, 2), and the number of potential maximal cliques is at most

123

Algorithmica

S(cc, 3) + cc. The characterizations of these objects will be later used in the design
of the algorithms.

We start by showing that blocks correspond to parts of an edge clique cover.

Lemma 1 Let G be a graph and W an edge clique cover of G. If C is a block of G
then V (G,W[C]) = C.

Proof ClearlyC ⊆ V (G,W[C]). Note that V (G,W[C]) ⊆ N [C] because any vertex
v intersecting a common clique with a vertex u ∈ C must be in N [u]. Suppose there
is a vertex v ∈ (V (G,W[C]) ∩ N (C)). Let C ′ be a full component of N (C) distinct
from C , implying that v ∈ N (C ′). All the cliques that v intersects also intersect with
C , and therefore there must be a vertex in C ′ that is in a clique intersecting with C
which is a contradiction to the fact that N (C) separates C and C ′. �

By Lemma 1, any block C of G can be uniquely identified with a setW[C] ⊆ W .
Moreover, there is no block withW[C] = ∅ orW[C] = W , so the number of blocks
is at most 2cc − 2. Any minimal separator is identified as N (C) of at least two blocks
C , so the number of minimal separators is at most 2cc−2

2 = 2cc−1 − 1 = S(cc, 2),
proving the bound on minimal separators in Theorem 1.

Next we show that each PMC Ω is either a clique in the edge clique cover W or
can be represented by a tripartition of edge clique cover. The high-level idea of the
proof is that we can associate for each block C ∈ C(G\Ω) a part W[C], and then
use the properties of PMCs to show that the set of these parts can be coarsed into the
desired tripartition, except in the special case when Ω ∈ W . The lemma could be a
bit simpler if we wanted to only prove a bound of 3cc, but now it yields a tight bound.

Lemma 2 Let G be a graph andW an edge clique cover of G. IfΩ is a PMCof G, then
either (1) Ω ∈ W or (2) C(G\Ω) = C(W1)∪C(W2)∪C(W3), where {W1,W2,W3}
is a partition of W into good parts.

Proof First, we show that if there is a vertex v ∈ Ω with |W[v]| = 1, thenΩ = N [v],
i.e., the sole clique containing v. Consider a vertex u ∈ N (v) and suppose that u /∈ Ω

for the sake of contradiction. Note thatW[v] ⊆ W[u] and thus N [v] ⊆ N [u]. Now, as
Ω satisfies the cliquish condition there is a path from v without intermediate vertices
in Ω to all vertices in Ω . We can substitute u for v in any such path, and therefore
Ω would violate the no full component condition. Therefore we have N [v] ⊆ Ω ,
which implies N [v] = Ω because now v cannot satisfy the cliquish condition with
any vertex not in N [v].

We showed that case 1 applies to PMCs containing vertices v with |W[v]| = 1.
Next, we suppose that we have PMC Ω for which case 1 does not apply, and show
that case 2 applies. By Proposition 2 the components C ∈ C(G\Ω) are blocks and
by Lemma 1 they define a collection P = {W[C] | C ∈ C(G\Ω)} of disjoint good
parts ofW . We make this collection a partition ofW by adding the missing elements
W\(⋃Wi∈P Wi) as singletons. If for any such singleton {W } there is a vertex v with
W[v] ⊆ {W }, then case 1 applies. Therefore we have that V (G, {W }) = ∅ for such
singletons, and thus they are good parts. Now we have a partition P of W into good
parts with

⋃
Wi∈P C(Wi) = C(G\Ω).

123

Algorithmica

If the partition P would consist of only a single part then Ω would be empty.
Suppose the number of parts is two, i.e., P = {W1,W2}. Now, if either V (G,W1) or
V (G,W2) is nonempty, then the no full component condition would be violated by it.
If both V (G,W1) and V (G,W2) are empty, then Ω = V (G), which implies thatW1
and W2 are singletons and |W| = 2, which implies that V (G) = W1 = W2 = Ω ,
i.e., that case 1 would apply.

If the number of parts is at least three, merge arbitrary compatible pairs of parts
until the number of parts is three or no pairs of parts can be merged anymore. If we
end up with three parts, we are done. If we end up with more than three parts, i.e. P =
{W1,W2,W3,W4, . . .}, then take a vertex u ∈ (V (G,W1 ∪ W2)\V (G,W1,W2))

and a vertex v ∈ (V (G,W3 ∪W4)\V (G,W3,W4)). Because of our assumption that
we cannot continue the merging process anymore both of these vertices exist and are
in Ω . However, there is no edge between u and v and there is no common component
in whose neighborhood u and v are, which is a contradiction to the cliquish condition.

�
We call the PMCs corresponding to case 1 of Lemma 2 type 1 PMCs and the PMCs

corresponding to case 2 type 2 PMCs. The number of type 1 PMCs is at most cc.
Type 2 PMCs correspond to tripartitions of W , so their number is at most S(cc, 3).
Therefore, the total number of PMCs is at most S(cc, 3) + cc, completing the proof
of Theorem 1.

4 Enumeration Algorithms

We modify the Bouchitté–Todinca algorithm [6] for enumerating PMCs to give an
O∗(3cc) time PMC enumeration algorithm and a polynomial space O∗(9cc) time
PMC enumeration algorithm. Recall that Theorem 1 with Takata’s algorithm [40]
implies a polynomial space O∗(2cc) time minimal separator enumeration algorithm.

The Bouchitté–Todinca algorithm characterizes PMCs based on minimal separa-
tors. We summarize this characterization in the following proposition.

Proposition 4 [6] Let G be a connected graph with |V (G)| > 1 and v any vertex of
G. If Ω is a PMC of G, one of the following holds.

1. Ω\{v} ∈ Π(G\{v}).
2. Ω\{v} ∈ Δ(G).
3. Ω = S ∪ T , where S ∈ Δ(G) and T ∈ Δ(G[C ∪ {x, y}]), where C is a full

component of S and x and y are non-adjacent vertices in S.

The algorithm uses case 1 to generate n induced subgraphs of the input graph, from
which PMCs are generated by cases 2 and 3. Note that the size of a minimum edge
clique cover is monotone with respect to induced subgraphs. We need the following
lemma, which follows from Proposition 1, to ensure that each PMC of each induced
subgraph corresponds to at most one PMC of the original graph.

Lemma 3 [6] Let G be a graph, Ω ∈ Π(G), and v ∈ Ω . The set Ω\{v} is not a PMC
of G.

123

Algorithmica

Proof The PMC Ω satisfies the cliquish condition, so there is a path in G from v to
each vertex in Ω\{v} without intermediate vertices in Ω . Therefore Ω\{v} violates
the no full component condition. �

Now, we can just enumerate PMCs from cases 2 and 3 in each of the n induced
subgraphs, and each time a PMC is found we use case 1 with Lemma 3 to generate at
most one PMC of the original graph in polynomial time.

Next we complete the description of the algorithm by showing that PMCs from
cases 2 and 3 can be enumerated in O∗(3cc) time. The proof is based on Lemma 1 on
the structure and the number of blocks.

Lemma 4 There is an algorithm that given a graph G whose minimum edge clique
cover has size cc enumerates the PMCs of G, possibly with duplicates, in polynomial
space and O∗(3cc) time.

Proof As discussed above, it is sufficient to enumerate PMCs from cases 2 and 3 of
Proposition 4. Case 2 simply corresponds to minimal separator enumeration, so we
use the O∗(2cc) time polynomial spaceminimal separator enumeration algorithm. For
case 3, we do the polynomial space minimal separator enumeration in the graph G,
and every time we output a minimal separator S, we do polynomial space enumeration
of minimal separators in the graph G[C ∪ {x, y}] for all full components C of S and
all non-adjacent pairs x, y ∈ S.

We do the inner iteration O(n2) times for each block C of G. The complexity of
the inner iteration depends on the size of a minimum edge clique cover of the graph
G[C ∪ {x, y}]. LetW be a minimum edge clique cover of G. By Lemma 1, the block
C corresponds to a unique subset W[C] of W . The subset W[C] is an edge clique
cover of G[C ∪ {x, y}] because all edges in it are adjacent to C because x and y are
non-adjacent. Therefore, the time complexity of the inner iteration is O∗(2|W[C]|) and
the total time complexity of the algorithm is

∑
W ′⊆W O∗(2|W ′|) = O∗(3cc). �

Using for example sorting we can deduplicate the output of the algorithm of
Lemma 4 and an O∗(3cc) time and space algorithm for enumerating PMCs with-
out duplicates, i.e., Theorem 2, follows. For deduplication in polynomial space, we
use a simple trick that is efficient enough for our purposes.

Lemma 5 There is an algorithm that given a graph G whose minimum edge clique
cover has size cc enumerates the PMCs of G in polynomial space and O∗(9cc) time.

Proof Run the algorithm of Lemma 4 multiple times in succession, each time out-
putting the lexicographically smallest PMC that is lexicographically larger than the
previous PMCoutputted, until no such PMC is found.Now, using the algorithm atmost
3cc times we have outputted the PMCs of G in lexicographically strictly increasing
order. �

5 Generalized Hypertreewidth

For generalized hypertreewidth we need to compute minimum edge covers of all
PMCs, so a naive application of Theorem 2 with an O∗(2m) time set cover algorithm

123

Algorithmica

results in an O∗(6m) time algorithm, where m is the number of hyperedges. In this
section we give an O∗(4m) time algorithm for enumerating PMCswith their minimum
edge covers, implying an O∗(4m) time algorithm for generalized hypertreewidth. We
note that the naive approach with Lemma 5 is sufficient to give an O∗(9m) time
polynomial space algorithm for enumerating PMCs with minimum edge covers.

In this sectionwe letW be the edge clique cover of sizem formed by the hyperedges
of the input hypergraph.Weuse the characterization of PMCsgiven inLemma2. PMCs
of type 1 have edge covers of size 1, so we focus on PMCs of type 2, which correspond
to tripartitions of hyperedges. Let {W1,W2,W3} be a tripartition corresponding to a
type 2 PMC Ω = V (G)\V (G,W1,W2,W3). We use the following notation to cover
vertices of the PMC with hyperedges.

Definition 1 Let G be a graph, W an edge clique cover of G, and {D,W1,W2,W3}
a labeled four-partition of W with empty parts allowed. The partial PMC induced by
{D,W1,W2,W3} is the vertex set {v ∈ V (G) | D∩W[v] = ∅}\V (G,W1,W2,W3),
which we denote by Γ (G, D,W1,W2,W3).

Now we can observe that if a tripartition {W1,W2,W3} corresponds to a PMC Ω ,
then Γ (G,∅,W1,W2,W3) = Ω . Furthermore, Γ (G, D,W1\D,W2\D,W3\D) is
an empty set if and only if D is an edge cover of Ω . Therefore the task of finding a
minimum edge cover of a PMC Ω = V (G)\V (G,W1,W2,W3) reduces to finding
a minimum size set D ⊆ W that makes Γ (G, D,W1\D,W2\D,W3\D) empty. We
solve this with dynamic programming in O∗(4m) total time.

Lemma 6 Let G be a hypergraph. The PMCs of the primal graph P(G) with minimum
edge covers COV(Ω) for each PMC Ω can be enumerated in O∗(4m) time, where m
is the number of hyperedges of G.
Proof Let G = P(G), W = E(G), and {D,W1,W2,W3} be as in Definition 1.
We denote by COV(D,W1,W2,W3) the minimum size of D′ ⊆ W such that the
set Γ (G, D ∪ D′,W1\D′,W2\D′,W3\D′) is empty. We compute COV for all such
partitions by the recursion COV(D,W1,W2,W3) =

{
0 if Γ (G, D,W1,W2,W3) = ∅ and
1 + minW∈WCOV(D ∪ {W },W1\{W },W2\{W },W3\{W }) otherwise.

This recursion can be evaluated and stored in O∗(4m) time. Now, we iterate over
all tripartitions {W1,W2,W3} of W and if V (G)\V (G,W1,W2,W3) is a PMC we
output it and COV(∅,W1,W2,W3) as its minimum edge cover. �

Theorem 3 follows.

6 Faster AlgorithmsWhen Edge Clique Cover is Given

We use fast subset convolution [2] to design O∗(2cc′
) time algorithms for treewidth,

minimum fill-in, and chordal sandwich, where cc′ is the size of an edge clique cover
given as an input. In particular, we make use of the following result.

123

Algorithmica

Proposition 5 [2] Let X be a set, f : 2X → [M] and g : 2X → [M] functions from
the set 2X of all subsets of X to the set of integers up to M. The function (f ∗g) defined
as (f ∗ g)(Y) = minY ′⊆Y f (Y ′) + g(Y\Y ′) can be computed for all subsets Y ⊆ X
in O∗(2|X |M) time.

The algorithms we introduce are modifications of the dynamic programming phase
of the PMC framework. In most of this section our presentation is general in the sense
that it applies to each of the three problems. We use the term “optimal triangulation”
to refer to a triangulation with the minimum size of a maximum clique in the context
of treewidth, a triangulation with the least number of edges in the context of minimum
fill-in, and to a triangulation that has no non-admissible fill-edges in the context of
chordal sandwich (or to information that no such triangulation exists).

We start by recalling the dynamic programming phase of the PMC framework. The
states of the dynamic programming correspond to realizations of blocks.

Definition 2 [5]LetG be a graph andC a block ofG. A realization R(C)ofC is a graph
with vertex set V (R(C)) = N [C] and edge set E(R(C)) = E(G[N [C]]) ∪ N (C)2.

The following proposition characterizes minimal triangulations of a realization of
a block.

Proposition 6 [5] Let G be a graph and C a block of G. The graph H is a minimal
triangulation of R(C) if and only if (i) V (H) = N [C] and (ii) there is a PMC
Ω ∈ Π(G) with N (C) ⊆ Ω ⊆ N [C] and

E(H) = Ω2 ∪
⋃

Ci∈C(R(C)\Ω)

E(Hi),

where Hi is any minimal triangulation of R(Ci). Moreover, each Ci is a block of G.

Proposition 6 implies dynamic programming algorithms for computing optimal
triangulations of realizations of all blocks [5,15,33].

We use the following proposition for a base case.

Proposition 7 [5] Let G be a graph that is not complete. The graph H is a minimal
triangulation of G if and only if (i) V (H) = V (G) and (ii) there is aminimal separator
S ∈ Δ(G) with

E(H) =
⋃

Ci∈C(G\S)

E(Hi),

where Hi is any minimal triangulation of R(Ci).

Once we have computed optimal triangulations of realizations of all blocks, we can
compute an optimal triangulation of the graph via Proposition 7 in time O∗(2cc). For
computing optimal triangulations of realizations, the bottleneck in implementing the
recursion of Proposition 6 is in iterating over the PMCs.

The high-level idea of our algorithm is that we use Proposition 6 directly only
with type 1 PMCs, i.e., PMCs Ω ∈ W ∩ Π(G). For type 2 PMCs, we simulate the

123

Algorithmica

iteration over PMCs with fast subset convolution. In particular, we show that each
PMC Ω of type 2 with N (C) ⊆ Ω ⊆ N [C] can be expressed in terms of two
disjoint good parts W1 and W2 of W[C], where W is an edge clique cover of G. In
the case of treewidth, minimum fill-in, and chordal sandwich, an optimal partition of
every subset W ′ ⊆ W into two good parts W1 and W2 can be computed with fast
subset convolution, provided that we have first computed optimal triangulations of
realizations of all blocks in C(W1) and C(W2).

We first show that each type 2 PMC can be expressed in terms of W1 and W2.

Lemma 7 Let G be a graph, W an edge clique cover of G, and C a block of G.
If a graph H is a minimal triangulation of R(C), then either (1) there is a clique
Ω ∈ W ∩ Π(G) and

E(H) = Ω2 ∪
⋃

Ci∈C(R(C)\Ω)

E(Hi),

where N (C) ⊆ Ω ⊆ N [C], and Hi is a minimal triangulation of R(Ci), or (2) there
is a partition {W1,W2,Wo} of W into good parts with W1 ∪ W2 ⊆ W[C], a block
C ′ ∈ C(Wo) with N (C) = N (C ′), and

E(H) = Ω2 ∪
⋃

Ci∈C(W1)∪C(W2)∪(C(Wo)\C(G\N (C)))

E(Hi),

where Ω = V (G)\V (G,W1,W2,Wo) and Hi is a minimal triangulation of R(Ci).

Proof Case 1 corresponds to Proposition 6 with PMCs of type 1. Next we prove that
case 2 covers all PMCs of type 2.

Let Ω be a PMC of G with N (C) ⊆ Ω ⊆ N [C] and Ω /∈ W . We consider the part
W ′

o = W\W[C] and prove that W ′
o is a good part and C(W ′

o) = C(G\N (C))\{C}.
Observe that {C, N (C), V (G,W ′

o)} is a partition of V (G), and moreover there are no
edges between C and V (G,W ′

o). Now, for any component C ′ ∈ C(W ′
o), it must hold

that N (C ′) ⊆ N (C), and therefore N (C ′) is a minimal separator and thereforeW ′
o is

a good part whose blocks are the components of G\N (C) except C .
Similarly as in the proof of Lemma 2, consider the collection of disjoint good parts

P = {W[Ci] | Ci ∈ C(G\Ω)}. All of the parts that intersect W ′
o are subsets of W ′

o
because they do not intersect W[C], and therefore we replace the parts that intersect
W ′

o by the partW ′
o. Now by similar arguments as in Lemma 2 we add additional parts

to the collection to make it a full partition of W . Now we have a partition P of W
with |P| ≥ 2 and W ′

o ∈ P . Moreover,
⋃

Wi∈P C(Wi) = C(G\Ω). If |P| = 2, then
it would hold that P = {W ′

o,W[C]}, in which case Ω = N (C) would hold, which
is a contradiction. If there are at least three parts, then merge compatible parts until
we have three parts or cannot merge parts anymore. By the proof of Lemma 2, we
will end up with three parts. Now let Wo be the part that contains W ′

o and W1 and
W2 the other two parts. Because W ′

o = W\W[C], we have that W1 ∪ W2 ⊆ W[C].
Moreover, because N (C) has at least two full components, and all components of
N (C) except C are components ofW ′

o, we have that there is a blockC
′ ∈ C(Wo)with

N (C ′) = N (C).

123

Algorithmica

Finally, we show that C(R(C)\Ω) = C(W1) ∪ C(W2) ∪ (C(Wo)\C(G\N (C))).
By Proposition 3 we have that C(R(C)\Ω) = C(G\Ω)\C(G\N (C)) and therefore
C(R(C)\Ω) = C(W1)∪C(W2)∪C(Wo)\C(G\N (C)). All blocks ofW1 andW2 are
subsets of C because W1 ∪ W2 ⊆ W[C]. �

The following lemma guarantees that the characterization of PMCs of type 2 in
Lemma 7 is sound in the sense that all graphs H that it defines are (not necessarily
minimal) triangulations of G.

Lemma 8 Let G be a graph,W an edge clique cover of G, and C a block of G. Also,
let {W1,W2,Wo} be a partition of W into good parts with W1 ∪ W2 ⊆ W[C] and
C ′ a block of G with C ′ ∈ C(Wo) and N (C) = N (C ′). Let H be any graph with (i)
V (H) = N [C] and (ii)

E(H) = Ω2 ∪
⋃

Ci∈C(W1)∪C(W2)∪(C(Wo)\C(G\N (C)))

E(Hi),

where Ω = V (G)\V (G,W1,W2,Wo) and Hi is any triangulation of R(Ci). The
graph H is a triangulation of R(C).

Proof To show that H is a triangulation of R(C) we show that N (C) ⊆ Ω ⊆ N [C]
and C(R(C)\Ω) = C(W1) ∪ C(W2) ∪ (C(Wo)\C(G\N (C))).

For Ω ⊆ N [C], note that no vertex of Ω is in V (G,Wo), and therefore all vertices
of Ω intersect a clique inW[C], and therefore are in N [C]. Furthermore, N (C) ⊆ Ω

holds because there is a block C ′ ∈ C(Wo) with N (C) = N (C ′).
The components of Ω in G are C(W1) ∪ C(W2) ∪ C(Wo) by definition. Because

N (C) ⊆ Ω ⊆ N [C], all components of Ω in G are either in C , and thus components
of Ω in R(C) or are components of N (C). All components in C(W1) ∪ C(W2) are
subsets ofC becauseW1∪W2 ⊆ W[C], and therefore are components ofΩ in R(C).
All components of N (C) are outside of C except C itself. It remains to show that C is
not a component of Ω . Any setW ′ with C ⊆ V (G,W ′) must be a superset ofW[C].
However, because W1 and W2 are proper subsets of W[C], no set in {W1,W2,Wo}
can be a superset of W[C]. �

In Lemmas 7 and 8 we formulated a recursion that characterizes all minimal tri-
angulations of a realization R(C) of a block C in terms of minimal triangulations of
realizations R(C ′) of blocks C ′ � C . What remains is to integrate the computation of
the optimal cost of the triangulation into this characterization. The following lemma
is used for treewidth and minimum fill-in. It is simple, but we state it as a warmup for
what follows.

Lemma 9 Let G be a graph,W an edge clique cover of G, {W1,W2,Wo} a partition
of W , and Ω = V (G)\V (G,W1,W2,Wo) a vertex set defined by the partition. It
holds that |Ω| = |V (G)| − |V (G,W1)| − |V (G,W2)| − |V (G,Wo)|.
Proof The sets V (G,W1), V (G,W2), and V (G,Wo) are disjoint because W1, W2
and Wo are disjoint. �

123

Algorithmica

Therefore, the size of Ω can be computed as a sum that considers the parts W1,
W2, and Wo independently, and therefore we can integrate the computation of it
into fast subset convolution. For treewidth, we only have to make sure that |Ω| ≤
k + 1, where k is the upper bound for treewidth in the decision problem. For min-
imum fill-in, we can compute the number of edges in the triangulation of R(C) as(|Ω|

2

) + ∑
Ci∈C(R(C)\Ω)(|E(Hi)| − (|N (Ci)|

2

)
), where Hi is an optimal triangulation of

the realization R(Ci).
A similar lemma is used for chordal sandwich.

Lemma 10 Let G be a graph,W an edge clique cover of G, {W1,W2,Wo} a partition
of W into good parts, and Ω = V (G)\V (G,W1,W2,Wo). It holds that Ω2 =⋃

Wi∈{W1,W2,Wo}(V (G)\V (G,Wi ,W\Wi))
2.

Proof We first show that for all pairs u, v ∈ Ω there is a part Wi ∈ {W1,W2,Wo}
such that {u, v} ⊆ (V (G)\V (G,Wi ,W\Wi)). Neither W[u] or W[v] is a subset of
any ofW1,W2, orWo, so there is at least of part of the partition that they both intersect
but are not subsets of and that is the desired partWi .

To see that (V (G)\V (G,Wi ,W\Wi)) ⊆ Ω , take any vertex v ∈ (V (G)\Ω) and
consider the setW[v]. The setW[v] is a subset of one ofW1,W2, orWo. Now, each
of {W1,W2,Wo} is either Wi or a subset of W\Wi . �

Lemma 10 guarantees that each fill-edge caused by the PMCΩ can be “seen” from
at least one of the parts W1, W2, Wo, implying that it is sufficient to check each part
independently to guarantee that Ω does not add any forbidden fill-edges. We remark
that Lemma 10 appears to be difficult to generalize to count the exact number of fill-
edges, which is the barrier why we are not able to give an O∗(2cc′

) time algorithm
for weighted minimum fill-in.

Algorithm1 presents the full O∗(2cc′
) time algorithm for treewidth. The algorithms

for minimum fill-in and chordal sandwich are similar. The algorithm maintains a
collection B of blocks C for which it is known that the treewidth of R(C) is at most
k. The invariant of the main loop of lines 2 to 18 is that after i th iteration, all blocks
of size at most i and treewidth at most k have been added to B. In each iteration of
the main loop, the algorithm iterates over all good parts W ′ on lines 4 to 6, and if all
realizations of blocks of the part have treewidth at most k adds the part to a collection
F|V (G,W ′)|. These partsW ′ correspond to partsW1 andW2 of our lemmas. Then, fast
subset convolution is applied on line 7 on the collections F to find for all combinations
(W1 ∪ W2) of disjoint good parts W1 and W2 the maximum number of vertices in
V (G,W1,W2). Then on lines 8 to 14 the algorithm iterates through all good parts
Wo, thus determining (W1 ∪ W2) and all other variables that need to be taken into
account. In particular, note that each part Wo determines only polynomially many
blocks C such that there is C ′ ∈ C(Wo) with N (C ′) = N (C).

The analysis of the algorithm focuses on transitions via PMCsof type 2 andproceeds
by induction on the main loop invariant. The time complexity follows simply from
fast subset convolution, the bound 2cc on the number of blocks, and the fact that each
iteration of the loop of the lines 8 to 14 takes polynomial time. The correctness is
shown by combining the lemmas introduced in this section.

123

Algorithmica

Algorithm 1: Treewidth in O∗(2cc′
) time

Input : Connected graph G, an edge clique coverW of G, and an integer k
Output: Whether the treewidth of G is at most k

1 if G is complete then return |V (G)| ≤ k + 1 Let B ← ∅ be a collection of blocks of G
2 for i ← 1 to n do
3 For each 0 ≤ j ≤ n let Fj ← ∅ be a collection of subsets of W
4 foreach good partW ′ ⊆ W do
5 if C(W ′) ⊆ B then
6 F|V (G,W ′)| ← F|V (G,W ′)| ∪ {W ′}
7 Use fast subset convolution to compute for each subset W ′ ⊆ W the maximum value of a + b

such that there is W ′′ ⊆ W ′ with W ′′ ∈ Fa and (W ′\W ′′) ∈ Fb
8 foreach good partWo ⊆ W do
9 Let t be the value on W\Wo computed in line 7

10 if t exists and n − t − |V (G,Wo)| ≤ k + 1 then
11 foreach minimal separator N (C ′) with C ′ ∈ C(Wo) do
12 if exists C ∈ C(G\N (C ′)) with (W\Wo) ⊆ W[C] then
13 if (C(Wo)\C(N (C))) ⊆ B then
14 B ← B ∪ {C}
15 foreach block C of G do
16 foreach Ω ∈ W ∩ Π(G) with |Ω| ≤ k + 1 and N (C) ⊆ Ω ⊆ N [C] do
17 if C(R(C)\Ω) ⊆ B then
18 B ← B ∪ {C}
19 foreach S ∈ Δ(G) do
20 if C(G\S) ⊆ B then
21 return True
22 return False

Lemma 11 There is an algorithm that given a graph G with an edge clique cover
W of size cc′ determines the treewidth and minimum fill-in of G in time O∗(2cc′

).
Furthermore, if also a set F ⊆ V (G)2\E(G) is given the algorithm determines if
there is a triangulation H of G with E(H) ⊆ E(G) ∪ F.

Proof By Theorem 1 and Proposition 7 it suffices to solve each of the problems for all
realizations of blocks of G. We proceed via induction, i.e., assume that the problems
have been solved for all realizations of blocks C with |C | < i . We show that in one
step taking a total of O∗(2cc′

) time the problems can be solved for all realizations of
blocks C with |C | = i .

First we find optimal triangulations via Proposition 6 using PMCs of type 1, i.e.,
PMCs Ω ∈ W ∩ Π(G). For deciding if treewidth is at most k we have to assert that
|Ω| ≤ k+1 and that the resulting smaller blocks have treewidth of realizations at most
k. For minimum fill-in, the number of fill-edges can be computed as |Ω2\E(R(C))|
plus the numbers of fill-edges in optimal solutions of the smaller blocks. For chordal
sandwich we have to assert that Ω2 ⊆ E(G)∪ F and that the resulting smaller blocks
also have positive answers.

Nowwecan focus on type2PMCs, i.e., implement the characterizationofLemmas7
and 8 while keeping track of the optimal answer. For each of the problems we use
fast subset convolution [2] to determine in O∗(2cc′

) time for each subset W ′ ⊆
W an optimal partition of W ′ into two good parts W1 and W2. For treewidth we
determine the maximum value of |V (G,W1,W2)| such that all realizations of blocks

123

Algorithmica

in C(W1) ∪ C(W2) have treewidth at most k. For minimum fill-in, we determine for
each value 0 ≤ p ≤ n the minimum value of sum of minimum fill-ins of realizations
of blocks in C(W1) ∪ C(W2) such that |V (G,W1,W2)| = p. For chordal sandwich,
we decide if there is a partition such that the answer is positive for all realizations of
blocks in C(W1) ∪ C(W2) and that (V (G)\V (G,Wi ,W\Wi))

2 ⊆ E(G) ∪ F . Now,
once we fix the set W ′ = (W1 ∪ W2), by Lemmas 9 and 10 we have computed all
relevant information about W1 and W2 with the convolution, and can compute the
rest of the information of the PMC by Wo = W\(W1 ∪ W2). Because Wo defines
polynomially many blocks C with C ′ ∈ C(Wo) and N (C) = N (C ′) we can update
all relevant blocks in polynomial time. �

Theorem 4 follows.

7 Polynomial Space Algorithms

We give polynomial space algorithms for treewidth, weighted minimum fill-in, and
generalized and fractional hypertreewidth. The algorithms are based on the following
characterization of minimal triangulations. Note that the characterization uses realiza-
tions of blocks as defined in Sect. 6.

Proposition 8 [5] Let G be a graph, H aminimal triangulation of G, andΩ amaximal
clique of H. For each Ci ∈ C(G\Ω) there exists a minimal triangulation Hi of R(Ci)

such that

E(H) = Ω2 ∪
⋃

Ci∈C(G\Ω)

E(Hi).

Note that by iterating over all Ω ∈ Π(G) in Proposition 8 we can indeed construct
all minimal triangulations of G. Furthermore, all graphs H constructed in this manner
are minimal triangulations [5].

The idea of the algorithm is to use the recursion of Proposition 8 directly, without
dynamic programming. The following “balanced PMC” lemma guarantees that for
any resulting minimal triangulation, we can construct it in an order in which the size
of an edge clique cover roughly halves in each level of the recursion. We prove it by
an edge direction argument in a tree corresponding to the minimal triangulation.

Lemma 12 Let G be a graph with an edge clique coverW . Any minimal triangulation
H ofG has amaximal cliqueΩ so that all blocksC ∈ C(G\Ω)have |W[C]| ≤ |W|/2.
Proof For any PMC Ω there can be at most one component C ∈ C(G\Ω) so that
|W[C]| > |W|/2 because the sets W[Ci] over Ci ∈ C(G\Ω) correspond to disjoint
subsets of W . Let H be any minimal triangulation of G and pick arbitrary maximal
clique Ω of H . While there is a component C ∈ C(G\Ω) such that |W[C]| >

|W|/2, pick a maximal clique Ω of H such that N (C) ⊆ Ω ⊆ N [C]. If this process
stops, we have found the desired maximal clique Ω . Suppose the process does not
stop. It considers an infinite sequence of blocks C1,C2, . . . with an associated infinite

123

Algorithmica

sequence of PMCsΩ1,Ω2, . . .withCi ∈ C(G\Ωi). Consider two consecutive blocks
Ci and Ci+1 in this sequence such that Ci+1 is not a subset of Ci , which exist because
G is finite. Recall that N (Ci) ⊆ Ωi+1 ⊆ N [Ci]. BecauseCi+1 is not a subset ofCi , we
have that N (Ci+1) ⊆ N (Ci), implying that Ci and Ci+1 are two distinct components
of G\N (Ci). Therefore the setsW[Ci] andW[Ci+1] are disjoint, implying that either
of them has to be of size at most |W|/2, which is a contradiction. �

We combine Proposition 8 and Lemma 12 into the following lemma.

Lemma 13 Let G be a graph and W an edge clique cover of G. A graph H is a
minimal triangulation of G if and only if (1) V (H) = V (G) and (2) there is a PMC
Ω ∈ Π(G) with |W[Ci]| ≤ |W|/2 for all Ci ∈ C(G\Ω) and

E(H) = Ω2 ∪
⋃

Ci∈C(G\Ω)

E(Hi),

where Hi is a minimal triangulation of R(Ci).

Proof Such a graph H is a minimal triangulation ofG by standard results [5]. Let H be
any minimal triangulation of G. By Lemma 12 there is a maximal clique Ω of H that
satisfies |W[Ci]| ≤ |W|/2 for all Ci ∈ C(G\Ω). By Proposition 8 the triangulation
H can be constructed by the recursion from Ω . �

Algorithm 2 presents a polynomial space O∗(9cc′
) time algorithm for treewidth.

The algorithms for other problems are similar. The algorithm implements the charac-
terization of Lemma 13, with the observation that W[C] ∪ {N (C)} is an edge clique
cover of R(C). The time complexity analysis of the algorithm reduces to a recursion
equation resembling t(cc′) = 9cc

′ + 3cc
′
2t(cc′/2).

Lemma 14 There is an algorithm that given a graph G with an edge clique cover of
size cc′ determines the treewidth of G in polynomial space and O∗(9cc′

) time. If also
a weight function w : V (G)2 → R≥0 is given, the algorithm determines the weighted
minimum fill-in of G with respect tow. There is also algorithm that given a hypergraph
G with m hyperedges determines both its generalized and fractional hypertreewidth
in polynomial space and O∗(9m) time.

Algorithm 2: Treewidth in polynomial space and O∗(9cc′
) time

Input : Connected graph G, an edge clique coverW of G, and an integer k
Output: Whether the treewidth of G is at most k

1 for Ω ∈ Π(G) do
2 if |Ω| ≤ k + 1 and |W[Ci]| ≤ |W|/2 for all Ci ∈ C(G\Ω) then
3 ok ← True
4 for C ∈ C(G\Ω) do
5 if Treewidth(R(C),W[C] ∪ {N (C)}, k) = False then
6 ok ← False
7 if ok then return True
8 return False

123

Algorithmica

Proof We use a recursive procedure that takes as an input a graphG and an edge clique
cover W of it and returns the cost of an optimal triangulation of the graph. We use
the characterization of minimal triangulations of Lemma 13 with the O∗(9cc) time
polynomial space PMC enumeration algorithm of Lemma 5. Note that if C is a block,
then W[C] ∪ {N (C)} is an edge clique cover of R(C). Therefore, when we recurse
into a subproblem the value of cc′ changes to at most cc′/2 + 1.

We use k = cc′ for clarity. We analyze the time complexity of the algorithm by
induction on k. Our assumption is that the time complexity is p(n)9k+3 log2 kk, where
p(n) is a polynomial sufficiently large to cover all polynomial-time subroutines and to
make the assumption true for small values of k. In particular we assume that the PMCs
can be enumerated and their associated costs can be computed in p(n)9k time. We
recurse from at most 3k PMCsΩ , from each into |C(G\Ω)| subproblems with the new
value of k being at most k/2 + 1. Because of the exponentiality of the algorithm the
worst case is that we recurse into two subproblems from each PMC, each subproblem
with the new value of k equal to k/2 + 1. Now, the time complexity is

p(n)9k + 3k2p(n)9k/2+1+3 log2(k/2+1)(k/2 + 1)

= p(n)9k + p(n)9k+1+3 log2(k+2)−3(k + 2)

≤ p(n)9k + p(n)9k+3 log2 k(k + 2)/9 ≤ p(n)9k+3 log2 kk,

which verifies the induction assumption. �
Theorem 5 follows.

The main idea to make the algorithm work when we do not know the edge clique
cover is to just check if there are at most 3cc PMCs. The reason why the time com-
plexity becomes a bit higher than in Lemma 14 is that we cannot assume that the worst
case of branching from a PMC Ω results in only two subproblems. In particular, we
cannot assume anything better than cc subproblems each with aminimum edge clique
cover of size cc/2 + 1.

Algorithm 3 presents a polynomial space O∗(9cc+O(log2 cc)) time algorithm for
treewidth. The algorithm for weighted minimum fill-in is similar.

Algorithm 3: Treewidth in polynomial space and O∗(9cc+O(log2 cc)) time
Input : Connected graph G, an integer cc, and an integer k
Output: True if the treewidth of G is at most k and G has an edge clique cover of size at most cc;

true only if the treewidth of G is at most k
1 if |Π(G)| > 3cc then return False for Ω ∈ Π(G) do
2 if |Ω| ≤ k + 1 then
3 if |C(G\Ω)| > cc then return False ok ← True
4 for C ∈ C(G\Ω) do
5 if Treewidth(R(C),cc/2 + 1, k) = False then
6 ok ← False
7 if ok then return True
8 return False

123

Algorithmica

Lemma 15 There is an algorithm that given a graph G and an integer cc uses poly-
nomial space and O∗(9cc+O(log2 cc)) time and returns an integer t that is at least the
treewidth of G. If also a weight function w : V (G)2 → R≥0 is given, the algorithm
also returns a number f that is at least the weighted minimum fill-in of G with respect
to w. If cc is at least the size of a minimum edge clique cover of G, then t is the
treewidth of G and f is the weighted minimum fill-in of G with respect to w.

Proof We use the same algorithm as in Lemma 14, but with the modification that
instead of giving an edge clique cover as a parameter we give just the integer cc. At
the start we check if |Π(G)| > 3cc in O∗(9cc) time, and therefore we can use the
same 3cc bound on PMCs. Also, each time we recurse from a PMC Ω we check that
|C(G\Ω)| ≤ cc. If not, then G has no edge clique cover of size cc.

We use k = cc and use induction on k. Assume that the time complexity is
p(n)9k+3 log2 kk3 log2 k with the same assumptions on p(n) as in the proof of Lemma14.
We recurse from at most 3k PMCs Ω , from each into |C(G\Ω)| ≤ k subproblems
with the value of k decreasing to k/2 + 1 in each. Now, the time complexity is

p(n)9k + 3kkp(n)9k/2+1+3 log2(k/2+1)(k/2 + 1)3 log2(k/2+1)

= p(n)9k + p(n)9k+1+3 log2(k+2)−3k(k/2 + 1)3 log2(k+2)−3

≤ p(n)9k + p(n)9k+3 log2 kk3 log2 k/9 ≤ p(n)9k+3 log2 kk3 log2 k,

which verifies the induction assumption. �
Theorem 6 follows.

8 Tightness

We show that the bounds S(cc, 2) and S(cc, 3) + cc for the numbers of minimal
separators and PMCs are tight for all values of cc.

Let us construct a graph K cc
2 . LetW be a collection of size cc initially containing

disjoint sets of size 1, that is, W = {W1, . . . ,Wcc} with Wi = {vi }. For each pair
1 ≤ i < j ≤ ccwe insert an element vi, j into the setsWi andWj . Now, the vertex set
of K cc

2 is V (K cc
2) = ⋃

W∈W W and the edge set of K cc
2 is E(K cc

2) = ⋃
W∈W W 2.

The collection W is therefore an edge clique cover of Kcc
2 .

Lemma 16 The graph Kcc
2 has at least S(cc, 2) minimal separators and at least

S(cc, 3) + cc PMCs.

Proof For distinct subsets W ′ ⊆ W the vertex sets V (K cc
2 ,W ′) are distinct because

they can be identified by the inclusion of the vi vertices. Let W ′ be any non-empty
strict subset ofW . Both K cc

2 [V (K cc
2 ,W ′)] and K cc

2 [V (K cc
2 ,W\W ′)] are connected

graphs. Any vertex in V (K cc
2)\V (K cc

2 ,W ′,W\W ′) is of type vi, j and has a neighbor
in both V (K cc

2 ,W ′) and V (K cc
2 ,W\W ′). Therefore, V (K cc

2)\V (K cc
2 ,W ′,W\W ′)

is a minimal separator and V (Kcc
2 ,W ′) and V (K cc

2 ,W\W ′) are blocks of it. There-
fore, the number of minimal separators of Kcc

2 is at least the number of bipartitions
of W .

123

Algorithmica

Take any tripartition {W1,W2,W3} ofW . Note that distinct tripartitions define dis-
tinct sets V (K cc

2 ,W1,W2,W3). We show that Ω = V (K cc
2)\(K cc

2 ,W1,W2,W3)

is a PMC of K cc
2 . Any vertex in Ω is of type vi, j , with vertices vi and v j in different

blocks V (K cc
2 ,Wp). Therefore, for any pair of vertices inΩ there is a common block

that they are adjacent to, and therefore Ω satisfies the cliquish condition. A compo-
nent V (K cc

2 ,W1) cannot be full because there is a vertex vi, j that intersects cliques
Wi ∈ W2 and Wj ∈ W3 and therefore is in the PMC but not in the neighborhood of
V (K cc

2 ,W1). Therefore, Ω satisfies the no full component condition. Therefore, the
number of PMCs of K cc

2 that contain no vertices of type vi is at least the number of
tripartitions of W .

We complete the proof by showing that for each vi the set N [vi] is a PMC, contribut-
ing the term cc to the bound. The set N [vi] satisfies the no full component condition
because vi is not connected to any vertex outside of it. It satisfies the cliquish condition
because it is a clique. �

9 Relation of Edge Clique Cover andModular Width

In [16] an algorithm with time complexity O∗(1.7347mw), where mw is the modular
width, was given for enumerating PMCs. In Sect. 1.5 we claimed that the parameters
edge clique cover and modular width have a relation mw ≤ 2cc − 2, which is tight.
Now we prove this claim.

A module of a graph G is a vertex set X ⊆ V (G) such that for all x ∈ V (G)\X ,
either N (x) ∩ X = X or N (x) ∩ X = ∅. We use a recursive definition of modular
width with four operations.

Definition 3 [16] A graph G has modular width mw if

1. |V (G)| ≤ 1,
2. G is a disjoint union of two graphs with modular width at most mw,
3. G is a join of two graphs G1 and G2 with modular width at most mw, that is,

V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ (V (G1) × V (G2)), or
4. the vertices of G can be partitioned into k ≤ mw modules X1, . . . , Xk , such that

each G[Xi] has modular width at most mw.

Now we prove the inequality mw ≤ 2cc − 2.

Lemma 17 If a graph has an edge clique cover of size cc then it has modular width
at most 2cc − 2.

Proof Let G be a graph with edge clique coverW of size cc. If G has a vertex v with
W[v] = ∅, thenwe remove vwith the operation 2. IfG has a vertex vwithW[v] = W ,
then we remove v with the operation 3. Now vertices of G can be partitioned to at
most 2cc − 2 classes based onW[v]. These classes are cliques and they are modules
because ifW[v] = W[u] then N [v] = N [u]. �

Next we prove the tightness of this inequality.

123

Algorithmica

Lemma 18 For each integer cc ≥ 3 there is a graph with an edge clique cover of size
cc and modular width 2cc − 2.

Proof We construct a graph Kcc. Let W be a collection of size cc that will be the
edge clique cover of K cc. For every non-empty strict subset W ′ � W we create a
vertex vW ′ and insert it into each clique W ∈ W ′. The edges of K cc are defined by
W , that is, by whether the subsets corresponding to the vertices intersect.

The graph K cc is connected and its complement is also connected, so operations 2
and 3 cannot be applied. Next we prove that operation 4 cannot be applied with any
integer k < 2cc − 2. Suppose there is a non-trivial module M of K cc, i.e., a module
with size 2 ≤ |M | < |V (K cc)|. Let vW1 and vW2 be two distinct vertices in M with
|W1| ≤ |W2|. Now vW\W1 ∈ M , because vW\W1 ∈ N (vW2), but vW\W1 /∈ N (vW1).
Now, sinceM contains both vW1 and vW\W1 it must contain all vertices corresponding
to single element subsets of W by a similar argument. Since M contains all vertices
corresponding to single element subsets ofW it also must contain all vertices of Kcc

by a similar argument. �

10 Conclusion

We bounded the number of minimal separators and PMCs by the size of a minimum
edge clique cover, obtaining new parameterized algorithms for problems in the PMC
framework. The parameterization by edge clique cover is motivated by real applica-
tions of optimal triangulations, and our results provide theoretical corroboration on the
observations of the efficiency of the PMC framework in practice. Prior to our work,
only the work of Fomin et al. [16] considers FPT bounds for PMCs. Our work answers
to their proposal for finding further FPT parameterizations for PMCs.

We showed that our combinatorial bounds are the best possible, implying also that
our PMCenumeration algorithm is optimal up to polynomial factorswith respect to the
parameter cc. For individual problems it remains as an open problem to improve the
algorithms or to prove conditional lower bounds assuming conjectures such as strong
exponential time hypothesis [34]. We are not aware of other graph parameters whose
value is always at most cc and for which single-exponential FPT bounds for minimal
separators and PMCs exist. In particular, we note that graphs with vertex clique cover
of size 2 can have an exponential number of minimal separators: the graph consisting
of two cliques of size n/2 connected by a matching of n/2 edges has 2n/2 −2 minimal
separators.

One combinatorial question closely related to our work is whether the bound
O(1.7347n) for the number of PMCs can be improved in graphs where cc ≤ n. This
is motivated by moral graphs of Bayesian networks, for which the inequality holds.
Also the question of finding other useful parameterizations for PMCs still remains for
future work. Because of the fact that the parameter cc occurs naturally in multiple
settings related to optimal triangulations, we expect that even more applications of our
results could arise in future.

Acknowledgements I wish to thank Matti Järvisalo, Mikko Koivisto, Andreas Niskanen, and Juha Harvi-
ainen for helpful comments.

123

Algorithmica

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Found.
Comput. Sci. 11(3), 397–403 (2000). https://doi.org/10.1142/S0129054100000211

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In:
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 67–74. ACM (2007).
https://doi.org/10.1145/1250790.1250801

3. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open problems in param-
eterized and exact computation—IWPEC 2006. Technical Report UU-CS-2006-052, Department of
Information and Computing Sciences, Utrecht University (2006). https://dspace.library.uu.nl/handle/
1874/22186

4. Bordewich, M., Huber, K.T., Semple, C.: Identifying phylogenetic trees. Discrete Math. 300(1–3),
30–43 (2005). https://doi.org/10.1016/j.disc.2005.06.015

5. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J.
Comput. 31(1), 212–232 (2001). https://doi.org/10.1137/S0097539799359683

6. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1–
2), 17–32 (2002). https://doi.org/10.1016/S0304-3975(01)00007-X

7. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM
16(9), 575–577 (1973)

8. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by the
vertex cover number. Discrete Appl. Math. 216, 114–129 (2017). https://doi.org/10.1016/j.dam.2014.
12.012

9. Conati, C., Gertner, A.S., VanLehn, K., Druzdzel, M.J.: On-line student modeling for coached problem
solving using Bayesian networks. In: User Modeling, CISM, vol. 383, pp. 231–242. Springer (1997).
https://doi.org/10.1007/978-3-7091-2670-7_24

10. Cygan,M., Pilipczuk,M., Pilipczuk,M.: Known algorithms for edge clique cover are probably optimal.
SIAM Journal on Computing 45(1), 67–83 (2016). https://doi.org/10.1137/130947076

11. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized algorithms and
computational experiments challenge: the second iteration. In: 12th International Symposium on
Parameterized and Exact Computation, LIPIcs, vol. 89, pp. 30:1–30:12. Schloss Dagstuhl—Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.IPEC.2017.30

12. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: a benchmark and tool for hypergraphs
and empirical findings. In: Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pp. 464–480 (2019). https://doi.org/10.1145/3294052.3319683

13. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions: hard and easy
cases. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pp. 17–32 (2018). https://doi.org/10.1145/3196959.3196962

14. Fomin, F.V., Golovach, P.A., Raymond, J.: On the tractability of optimization problems on H-graphs.
Algorithmica (2020). https://doi.org/10.1007/s00453-020-00692-9

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0129054100000211
https://doi.org/10.1145/1250790.1250801
https://dspace.library.uu.nl/handle/1874/22186
https://dspace.library.uu.nl/handle/1874/22186
https://doi.org/10.1016/j.disc.2005.06.015
https://doi.org/10.1137/S0097539799359683
https://doi.org/10.1016/S0304-3975(01)00007-X
https://doi.org/10.1016/j.dam.2014.12.012
https://doi.org/10.1016/j.dam.2014.12.012
https://doi.org/10.1007/978-3-7091-2670-7_24
https://doi.org/10.1137/130947076
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.1145/3294052.3319683
https://doi.org/10.1145/3196959.3196962
https://doi.org/10.1007/s00453-020-00692-9

Algorithmica

15. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth andminimumfill-in.
SIAM J. Comput. 38(3), 1058–1079 (2008). https://doi.org/10.1137/050643350

16. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and
modular width, through potential maximal cliques. Algorithmica 80(4), 1146–1169 (2018). https://
doi.org/10.1007/s00453-017-0297-1

17. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. SIAM
J. Comput. 44(1), 54–87 (2015). https://doi.org/10.1137/140964801

18. Furuse,M., Yamazaki, K.: A revisit of the scheme for computing treewidth andminimum fill-in. Theor.
Comput. Sci. 531, 66–76 (2014). https://doi.org/10.1016/j.tcs.2014.03.013

19. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and
tractable variants. J. ACM 56(6), 30:1-30:32 (2009). https://doi.org/10.1145/1568318.1568320

20. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Algorithms 11(1),
4:1-4:20 (2014). https://doi.org/10.1145/2636918

21. Gysel, R.: Minimal triangulation algorithms for perfect phylogeny problems. In: Language and
Automata Theory and Applications—8th International Conference, LNCS, vol. 8370, pp. 421–432.
Springer (2014). https://doi.org/10.1007/978-3-319-04921-2_34

22. Hasegawa, M., Kishino, H., Yano, T.: Dating of the human-ape splitting by a molecular clock of
mitochondrial DNA. J. Mol. Evol. 22(2), 160–174 (1985)

23. Heggernes, P.,Mancini, F., Nederlof, J., Villanger, Y.: A parameterized algorithm for chordal sandwich.
In: Proceedings of 7th International Conference on Algorithms and Complexity, LNCS, vol. 6078, pp.
120–130. Springer (2010). https://doi.org/10.1007/978-3-642-13073-1_12

24. IBM ILOG: CPLEX optimizer 12.7.1 (2017). https://www.ibm.com/analytics/data-science/
prescriptive-analytics/cplex-optimizer

25. Jensen, F.V., Jensen, F.: Optimal junction trees. In: Proceedings of the 10th Annual Conference on
Uncertainty in Artificial Intelligence, pp. 360–366. Morgan Kaufmann (1994)

26. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, Berlin (2007). https://
doi.org/10.1007/978-0-387-68282-2

27. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies.
SIAM J. Comput. 26(6), 1749–1763 (1997). https://doi.org/10.1137/S0097539794279067

28. Korhonen, T.: Finding optimal tree decompositions. Master’s thesis, University of Helsinki (2020).
http://urn.fi/URN:NBN:fi:hulib-202006173010

29. Korhonen, T.: Finding optimal triangulations parameterized by edge clique cover. In: 15th International
Symposium on Parameterized and Exact Computation (IPEC 2020), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 180, pp. 22:1–22:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.IPEC.2020.22

30. Korhonen, T., Berg, J., Järvisalo, M.: Solving graph problems via potential maximal cliques: an exper-
imental evaluation of the Bouchitté–Todinca algorithm. ACM J. Exp. Algorithm. 24(1), 1.9:1–1.9:19
(2019). https://doi.org/10.1145/3301297

31. Korhonen, T., Järvisalo, M.: Finding most compatible phylogenetic trees over multi-state characters.
In: Proceedings of the 34th AAAI Conference on Artificial Intelligence, pp. 1544–1551. AAAI Press
(2020). https://doi.org/10.1609/aaai.v34i02.5514

32. Liedloff, M., Montealegre, P., Todinca, I.: Beyond classes of graphs with “few” minimal separators:
FPT results through potential maximal cliques. Algorithmica 81(3), 986–1005 (2019). https://doi.org/
10.1007/s00453-018-0453-2

33. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827
(2010). https://doi.org/10.1016/j.dam.2009.10.007

34. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull.
EATCS 105, 41–72 (2011)

35. Moll, L., Tazari, S., Thurley, M.: Computing hypergraph width measures exactly. Inf. Process. Lett.
112(6), 238–242 (2012). https://doi.org/10.1016/j.ipl.2011.12.002

36. Ravid, N., Medini, D., Kimelfeld, B.: Ranked enumeration of minimal triangulations. In: Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 74–
88. ACM (2019). https://doi.org/10.1145/3294052.3319678

37. Ringe, D., Warnow, T., Taylor, A.: Indo-European and computational cladistics. Trans. Philol. Soc.
100(1), 59–129 (2002). https://doi.org/10.1111/1467-968X.00091

38. Scutari,M.: LearningBayesian networkswith the bnlearnR package. J. Stat. Softw. 35(3), 1–22 (2010).
https://doi.org/10.18637/jss.v035.i03

123

https://doi.org/10.1137/050643350
https://doi.org/10.1007/s00453-017-0297-1
https://doi.org/10.1007/s00453-017-0297-1
https://doi.org/10.1137/140964801
https://doi.org/10.1016/j.tcs.2014.03.013
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/2636918
https://doi.org/10.1007/978-3-319-04921-2_34
https://doi.org/10.1007/978-3-642-13073-1_12
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://doi.org/10.1007/978-0-387-68282-2
https://doi.org/10.1007/978-0-387-68282-2
https://doi.org/10.1137/S0097539794279067
http://urn.fi/URN:NBN:fi:hulib-202006173010
https://doi.org/10.4230/LIPIcs.IPEC.2020.22
https://doi.org/10.1145/3301297
https://doi.org/10.1609/aaai.v34i02.5514
https://doi.org/10.1007/s00453-018-0453-2
https://doi.org/10.1007/s00453-018-0453-2
https://doi.org/10.1016/j.dam.2009.10.007
https://doi.org/10.1016/j.ipl.2011.12.002
https://doi.org/10.1145/3294052.3319678
https://doi.org/10.1111/1467-968X.00091
https://doi.org/10.18637/jss.v035.i03

Algorithmica

39. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
40. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex separators of a graph.

Discrete Appl. Math. 158(15), 1660–1667 (2010). https://doi.org/10.1016/j.dam.2010.05.013
41. Tamaki, H.: Computing treewidth via exact and heuristic lists of minimal separators. In: Proceedings of

the Special Event on Analysis of Experimental Algorithms, LNCS, vol. 11544, pp. 219–236. Springer
(2019). https://doi.org/10.1007/978-3-030-34029-2_15

42. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J. Comb. Optim. 37(4),
1283–1311 (2019). https://doi.org/10.1007/s10878-018-0353-z

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.dam.2010.05.013
https://doi.org/10.1007/978-3-030-34029-2_15
https://doi.org/10.1007/s10878-018-0353-z

	Finding Optimal Triangulations Parameterized by Edge Clique Cover
	Abstract
	1 Introduction
	1.1 Interpretations of cc
	1.2 Connections to Practice
	1.3 Techniques
	1.4 Contributions
	1.5 Related Work
	1.6 Organization of the Article

	2 Preliminaries
	2.1 Notation on Graphs
	2.2 Minimal Triangulations
	2.3 Formal Definitions of Problems
	2.4 Notation on Edge Clique Cover

	3 Characterization of the Central Combinatorial Objects
	4 Enumeration Algorithms
	5 Generalized Hypertreewidth
	6 Faster Algorithms When Edge Clique Cover is Given
	7 Polynomial Space Algorithms
	8 Tightness
	9 Relation of Edge Clique Cover and Modular Width
	10 Conclusion
	Acknowledgements
	References

